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Abstract  
MicroRNAs are essential post-transcriptional regulators of gene expression and involved in many 

biological processes; however, our understanding of their genetic regulation and role in brain illnesses is 
limited. Here, we mapped brain microRNA expression quantitative trait loci (miR-QTLs) using genome-wide 
small RNA sequencing profiles from dorsolateral prefrontal cortex (dlPFC) samples of 604 older adult donors 
of European ancestry. miR-QTLs were identified for 224 miRNAs (48% of 470 tested miRNAs) at false 
discovery rate < 1%. We found that miR-QTLs were enriched in brain promoters and enhancers, and that 
intragenic miRNAs often did not share QTLs with their host gene. Additionally, we integrated the brain miR-
QTLs with results from 16 GWAS of psychiatric and neurodegenerative diseases using multiple independent 
integration approaches and identified four miRNAs that contribute to the pathogenesis of bipolar disorder, 
major depression, post-traumatic stress disorder, schizophrenia, and Parkinson’s disease. This study provides 
novel insights into the contribution of miRNAs to the complex biological networks that link genetic variation 
to disease.  
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1 Introduction 
MicroRNAs (miRNAs) are small non-coding RNAs that suppress gene expression by binding 

complementary mRNA sequences and causing either transcript degradation or translation repression. miRNAs 
are typically produced through multi-step post-transcriptional processing that begins with cleavage of the 
primary miRNA transcript (hundreds or thousands of nucleotides long) into a hairpin-shaped precursor 
miRNA (pre-miRNA), which is transported into the cytoplasm and then cleaved into ~22 nucleotide mature 
miRNAs1. Each pre-miRNA can produce up to two mature miRNAs, one from each arm of the hairpin. Each 
miRNA can influence the expression of potentially hundreds of genes, and thereby exert a broad influence on 
gene expression2, which make them relevant for understanding the complex networks of interacting genes 
involved in most human disease. 

While miRNAs have a well-described role in gene regulation, less is known about how they 
themselves are genetically regulated. By contrast, comparatively more is known about how genetic variants 
are associated with variation in transcript and protein expression – so called quantitative trait loci (QTL) 
mapping. This has led to important insight into human conditions, especially by integrating QTLs with 
genome-wide association study (GWAS) results3-6. Thus, we hypothesize that miRNA QTLs (miR-QTLs) ought 
to provide similar insights. 

Characterizing miR-QTLs has several additional benefits. First, since miRNAs regulate genes that 
may be distally located in the genome, miR-QTLs could be used to reduce the multiple testing burden for 
finding trans-pQTLs. Second, miR-QTLs could be used to test whether miRNAs mediate protein expression 
when both the miRNA and protein are under genetic control, which would complement existing miRNA 
target prediction approaches. Together, these results would provide a more complete picture of gene 
expression regulation. 

Given their small size, miRNAs identified from next-generation sequencing data are prone to false 
annotation if appropriate criteria are not applied7,8. Coupled with the fact that miRNAs may be cell type-
specific9, the precise complement of human miRNAs remains a subject of debate10,11. 

Here, we first cataloged miRNA QTLs (miR-QTLs) using small RNA sequencing from adult human 
dorsolateral prefrontal cortex (dlPFC) (Figure 1). Given the current uncertainty about the true miRNA 
complement, we conducted parallel miR-QTL mapping using miRNAs from two miRNA databases that have 
different inclusion criteria. Next, we leveraged the high confidence miR-QTLs to address questions about 
gene regulation, such as whether miRNAs are regulated independently of host genes; whether miR-QTLs are 
enriched in promoters or enhancers; whether miR-QTLs can be used to detect trans-pQTLs and support 
predicted miRNA targets; and whether miR-QTLs are tissue-specific. Finally, we applied multiple 
complementary methods for integrating the miR-QTLs with GWAS signals from 16 neurodegenerative and 
psychiatric traits to identify miRNAs that mediate the effect of genetic variation on the brain-related traits 
(Figure 1). Altogether, we uncovered miRNAs involved in brain illnesses, characterized features of miRNA 
regulation, and provide a human brain miR-QTL resource for future study. 
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Figure 1. Main analyses.  

2 Results 

2.1 miR-QTL mapping 
miRNA and genotype data from 604 individuals were available for analysis after quality control filtering. 
Sample and data characteristics are summarized in Supplementary Table 1. All participants were over 70 
years old at the time of death, and the median age of death was 90 years. The median miRNA sequencing 
depth per sample was 27.3 million reads (range 13.2 million to 37.4 million). We chose to independently map 
miRNA sequencing reads to two reference miRNA databases – miRBase12 and MirGeneDB13,14. The rationale 
for this was that miRBase is a widely used source that is likely valuable to the research community. Yet, 
miRBase has been noted for its substantial number of falsely annotated miRNAs8,15-17. On the other hand, 
MirGeneDB is a manually curated miRNA database with reported low rate of false annotations and high 
completeness for human miRNAs13,14.  

Using miRBase to map miRNA reads resulted in a median of 18.8 million mapped reads per sample 
(range 7.7 million to 27.4 million) (Supplementary Figure 1). After filtering based on our abundance criteria 
( 1 RPM for  50% of samples), there were 624 autosomal miRNAs available for miR-QTL analysis 
(Supplementary Tables 2-3). Considering SNPs within 500kb of the precursor sequences, we tested 1,315,257 
SNP-miRNA pairs and observed miR-QTLs for 326 miRNAs at false discovery rate (FDR) < 1% (unadjusted P-
value < 2.98 × 10-4). Hereafter, miRNAs with at least one miR-QTL are referred to as eMiRs. Since we 
analyzed a dense set of genotypes, many SNPs are in high linkage disequilibrium (LD). To identify a reduced 
set of SNPs, we applied LD-based clumping to the miR-QTL results to identify ‘index’ miR-QTLs for each 
eMiR, followed by conditional analysis to identify conditionally independent miR-QTLs for each eMiR. Of the 
326 eMiRs, 71% had one conditionally independent miR-QTL, 22% had 2, and 7% had three, four, or five. 

Using MirGeneDB to map miRNA reads resulted in a median of 18.7 million mapped reads per 
sample (range 7.7 million to 27.3 million). The list of tested MirGeneDB miRNAs and RPM statistics are in 
Supplementary Tables 4-5. Using the MirGeneDB miRNA set at FDR < 1% (unadjusted P-value < 2.34 × 10-4) 
we observed miR-QTLs for 224 of 470 tested miRNAs (Figure 2A). The distribution of the conditionally-
independent miR-QTLs per eMiR is similar to what we observed with miRBase. Specifically, of the 224 eMiRs, 
75% had one conditionally independent miR-QTL, 18% had 2, and about 6% had 3 or 4.   
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Notably, MirGeneDB miRNAs captured over 99.7% of the reads that mapped to the miRBase miRNAs, 
indicating that the miRNAs unique to miRBase are sparsely observed in our sequence data. Furthermore, the 
tested miRNAs in the MirGeneDB set included 75% (470 out of 624) of the tested miRNAs from the miRBase 
set. This substantial overlap in the tested miRNAs may be surprising at first given that miRBase lists several 
times more miRNAs than MirGeneDB. The simplest explanation is that miRBase-specific miRNAs are rarely 
detected in our data at or above our minimum required abundance threshold. Consistent with this, the tested 
miRNAs specific to miRBase tended to have lower expression than those present in both databases (median 
RPM of 3 versus 51, two-sided Wilcoxon rank-sum test P-value = 7.8 × 10-31).  

The mapped read counts and miR-QTL summary statistics for both the miRBase and MirGeneDB 
miRNA sets are made available for researchers (see Data Availability section). For the downstream analyses 
in the rest of the manuscript, we opted to use the miR-QTLs from the MirGeneDB miRNAs to focus on 
miRNAs that all have the same high confidence support.  

2.2 miR-QTL characteristics 
2.2.1 Percent expression variance explained 

To recap, we observed miR-QTLs for 224 of 470 tested miRNAs from the MirGeneDB set (Figure 2A). 
The median percent of miRNA expression variance explained by each conditionally independent miR-QTL 
was 4.1% (interquartile range 2.7%–7.8%), and 18 eMiRs have a miR-QTL that explains more than 20% of 
their expression variance. These values reflect not only the true effect size distribution of miR-QTLs but also 
the detection power in this study. We expect to have captured the strongest miR-QTLs; larger studies would 
be expected to identify additional miR-QTLs with smaller effect sizes.  

2.2.2 miR-QTL sharing by clustered miRNAs  
Two unique features of miRNA biology can create correlation in the abundances of mature miRNAs. 

First, each miRNA precursor potentially encodes two mature miRNAs, from the -3p and -5p hairpin arms. 
Second, miRNA genes are often located in the genome in physical clusters and clustered genes may be 
transcribed as a unit. We can define a cluster as a group of miRNA genes separated by less than 10 Kb; some 
genes are ’standalone’ genes that are not located in a cluster. Using these definitions, the 224 eMiRs 
originate from 181 precursors that map to 135 distinct loci (either clusters or standalone genes). We 
observed moderate correlation between miRNAs from the same precursor or cluster. Specifically, the median 
pairwise Pearson correlation for miRNAs from the same precursor was 0.50 (interquartile range [IQR] 0.25-
0.68), and the median pairwise Pearson correlation for miRNAs in a cluster was 0.43 (IQR 0.27-0.70). 
Predictably, miR-QTLs were sometimes, but not always, shared by miRNAs from the same precursor or 
cluster. For instance, 67% of SNPs tested for both the -3p and -5p miRNAs from the same precursor were 
associated with only one of the mature miRNAs.  

2.2.3 miR-QTL relative distance to eMiR genes  
We characterized the position of the 1,384 index miR-QTLs relative to the respective precursor (or 

precursors if the miRNA has multiple precursors on the same chromosome as the miR-QTL). Three index miR-
QTLs were located within the miRNA precursor sequence, including one located within the mature miRNA 
(Supplementary Table 7). About 9% of tested miRNAs mapped to more than one precursor; for one such 
miRNA, the two index miR-QTLs were located between precursors in a cluster, so we could not assign them 
to a single relative position category. Among the remaining miRNAs, miR-QTLs were more likely to be 
upstream than downstream of the miRNA gene (809 versus 570, two-sided binomial test P-value = 1.32×10-

10) (Figure 2B, Supplementary Table 8). As expected, miR-QTLs tended to be close to the gene's transcription 
start site (TSS), and the distance to TSS was significantly correlated with P-value (Spearman rho 0.23, P-
value = 1.14×10-17). We also observed that miR-QTLs for intragenic miRNAs tended to be further from the 
miRNA precursor than miR-QTLs for intergenic miRNAs (two-sided Wilcoxon rank-sum P-value = 6.31×10-12). 
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Figure 2. Summary of miR-QTL results. A) Manhattan plot of miR-QTL results. Each point represents a SNP-
miRNA association. Pink dashed line indicates FDR of 1%. The Y-axis scale is condensed for -log10(P) ≥ 100. 
B) Distribution of miR-QTL position relative to the miRNA precursor for 1,358 index miR-QTLs. The miR-QTLs 
were stratified by whether the associated miRNA is intragenic (yellow) or intergenic (blue) and the two 
histograms are overlaid. The plot excludes 21 index miR-QTLs that had ambiguous relative position (because 
they were between or among precursors), were within the precursor, or were associated with miRNAs that 
could not be classified as intergenic or intragenic.  

2.3 Extent of colocalization of miR-QTLs with host gene eQTLs and pQTLs 
About 60% (or 135) of the eMiRs originate from intragenic miRNA precursors. Prior work has shown that 
intragenic miRNAs are sometimes co-expressed with their host genes18,19. Consistent with these reports, we 
found that the abundance of intragenic miRNAs was more likely to be positively correlated with abundance 
of host gene transcripts than expected by chance using matched dlPFC miRNA and transcriptomic data from 
297 participants (two-sided Wilcoxon rank-sum P-value = 5.6×10-13). To follow up on this observation, we 
used coloc20, a Bayesian colocalization method, to identify specific instances of genetic co-regulation of 
intragenic miR-QTLs and their respective host genes. We combined the miR-QTL results with dlPFC eQTL 
observations from 621 ROS/MAP participants21. Considering the 106 miRNA-host pairs (103 mature miRNAs 
from 77 precursors in 71 host genes) for which the miRNA had miR-QTLs and the host gene had eQTLs, we 
found evidence of colocalization between miR-QTLs and host gene eQTLs (coloc PP.H4 > 0.5) for 17 pairs 
and no evidence of colocalization for 89 pairs (Supplementary Table 9). One interpretation of this finding is 
that in most cases, genetic regulation of miRNA expression and host gene expression occur independently. 
Alternatively, it could be that transcription is co-regulated, but post-transcriptional regulation of either the 
miRNA or host gene breaks the association between miRNA and host gene abundance. In any case, the 
findings show that for the majority of intragenic miRNAs, the miR-QTL signal is not explained by host gene 
eQTLs, and miR-QTLs provide information that is complementary to that from eQTLs. 

Given the general tendency for positive correlation between miRNA and host gene transcript 
abundance, it is notable that two of the miRNA-host gene pairs with colocalized QTLs had significant 
negative correlation. For one of these pairs, miR-149-5p and host gene GPC1, previous work has shown that 
the miRNA targets the host gene in endothelial cells, has its own intronic promoter, and is activated 
independently of the host gene22. Our results together with the published findings suggest that the GPC1 
eQTL signal may be driven by the miR-QTL effect on miR-149-5p and demonstrates that considering miR-
QTLs can reveal the mechanism of action of host gene eQTLs. For the second pair, miR-1908-5p and host 
gene FADS1, we found no published experimental validation of the interaction. However, the Mendelian 
randomization analysis we describe in section 2.3 support this interaction.  
 In addition to testing colocalization between miR-QTLs and host gene eQTLs, we also had 
proteomics data available for 52 of the 106 miRNA-gene pairs to test colocalization between miR-QTLs and 
host gene pQTLs (Supplementary Table 10). Colocalization or lack thereof was consistent at the eQTL and 
pQTL level for 37 miRNA-host gene pairs, while colocalization was found at the eQTL level only for 8 pairs 
and pQTL level only for 5 pairs. Previous studies have found weak correlation between transcript and protein 
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abundance23-26, so the discordance may be explained by multiple factors. For example, colocalization at the 
eQTL level only may be observed due to post-transcriptional regulation of either miRNA or host gene 
product.  

2.4 Association of miR-QTLs with abundance of downstream target proteins  
miRNAs are of interest because of their potential role in regulating abundance of their target genes. 
Although regulatory networks are complex and miRNAs are unlikely to be the sole regulatory mechanism for 
any given gene, we hypothesized that for at least a fraction of the eMiRs we could detect miRNA-QTLs that 
are associated with the protein expression of the eMiR’s target genes. In other words, we expected to find a 
small number of miR-QTLs that are also pQTLs (cis- or trans-pQTLs) for the miRNA’s target genes. To test 
this, we first obtained predicted target genes for each eMiR from TargetScan 7.2. We then tested whether the 
miR-QTLs for each eMiR were pQTLs for the eMiR’s predicted target genes using genotype and dlPFC 
proteomic data from up to 716 participants of ROS/MAP and the Arizona Study of Aging. These data included 
511 donors that were also part of our miR-QTL dataset.  

There were 206 eMiRs for which predicted downstream target genes were profiled in our dlPFC 
proteomics dataset. The median number of predicted targets per miRNA was 249 (interquartile range 165–
364). For all except 44 of ~59,000 miRNA-protein pairs, the protein is trans (> 500 Kb from or on a different 
chromosome) to the miRNA. Therefore, for nearly all tests, we are effectively conducting trans-pQTL analysis. 
Recent work suggests that trans-QTLs collectively contribute substantially to heritability of complex traits, 
but each individual QTL is expected to have small effect27. The power to detect them is therefore limited at 
current sample sizes, especially when conducting naïve genome-wide searches due to the heavy multiple 
testing burden. By narrowing the pQTLs tests to SNPs for which we have some prior belief that they may be 
pQTLs based on the miR-QTL status and target prediction, we reduce the multiple testing burden.    

Of the ~59,000 miRNA-predicted target pairs (involving 206 miRNAs and 7,999 proteins), we 
discovered sharing of miR-QTLs and pQTLs for 11 pairs (Supplementary Table 11). These 11 pairs involved 
10 mature miRNAs from nine precursors, and 10 unique target genes. One miRNA had pQTLs for two genes 
(miR-1307-5p with LYPLA2 and PPFIA3), and two miRNAs from the same precursor (miR-1307-3p and -5p) 
both had pQTLs for predicted target PPFIA3. For eight of the eleven pairs, the QTL SNPs are trans to the 
target gene. While the QTL sharing we detected is modest, this is not surprising given the expected small 
effect sizes for trans-pQTLs.  

We further characterized the relationship among miR-QTL, miRNA expression, and protein expression 
for these 11 miRNA-target pairs using the SMR and HEIDI tests28. Like other Mendelian randomization-based 
methods, SMR aims to test the effect of an exposure (here, miRNA abundance) on an outcome (here, protein 
abundance) using SNPs as instrument variables. The SMR and HEIDI tests are combined to distinguish 
instances of causality (the SNP effect on protein expression is mediated by miRNA expression) and pleiotropy 
(the SNP directly affects both miRNA and protein expression) from linkage (distinct SNPs are each associated 
with miRNA or protein expression and the SNPs are in linkage disequilibrium). Five of the eleven miRNA-
protein pairs had a significant SMR result after Bonferroni correction for the eleven SMR tests (P-value < 
4.54×10-3), and four of these had HEIDI P-values that suggest the SMR signal is due to causality or pleiotropy 
rather than linkage (Table 1, Supplementary Table 12). For these pairs, we can consider the relative locations 
of the miRNA and target gene and the QTL effect directions to further interpret the relationship among the 
genetic variant and miRNA and protein abundances. Specifically, one pair comprises the intragenic miRNA 
miR-185-3p and its host gene, TANGO2. The top SMR SNP is located upstream of the host gene and has the 
same direction of effect on miRNA and protein abundance, so a plausible explanation is that genetic 
variation has a pleiotropic effect by affecting a regulatory element that co-regulates the miRNA and protein. 
The other three pairs comprise miRNAs and target genes located on separate chromosomes (Table 1). Given 
the low frequency of trans-acting regulatory regions, causality seems more likely than pleiotropy for these 
pairs. Furthermore, for these three pairs, the top SMR SNP is associated with miRNA and protein abundance 
in opposite directions, which is consistent with the QTL acting in trans on the protein abundance through its 
cis effect on miRNA abundance.  
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The four miRNA-target pairs are not found in TarBase29, a database of experimentally validated 
miRNA-target gene interactions. To experimentally validate the potential interaction of the miRNAs and 
predicted target genes, we conducted luciferase assays in HEK 293T cells using the gene 3’ UTR reporter 
constructs and miRNA mimics. The results support interaction for all four pairs (Supplementary Figure 2), 
adding plausibility to the causal relationships inferred from the bioinformatic integration analyses.  

TargetScan predicts targets only in the 3’ UTR, but targets can occur in other parts of the transcript. 
Moreover, target prediction tools use varying prediction criteria. Therefore, to expand on the above 
examination, we additionally collected miRNA-target interactions predicted by RNA2230 v2 and repeated the 
pQTL and SMR/HEIDI tests. The number of predicted interactions increased substantially, from ~59,000 to 
~184,000, and we identified two additional miRNA-target pairs for which the SMR/HEIDI tests support 
pleiotropy or causality (Supplementary Table 12). In both cases, the top SMR SNP is associated with the 
miRNA and protein abundance in the same direction, which is not consistent with a causal role for the 
miRNA. In sum, the three trans miRNA-target pairs noted in Table 1 remain the strongest candidates for 
miRNAs that mediate the trans-pQTL effect on their predicted target gene.  

 

miRNA 

miRNA 
median 
RPM 

Target 
protein 

miRNA position relative 
to target protein 

miR-QTL 
effect 

direction 

pQTL 
effect 

direction 
SMR  

P-value 
HEIDI  

P-value 

miR-1307-5p 48 LYPLA2 trans down up 2.14E-10 0.64 

miR-1307-3p 475 PPFIA3 trans down up 9.25E-08 0.36 

miR-1307-5p 48 PPFIA3 trans down up 1.36E-07 0.42 

miR-185-3p 34 TANGO2 intronic, same strand up up 1.46E-07 0.39 

Table 1. miRNA and target gene pairs with evidence from SMR and HEIDI that genetically regulated miRNA 
abundance is associated with target protein abundance. RPM: reads per million.  

 

2.5 miR-QTL enrichment in gene promoters and enhancers 
We hypothesized that miR-QTLs were enriched in regulatory regions. To address this question, we 
intersected the miR-QTLs with cell-type specific promoters and enhancers identified for neurons, astrocytes, 
oligodendrocytes, and microglia by Nott et. al31. 

We found that miR-QTLs were enriched (P-value < 0.05) in brain promoters combined across all four 
cell types (Figure 3). The Nott et al. study observed that promoters were largely shared across the four brain 
cell types31. Consistent with this observation, of the 1,272 miR-QTLs that overlap promoters, 61% overlap 
promoters in all four cell types. When we tested promoter enrichment for each cell type separately, the 
enrichment was not statistically significant for astrocyte and neurons, but a consistent trend was observed 
across cell types (Figure 3). 

We found that miR-QTLs were enriched in the union set of enhancers across all four cell types (Figure 
3). In contrast with promoters, enhancer activity was observed to be largely cell type-specific. Considering 
enhancers for each cell type separately, miR-QTLs were enriched in enhancers in oligodendrocytes and 
neurons but not astrocytes; on the other hand, miR-QTLs were depleted in microglia enhancers (Figure 3). 
We also tested miR-QTL enrichment in the reference enhancer list from PyschEncode, which was generated 
from bulk prefrontal cortex tissue32. miR-QTLs were enriched in this set of enhancers (Mantel-Haenszel 
common odds ratio = 1.32, 95% CI = [1.20,1.45], p = 1.3 × 10-8), and the odds ratio falls within the range of 
the odds ratios observed for the cell-type specific enhancer enrichments. We hypothesize that the microglia 
depletion may be an artifact caused by the fact that microglia comprise only a very small proportion of the 
cells used for our bulk miR-QTL analysis. Consequently, genetic variants that affect miRNA abundance in 
microglia only (e.g., because they affect activity of microglia-specific enhancers) will have lower detection 
rate than miR-QTLs with signal coming from any of the cell types that are more prevalent in our sample. The 
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combination of this bias with the cell-type specific nature of enhancers could manifest as lower miR-QTL 
rate in microglia enhancers compared to non-microglia enhancers.  

 

 
Figure 3. miR-QTL enrichment in brain enhancers and promoters. Enrichment was evaluated with the Mantel-
Haenszel test. OR=odds ratio; CI=confidence interval.  

2.6 Cross-tissue comparison of miR-QTLs 
We compared our miR-QTL results to those from two recent studies performed in other human tissues. One 
study used qRT-PCR to measure miRNA expression in whole blood from up to 5,239 (minimum 200) 
participants of the Framingham Heart Study and identified cis-miR-QTLs (within 1 Mb of the mature miRNA) 
for 76 of 280 miRNAs33. Another study analyzed small RNA-sequencing from 212 fetal brain neocortex 
samples and identified cis-miR-QTLs (within 1 Mb of the miRNA precursor) for 65 of 811 mature miRNAs at 
their stringent threshold34.   

To understand the rate of eMiR sharing between our study and each of the other two studies, we 
compared the eMiR counts accounting for the miRNAs that were tested in each study (Supplementary Figure 
3). We first compared our eMiRs to those discovered in blood. Of the 224 eMiRs we identified, 73 were tested 
in whole blood and 41% of those (30 of 73) were identified as eMiRs in that context. Conversely, of the 76 
eMiRs identified in whole blood, 55 were tested in our study and we identified 55% of those (30 of 55) as 
eMiRs (Supplementary Figure 3). A chi-squared test using the 173 miRNAs tested in both studies indicates 
that the number of shared eMiRs is higher than expected by chance, X2(1, N = 173) = 4.3, p = .038. It is 
important to recognize that the detected miR-QTLs in each study reflect not only differences in miRNA 
genetic regulation across contexts but also the sensitivity and specificity of each study. Performing the same 
comparison between our results and the fetal neocortex results, we found that only 13% (23 of 184) of the 
eMiRs we identified were also identified as eMiRs in the fetal neocortex study. Yet, most fetal eMiRs were 
evident in our study (74% [23 of 31]) (Supplementary Figure 3). These results suggest differences between 
the studies likely stem from differences in sample sizes. A chi-squared test using the 394 miRNAs tested in 
both studies indicates that a miRNA that is an emiR in one study is more likely to be an emiR in the other 
study, X2(1, N = 394) = 9.1, p = 2.6 × 10-3. Taken together, we observe significant sharing of miRNA genetic 
regulation between contexts, but important differences in study design and power limits further inference. 
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2.7 Uncovering miRNAs contributing to the pathogenesis of brain disorders 
GWAS have identified many risk loci for brain illnesses; however, how these loci confer risk in these 
psychiatric and neurologic diseases remain unclear. Recently, integrating GWAS signals with gene expression 
and QTL data from a reference set has become a powerful strategy for identifying genes that are associated 
with complex traits in the absence of expression measures in the larger GWAS participants. Here, we 
leveraged our miRNA expression data and miR-QTL results to uncover genetic variants that confer risk for 
psychiatric or neurodegenerative diseases through their effects on brain miRNAs.  
 To do so, we integrated the genome-wide miRNA profiles with results from GWAS of these brain 
traits using multiple independent and complementary approaches (Figure 1). First, we performed a miRNA-
wide association study (miRWAS) using FUSION35, utilizing the miR-QTL results from the reference ROS/MAP 
dataset to impute genetically regulated miRNAs in the larger GWAS participants and then identify miRNAs 
that are associated with the brain trait. Next, we determined whether the identified miRNAs and the brain 
trait share causal variants through colocalization analysis using coloc20. Subsequently, we performed SMR28 
to verify that the identified miRNAs mediated the association between the GWAS loci and the brain trait and 
ruled out association due to linkage disequilibrium with the HEIDI test28 (Figure 1). In other words, a miRNA 
was declared as being consistent with a causal role in a brain trait if it met all of the following four criteria: i) 
the miRNA was associated with the brain trait in the miRWAS at FDR P-value < 0.05; ii) the identified miRNA 
and brain trait share a causal variant as reflected by the coloc posterior probability of a shared causal variant 
(PP.H4 >0.5); iii) the miRNA showed evidence for mediating the association between the GWAS loci and the 
brain trait in the Mendelian randomization analysis, and iv) the mediation was not due to linkage 
disequilibrium based on the HEIDI test28. These miRNAs are referred to as causal miRNAs for simplicity 
henceforth. 
 We used data from the latest GWAS summary statistics in five neurodegenerative diseases 
(Alzheimer's disease36, frontotemporal dementia37, amyotrophic lateral sclerosis38, Lewy body dementia39, and 
Parkinson's disease40) and eleven psychiatric disorders (major depressive disorder41, bipolar disorder42, 
schizophrenia43, anxiety44, post-traumatic stress disorder45, alcoholism46, neuroticism47, insomnia48, attention 
deficit hyperactivity disorder49, autism50, and suicide attempt51; Supplementary Table 13). Among the 470 
available miRNAs, 140 had significant heritability (defined as heritability p < 0.01) and were included in the 
miRWAS (Supplementary Table 14).   
 We identified 49 unique miRNAs associated with one or more brain traits in the miRWAS (Figure 4; 
Supplementary Tables 15-16). Further imposing the remaining three criteria described above, we found four 
unique miRNAs to be consistent with a causal role in Parkinson’s disease (miR-92b-3p), bipolar disorder 
(miR-1908-5p and miR-499a-5p), major depressive disorder (miR-1908-5p), post-traumatic stress disorder 
(miR-190b-5p), and schizophrenia (miR-499a-5p) (Table 2). Notably, two miRNAs were causal in two brain 
traits—miR-1908-5p in both bipolar disorder and major depressive disorder and miR-499a-5p in both bipolar 
disorder and schizophrenia (Table 2).  
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miRNA  median 

RPM 
Trait miRWAS statistics COLOC 

PP4 
SMR 

P 
HEIDI 

P 
Chr Z P FDR 

miR-499a-5p 20 325.2 Bipolar disorder 3.5 5.60E-04 2.10E-02 0.61 3.60E-02 0.11 

Schizophrenia 4.1 5.10E-05 7.20E-03 0.54 2.00E-03 0.82 

miR-92b-3p 1 1587.6 Parkinson's disease -3.5 4.10E-04 3.90E-02 0.84 1.30E-03 0.10 

miR-190b-5p 1 1.4 PTSD -3.6 3.00E-04 4.00E-02 0.55 3.90E-03 0.62 

miR-1908-5p 11 2.1 Bipolar disorder 6.6 5.40E-11 7.50E-09 0.76 3.60E-10 0.17 

Major depressive disorder 4.9 9.60E-07 1.30E-04 0.96 2.30E-06 0.91 

Table 2. Causal miRNAs in psychiatric and neurodegenerative diseases. PTSD: post-traumatic stress disorder. 

 

 

 
Figure 4. Manhattan plots for the five traits with associated miRNAs in the miRWAS analysis. Associated 
miRNAs (at false discovery rate < 5%, indicated by the horizontal red line) are labeled.  

 

2.8 Examining multi-omics signals in brain disorders   
Since miRNAs may share QTLs with nearby genes due to linkage disequilibrium, pleiotropy, or mediation, we 
examined whether the causal role could be attributed to the above identified miRNAs instead of their nearby 
genes. We identified a set of causal transcripts and proteins for a range of psychiatric and neurodegenerative 
diseases in a recently published work26. In that work, we integrated GWAS summary statistics for the brain 
traits with brain transcriptomes (n=888) and proteomes (n=722) using TWAS/PWAS, Mendelian 
randomization, and colocalization analyses to identify mRNAs and proteins consistent with a causal role in 
the brain traits26. Inspecting the four causal miRNAs we identified here, we found that three causal miRNAs 
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are located in proximity (< 500Kb) to one or more of the causal transcripts or proteins identified in the prior 
work.  

Specifically, miR-1908-5p, causal in both bipolar disorder and major depression, is located within 
FADS1 and is close to TMEM258, which are causal mRNAs in both bipolar disorder and major depression26 
(Figure 5; Supplementary Table 17). Using SMR for two molecular traits, we found evidence that miR-1908-
5p mediates the association between its miR-QTLs and FADS1 but does not mediate the association between 
its miR-QTLs and TMEM258 (Supplementary Table 17). As mentioned in section 2.2, miR-1908-5p miR-QTLs 
colocalize with FADS1 eQTLs and the miRNA and transcript abundances are negatively correlated. These 
findings suggest that miR-1908-5p likely contributes to bipolar disorder and major depression through its 
effect on FADS1 mRNA expression but acts independently from TMEM258. Analogously, we found that miR-
499a-5p is an independent causal mediator from GGT7 and EDEM2 in bipolar disorder (Supplementary 
Figures 4-5; Supplementary Table 17). Likewise, miR-92b-3p is an independent casual mediator from EFNA3 
in Parkinson's disease (Supplementary Figure 6, Supplementary Table 17). In summary, except for miR-1908-
5p, the other three causal miRNAs are causal mediators independent of nearby causal transcripts and 
proteins and provide additional valuable biological insights into the pathogenesis of these psychiatric and 
neurodegenerative diseases. 
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Figure 5. LocusZoom plots for miR-1908-5p miR-QTLs and FADS1 and TMEM258 eQTLs. In each plot, the 
SNP with the lowest P-value is colored purple, and the remaining SNPs are colored according to the extent 
of LD with that SNP. SMR and HEIDI analysis found that miR-1908 miR-QTLs colocalized with FADS1 eQTLs, 
but not TMEM258 eQTLs. 

 

3 Discussion  
Using more than 600 small RNA-sequencing profiles from dlPFC of older adults, we identified miR-QTLs for 
224 miRNAs and integrated those results with human brain proteomes and GWAS summary statistics to 
investigate how genetically regulated brain miRNAs impact protein expression and neurodegenerative and 
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psychiatric traits. While genome-wide miR-QTL mapping efforts have been conducted in various human 
tissues (blood52,53, fetal brain34, adipose54, liver55), to our knowledge the results we report here are the first set 
of miR-QTLs available for adult human brain.  
 Importantly, we performed parallel runs of the miR-QTL analysis using reads mapped independently 
to two sets of miRNA annotations – either the popular miRBase database (Release 22.1) or the curated 
MirGeneDB database (version 2.1). MirGeneDB contains less than 30% of the annotations in miRBase due to 
its more stringent inclusion criteria. However, since we filtered both annotation sets using a minimum 
abundance threshold and since annotations specific to miRBase tended to be lowly expressed in our brain 
samples, there was a much larger overlap in the tested miRNAs, with 75% of miRNAs tested in both runs. We 
chose to use the MirGeneDB set for the subsequent colocalization and integration analyses since including 
poor quality annotations would reduce the power and interpretability of these analyses; however, we 
recognize that the more comprehensive miRNA set may be valuable in other contexts and make all our data 
available as a resource for future studies.  

We identified cis-miR-QTLs for almost half of the miRNAs that were tested, which is comparable to 
53% of the proteins having pQTLs at FDR < 1% in a recent published study in 716 individuals26. Since many 
miRNAs are located within host genes, a question that arises is how often these intragenic miRNAs are co-
regulated with their host genes. This question has been investigated previously using various approaches 
such as examining TSS sharing and evaluating co-expression in cell lines56. Our colocalization analysis, 
which utilized population variation in miRNA expression, host gene expression, and genotypes, complements 
other approaches. Notably, we found that the majority of intragenic miRNAs were not genetically co-
regulated with their host genes, which may indicate that miRNAs have biological roles distinct from the 
functions of their host genes. It also demonstrates that even for miRNAs located within protein-coding 
genes, miR-QTL mapping detects potentially important genetic variants that would not be found in other 
QTL studies.  

QTLs for master regulators such as miRNAs can potentially have an outsized effect since they can 
influence the expression of many other genes. We leveraged our miR-QTL results to identify brain traits and 
proteins that are influenced by genetically regulated miRNA abundance. We identified four miRNAs 
consistent with a causal role for complex brain traits. Our findings that miR-1908-5p and miR-499a-5p are 
causal in bipolar disorder are consistent with those from a prior study that used a candidate gene-based 
association study approach57. Notably, the miR-92b we identified to be causal in Parkinson’s disease has 
been shown to target PTEN, promote neurite development58, and maintain neuroblast self-renewal59. Our 
study complements this existing literature and is the first to use human brain miRNA expression profiles to 
provide support for a causal role of these miRNAs. We present here the first evidence for the contribution of 
miR-1908-5p in major depression, miR-190b-5p in post-traumatic stress disorder, miR-499a-5p in 
schizophrenia, and miR-92b-3p in Parkinson's disease, to our knowledge. These causal miRNAs present new 
avenues to elucidate the molecular mechanisms underlying these neurodegenerative and psychiatric 
conditions.  

Considering pairs of miRNAs and predicted target genes, we observed 18 miRNA-target gene pairs 
(involving 16 unique miRNAs) for which the miR-QTLs were also pQTLs for the predicted target in the same 
tissue. Using the SMR and HEIDI tests, we found that six miRNA-target pairs were consistent with pleiotropy 
or causality. Our subsequent validation experiments confirmed potential interaction for all four pairs that 
were tested. While further investigation is necessary to confirm endogenous repression activity and the 
observed QTL associations, these findings are an initial demonstration of how miR-QTLs can be used to 
prioritize putative trans-pQTLs and provide additional support for predicted interactions. 
 We observed significant enrichment of miR-QTLs in promoters active in human brain31. We limited 
this analysis to SNPs within 50 Kb of miRNA genes because doing so reduces the potential effect of 
confounding between distance to nearest gene and probability that a genomic region harbors a promoter60. 
We note that we searched only for direct overlap with promoters, and in a future analysis the miR-QTLs 
could be integrated with chromatin interaction maps to identify miR-QTLs that are distal to the promoter but 
are in regions that physically interact with it61.  
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 Unexpectedly, we observed significant depletion of miR-QTLs in microglia enhancers. The promoter 
and enhancer detection was done using pooled sorted single nuclei31, so the relative proportions of the cell 
type in bulk tissue does not create a bias in the promoter and enhancer distributions across cell types. Our 
analysis, on the other hand, used bulk tissue, and microglia are a minor cell type in our samples. The 
observed depletion of miR-QTLs in microglia enhancers is likely an artifact arising from the combination of 
the enhancers being largely mutually exclusive across cell types, the low power to detect miR-QTLs specific 
to microglia cells, and the enrichment of miR-QTLs in enhancers of other cell types. Also, the promoter and 
enhancer annotations were made using data from only 10 individuals and may have missed regulatory 
regions whose activity varies across individuals31. 
 Comparing our miR-QTLs with miR-QTLs detected in fetal (midgestation) neocortex and adult whole 
blood showed higher eMiR sharing than expected by chance. However, the three studies have important 
differences, such as sample size, approach to miRNA quantification, number of miRNAs considered, and 
analytic approach, that influence miRNA-QTL detection. Differences in power due to sample size are likely 
the most salient and make direct comparisons challenging to interpret. Large samples from across the age 
and tissue spectrum will help clarify the eMiRs that are unique or common and elucidate the context 
specificity of miR-QTLs. 

We recognize several limitations of this study. First, the findings would be strengthened by replication 
in an independent sample. The power of this analysis is tied to the relatively large sample size for the miRNA 
profiles, and there is not an independent comparable brain miRNA dataset for replication at this time. 
Second, although we characterized miRNA expression in a relatively large sample, all the participants were 
of European ancestry, and expanding studies to include people of diverse ancestry is imperative. Third, brain 
miRNA genetic regulation may differ across stages of adulthood and ought to be tested in future studies that 
include participants from a wider age range. Nevertheless, our observations fill a gap in the available 
resources for studying the role of miRNAs in the human brain. Fourth, our analyses were conducted using 
samples from a specific brain region (dlPFC) and our observations may not be characteristic of other brain 
regions. Fifth, some of the tested miRNAs had modest expression in our dlPFC bulk tissue samples and their 
cell type-specific expression levels need to be quantified in relevant cell types. Notable among those, miR-
1908-5p was previously observed to be differentially expressed in blood in the acute bipolar state compared 
to remission state62, which suggests that miR-1908-5p is relevant to bipolar disorder despite its relatively 
low abundance. Finally, since we focused the analyses on the manually curated miRNAs present in 
MirGeneDB, we may have missed some true miRNAs that did not meet the criteria of that database. The 
trade-off for this choice is that we have high confidence in the validity of the miRNAs we did consider, which 
improves the signal in our observations and increases the confidence that our results provide a solid 
foundation to build on in future downstream analyses11. 

We also highlight some of the strengths of this study. First, we minimized the impact of cell-type 
variation by estimating surrogate variables and including these as covariates in the regression models for 
miR-QTL mapping. These surrogate variables were designed to capture as much as possible the potentially 
unknown, unmeasured, or hidden confounding variables, including cell type heterogeneity. Second, we 
examined the relationship of genetic regulation of miRNAs and their downstream targets using proteomic 
data. Proteomic data may better capture the effect of miRNA post-transcriptional regulation on target genes 
than transcriptomic data, which is more commonly used. Finally, this is the largest set of genome-wide 
miRNA sequencing profiles from human brain to the best of our knowledge. This enabled us to conduct well-
powered miR-QTL analysis and to successfully integrate these results with GWAS data to identify miRNAs 
contributing to the pathogenesis of psychiatric and neurodegenerative diseases. The miRNA expression data 
as well as the full catalog of miR-QTL results will be available to the research community for further studies. 
Given the role of miRNAs as critical regulators, these data represent a valuable resource for studies aimed at 
characterizing the complex networks that link population genetic variation to brain-related traits and 
disease.  
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4 Online Methods 

4.1 ROS/MAP cohort and phenotype data  
The Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP) are U.S.-based longitudinal 
community-based cohort studies of cognitive decline and aging63. ROS enrolls priests, monks, and nuns from 
sites across the country, while MAP enrolls individuals from retirement communities, social service agencies, 
and church groups in the greater Chicago area. All participants provided informed consent, underwent annual 
cognitive evaluations, were organ donors, and signed an Anatomical Gift Act and repository consent to allow 
their data and biospecimens to be repurposed. An Institutional Review Board of Rush University Medical 
Center approved both studies and we have complied with all relevant ethical regulations. Clinical diagnosis 
at death was based on the opinion of a neurologist with expertise in dementia who had access to select 
clinical but not postmortem data. Sex (male or female) was based on self-report. Post-mortem interval (PMI) 
is the time interval from time of death to autopsy. Self-identified race was defined based on the participant’s 
response to the question ‘What is your race?’ With possible answers White; Black or African American; 
American Indian or Alaska Native; Native Hawaiian or Other Pacific Islander; Asian; or Other. 

4.2 MiRNA data 
4.2.1 RNA extraction from frozen brain tissues 
Frozen post-mortem dorsolateral prefrontal cortex tissue samples from 743 brains were obtained from Rush 
University. RNA extraction from the tissue samples was performed with TRIzol (Invitrogen, Carlsbad, CA, USA) 
following the manufacturer’s protocol. Approximately 80mg (ranging 50mg to 100mg) of frozen brain tissues 
were used to extract RNA. 

4.2.2 RNA quality control and measurement 
RNA quality was measured by two methods following the manufacturer’s protocol: 1) Nanodrop 
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) 2) Agilent Bioanalyzer RNA 6000 Nano 
(Agilent Technologies, Santa Clara, CA, USA). Nanodrop Spectrophotometer measures concentration and 
A260/A280 ratio which determines the purity of RNA. The average concentration of extracted RNA samples was 
around 900ng/µl resuspended in 50µl DEPC-treated water, and the average A260/A280 ratio was 1.93. Agilent 
Bioanalyzer RNA 6000 Nano was used to determine an RNA Integrity Number (RIN) to assess quality RNA. 
The average RIN score for all 743 RNA samples was 5.5; 672 samples with RIN ≥ 2.1 were selected for 
miRNA library preparation. Based on RIN, PMI, sex, cognitive diagnosis, amyloid, tangles, depression, 
education, and sense of life purpose, samples were randomized into batches of 8 for miRNA library 
preparation. 

4.2.3 miRNA library preparation 
miRNA library preparation was conducted using New England Biolabs’ (NEB) NEBNext Muliplex Small RNA 
Library Prep Kit for Illumina Index Primers 1-48 (NEB, Ipswich, MA, USA) following the manufacturer’s 
protocol. 1 µg of total RNA was used as input for the miRNA library preparation in batches of 48. Libraries 
were checked for the presence of a 21-nucleotide insert using an Agilent Bioanalyzer DNA 1000 prior to size 
selection with a Pippin Prep (Sage Science, Beverly, MA, USA). 

4.2.4 miRNA library pooling and sequencing 
The molarity of each miRNA library was measured by Qubit Fluorometer (Thermo Fisher), and libraries were 
diluted and pooled. MiRNA sequencing was performed using an Illumina HiSeq 3000 (Illumina, San Diego, 
CA, USA) at the Emory Yerkes Genomics Core (Atlanta, GA). 

4.2.5 miRNA quantification, normalization, and quality control  
Adaptor sequences were trimmed using Trimmomatic64 (version 0.36), and miRNA counts were generated 
using mirDeep265. Specifically, we first used the `mapper.pl` from mirDeep2 to generate collapsed fasta files, 
then removed reads with length less than 20 nucleotides or greater than 25 nucleotides using a custom 
script. Then `quantifier.pl` from mirDeep2 was used to map the reads to known human precursor and mature 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.610174doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.610174
http://creativecommons.org/licenses/by-nd/4.0/


16 
 

miRNA sequences obtained from MiRBase12 (Release 22.1). Reads were allowed to map up to 2 nucleotides 
upstream of the mature sequence and up to 5 nucleotides downstream of the mature sequence, and with up 
to one mismatch. These are the default parameters for mirDeep2, and are reasonable because they allow for 
untemplated nucleotide addition and imprecise processing, which are common especially at the 3’ end of 
mature miRNAs. We removed very lowly-expressed miRNAs, which we defined as those with < 1 RPM for > 
50% of samples. We chose a liberal threshold for this filter to allow for the fact that miRNAs can have low 
observed RPM in our heterogeneous bulk tissue samples but higher expression in specific cell types. For 
miRNAs mapped to multiple precursors, we kept the entry with the highest total count across samples. 

Since miRBase has been reported to contain a substantial number of false positive miRNAs66, we 
performed a second mapping run after filtering the reference precursor and mature miRNA fasta files to only 
the 504 precursors and 857 mature miRNAs present in MirGeneDB13 (v2.1), a database of miRNAs that meet a 
set of criteria designed to distinguish true miRNA sequences from false annotations and other types of small 
RNAs14.  
 Sample filtering was performed on several criteria. First, we iteratively removed samples that were 
greater than 5 standard deviations (SD) from the mean within the respective batch for total read count, 
trimmed read rate, and mapped read rate. We then filtered 11 samples to focus analysis on individuals of 
European ancestry based on genetic data. The analysis was limited to these participants because of small 
sample sizes for participants from other genetic ancestries. The raw counts were then normalized for library 
size and transformed to log2 counts using EdgeR. Principal components (PCs) were estimated, and samples 
that were greater than 4 SD from the mean of either of the first two PCs were removed.  
 Surrogate variables (SVs) were estimated from the normalized counts using R package ‘sva’. The 
number of SVs to estimate was set at 15 based on the results of the num.sv function, and SVs were estimated 
with a randomly-generated binary variable as the variable of interest and miRNA batch, PMI, RIN, age at 
death, cognitive diagnosis at death, study (ROS v. MAP), and sex as adjustment variables. 

4.3 Genotype data for miR-QTL calling and miRWAS   
DNA was extracted from blood or brain and genotyping was performed using whole-genome sequencing or 
genome-wide genotyping (Affymetrix GeneChip 6.0 or Illumina OmniQuad Express platforms) as described 
previously67. Initial filtering was performed on the WGS, Affymetrix chip, and Illumina chip datasets 
separately68. Specifically, samples were excluded if they had genotype missingness >5% or were from 
participants who self-identified their race as other than White, and variants were excluded if they had 
evidence of deviation from Hardy Weinberg equilibrium (P-value < 1×10-8), genotype missingness >5%, minor 
allele frequency <1%, or were not a single nucleotide polymorphism (SNP). Sample outliers with respect to 
population structure were removed using EIGENSTRAT69. For samples with array-based genotypes, 
imputation was performed to 1000 Genome Project Phase 370 using the Michigan Imputation Server71, and 
SNPs with 𝑅2>0.3 were retained.  

Genotypes for the participants with miRNA data were then extracted from the WGS and imputed chip 
datasets and merged. Some participants were genotyped using both WGS and chip; in these cases the WGS 
genotypes were kept. Before merging, variants with MAF < 5% in each dataset were removed. We then used 
bcftools to identify sites common to both datasets and with identical reference and alternate alleles and 
merge the sample data for these sites. The minor allele frequency, Hardy-Weinberg equilibrium, and 
genotype missingness checks were repeated after merging. Second degree and closer relatives were removed 
using KING72. Sample characteristics for the 604 participants that were included in the analysis are 
summarized in Supplementary Table 1. We calculated the top ten genetic PCs using PLINK273 to be used as 
covariates in the miR-QTL analysis. The PC analysis showed that PC1 separates samples based on genotype 
source (WGS v. array). PC analysis also confirmed that all samples cluster with the 1KG CEU population. For 
the miRWAS analysis, we restricted the SNPs to the set of 1,190,321 SNPs in the linkage disequilibrium 
reference panel provided by FUSION35. 
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4.4 Genotype and proteomic data for pQTL and SMR analysis   
The pQTL analysis was conducted using SNP genotypes and dlPFC proteomic profiles from participants of 
the ROS/MAP studies and the Arizona Study of Aging and Neurodegenerative Disorders, conducted by the 
Banner Sun Health Research Institute. The Banner study primarily recruits cognitively normal individuals 
from Phoenix, AZ retirement communities, and also some individuals with AD or Parkinson’s 
disease74. Participants or their legal representatives sign an Institutional Review Board-approved consent 
form allowing for brain donation, use of donated biospecimens for approved future research, and genetic 
studies.  

The ROS/MAP and Banner data were combined for this analysis. The data generation has been 
described previously (ROS/MAP proteomics75; Banner proteomics76, ROS/MAP genotypes67; Banner 
genotypes76). The quality control, normalization and data aggregation procedure have also been described 
previously26. Proteomic profiles were represented by residuals after regressing out effects of batch, PMI, age 
at death, and cognitive diagnosis. Of the 716 participants included in the pQTL and SMR analysis, 565 are 
from the ROS/MAP cohort and 511 of those overlap the 604 participants included in the miR-QTL analysis. 
Sample size varied across different proteins from 76 to 716 participants due to differences in missingness 
rate across proteins.  

4.5 GWAS summary statistics 
We used association summary statistics from GWAS studies of five neurodegenerative diseases (Alzheimer's 
disease36, frontotemporal dementia37, amyotrophic lateral sclerosis38, Lewy body dementia39, Parkinson's 
disease40) and eleven psychiatric traits (major depressive disorder41, bipolar disorder42, schizophrenia43, 
anxiety44, post-traumatic stress disorder45, alcoholism46, neuroticism47, insomnia48, attention deficit 
hyperactivity disorder49, autism50, suicide51). We focused on GWAS summary statistics results from samples of 
individuals with European ancestry (Supplementary Table 13). 

4.6 Validation of miRNA-target interaction  
To validate the predicted miRNA/mRNA target pair interactions, we transfected human HEK-293T cells with 
pairs of a miRNA mimic and a 3’-UTR reporter construct with firefly luciferase as a reporter, as follows: miR-
1307-5p with 3'-UTR of PPFIA3; miR-1307-3p with 3'-UTR of PPFIA3; miR-185-3p with 3'-UTR of TANGO2; 
and miR-1307-5p with 3'-UTR of LYPLA2. Catalog numbers for materials used in transfection and luciferase 
reporter assays are available in Supplementary Table 18.  

Human HEK293T cells were maintained in DMEM (Dulbecco’s modified Eagle’s Medium), 
supplemented with 10% FBS and 1% antibiotics solution (Pen/Strep), at 37  °C and 5% CO2. One day prior to 
transfection, HEK293 cells were plated on two 96-well plates (50,000 cells/well). The cells were transfected 
using Lipofectamine 2000 (Thermofisher, MA, USA) with the miRNA mimic and a 3’-UTR reporter construct 
pairs as indicated above and incubated for 48 h at 37 °C and 5% CO2. Each miRNA mimic/3’-UTR reporter 
construct pair was transfected in quadruplicate on each plate. Luciferase assay was subsequently carried out 
with the ONE-Glo™ EX Luciferase Assay (Promega, WI, USA). Transfected cells were treated in accordance 
with the manufacturer’s protocols and luminescence was assayed on a Synergy HTX multi-mode microplate 
reader (Biotek, Winooski, VT, USA).  

4.7 Statistical analysis 
All statistical analyses were done using R version 3.6.0 unless otherwise noted. All genome coordinates are 
with respect to human reference GRCh37. Linear regression was performed to compare luminescence 
between experimental conditions adjusting for plate effects. Significant difference was defined as P-value < 
0.05. 

4.7.1 miR-QTL mapping  
MiRNA coordinates were obtained from miRBase v.22 and then converted from GRCh38 to GRCh37 using 
LiftOver to match the build used for the genotype data and GWAS summary statistics. MiRNAs included in the 
analysis met the abundance threshold described above, had gene coordinate information in the coordinate 
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file, had at least one precursor gene located on an autosome, and had at least one common (MAF >5%) SNP 
within the test window. The test window for each mature miRNA included the precursor sequence(s) plus 
500 Kb symmetric padding around each precursor sequence. For miRNAs with multiple precursors that were 
less than 500 Kb apart, SNPs that fell in the padding region for multiple precursors were tested only once for 
the miRNA.  

Samples included in the analysis passed all genotyping and miRNA data QC, had normal cognition, 
MCI, AD, or other dementia at death, and were of European ancestry. The effect of SNP allele dosage 
(assuming an additive effect) on miRNA abundance was estimated for each SNP-miRNA pair in turn using the 
--glm function from PLINK2. The following variables were included as covariates: miRNA batch, PMI, RIN, 
age at death, cognitive diagnosis at death (normal v. impaired), study (ROS vs. MAP), sex, genotype platform, 
10 genetic PCs, and 15 miRNA SVs. We observed that the genetic PCs are strongly correlated with genotype 
platform. We set the max variance inflation factor to 500 to allow the tests to run despite multicollinearity 
between these variables. Q-values were calculated using R package ‘qvalue’ using p-values from all tests. We 
define miR-QTLs as SNP-miRNA pairs with q-value < 0.01. 
 Since we performed the miR-QTL mapping using dense genotyping, many miR-QTLs are in high 
linkage disequilibrium (LD) and represent essentially the same genetic signal. We extracted a reduced set of 
miR-QTLs for each miRNA using the ‘--clump’ function from PLINK 1.9. This function applies a greedy 
algorithm to iteratively prune miR-QTLs to arrive at a set of ‘index’ miR-QTLs that have pairwise r2 < 0.5 or 
are separated by at least 250 Kb. 
 The percent of miRNA variance explained by individual miR-QTLs was estimated using R package 
‘variancePartition’. The outcome in the model was the residuals after regressing the effects of miRNA batch, 
PMI, RIN, age at death, cognitive diagnosis, study, sex, and miRNA SVs from the normalized expression 
profiles, and the predictors were SNP and 10 genetic PCs. 

For each miRNA with more than one index SNP, we used conditional analysis to identify miR-QTLs 
with independent signal. First, we ranked the miR-QTLs for each miRNA by increasing P-value. The 
independent variants list was initiated with the miR-QTL with the lowest P-value. For each remaining miR-
QTL, an association test was run using the same model as the initial analysis except with the independent 
variant(s) also included as predictors. If more than one miR-QTL remained significant, the top ranked miR-
QTL was added to the independent variants list and another round of testing was performed with the 
remaining miR-QTLs. If only one miR-QTL was significant, it was added to the independent variants list and 
the procedure was complete.  

4.7.2 MiRNA cluster and intra-/intergenic status 
MiRNAs were defined as intragenic if they overlapped and were on the same strand as a protein-coding gene, 
long non-coding RNA, or short non-coding RNA other than the miRNA gene of interest, and as intergenic 
otherwise. Gene coordinates and strand information was obtained from Ensembl. MiRNA clusters (miRNA 
genes with inter-miRNA distance < 10 Kb) were copied from the miRBase website. Any precursor that was 
absent from the miRBase clusters was assigned to its own cluster.   

4.7.3 Colocalization with host gene eQTLs 
eQTL summary statistics were generated using genotype data and post-mortem dlPFC transcriptomic profiles 
from 621 ROS/MAP participants as described in ref21. Correlation between miRNA and transcript abundance 
was estimated using Spearman correlation after regressing out batch, PMI, RIN, sex, age at death, study, 
clinical diagnosis of AD, and SVs from normalized miRNA data and regressing out batch, PMI, RIN, sex, age at 
death, and clinical diagnosis and SVs from normalized transcript data.  

For intragenic miRNAs, we characterized colocalization between miR-QTLs and host gene eQTLs 
using R package ‘coloc’. We first applied the SuSiE wrapper to identify credible sets of causal variants for the 
miR-QTL and eQTL datasets separately. Then, following the recommendation in ref77, we tested for 
colocalization using a hybrid approach, allowing for multiple causal variants using function coloc.susie if 
credible sets were identified for both datasets, and assuming a single casual variant using function coloc.abf 
otherwise. Colocalization was defined as posterior probability of a shared causal variant (PP.H4) > 0.5.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.10.610174doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.10.610174
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

4.7.4 Brain pQTL and SMR analysis 
To test whether the miR-QTLs were also pQTLs for predicted target proteins, we first gathered predicted 
targets for each eMiR using TargetScan 7.2 and RNA22 v2. For TargetScan, we downloaded context++ scores 
and selected targets with cumulative weighted context++ score < -0.2, as more negative scores indicate 
stronger targeting efficacy. For conserved miRNAs, we kept only targets with at least one conserved site. For 
RNA22 predictions, we used genes from our proteomics dataset and obtained the MANE transcript for each 
from Gencode. We then used the RNA22 batch submission program with the following parameters: sensitivity 
of 63%/specificity of 61%; seed size of 7 with 0 unpaired bases in seed; minimum 12 paired-up bases in 
heteroduplex; maximum folding energy of -12 Kcal/mol for heteroduplex; and no limit on number of G:U 
wobbles in seed region. We kept predictions with p-value < 0.05. We took the union of targets from the 
TargetScan and RNA22 predictions, with a median of 586 predicted target genes (interquartile range 291–
1053). We then used the --glm function from PLINK2 to test the effect of miR-QTL allele dosage on protein 
abundance of the predicted targets. The pQTL models included sex, protein SVs, and 10 genetic PCs as 
covariates. We performed multiple testing correction for the ~17,400,000 SNP-protein tests and defined 
pQTLs at FDR < 5%. 

For miR-QTLs that were also pQTLs for predicted target proteins, we used summary data-based 
Mendelian randomization (SMR28) to test whether the genetically regulated miRNA abundance mediates the 
effect of the miR-QTL on protein abundance. MiR-QTL and pQTL summary statistics were used as the 
exposure and outcome, respectively. SMR significance was defined as Bonferroni-corrected P-value < 0.05 
using the number of SMR tests conducted. SMR association can arise from causality or pleiotropy of a single 
SNP that affects both the exposure and outcome, or from linkage of SNPs with distinct effects on the 
exposure and outcome. We used HEIDI28 to identify signals arising from causality or pleiotropy (HEIDI P-
value ≥ 0.05) rather than linkage (HEIDI P-value < 0.05).  

4.7.5 Promoter and enhancer enrichment  
To test for enrichment of miR-QTLs in brain promoters and enhancers, the Cochran-Mantel-Haenszel test 
(function mantelhaen.test from R base package ‘stats’) was applied using three MAF strata: (0-0.1), [0.1-0.2), 
[0.2-0.5]. A 2×2 table was constructed within each MAF strata (i.e. ‘Is the SNP a miR-QTL?’ versus ‘does the 
SNP overlap a promoter?’). For enhancers, SNPs in the full test window (500 Kb symmetric padding around 
miRNA gene) were considered. For promoters, SNPs within 50 Kb of miRNA precursors that were tested in 
our study were considered. This window was chosen based on the expected proximity of promoters to the 
gene and given that miRNAs may be found in clusters or within host genes78.  

4.7.6 Overlap with miR-QTLs from fetal neocortex and blood 
The SNPs in the fetal neocortex miR-QTL study34 were reported by genomic position with respect to human 
reference GRCh38. To match them with our results, we applied LiftOver to convert SNP positions to GRCh37 
coordinates. SNPs in the blood miR-QTL study were matched based on rsID.  
 For each miRNA with a miR-QTL in the discovery set (i.e. the fetal neocortex set or the blood set), we 
selected the miR-QTL with the lowest P-value and looked up its P-value, if available, in the replication set 
(our adult dlPFC set). We used these P-values to calculate the 𝜋1 statistic (representing the fraction of true 
positives) as 1-𝜋0, where 𝜋0 is the fraction of true negatives estimated using function ‘qvalue’ from the R 
package qvalue. 

4.7.7 Identification of brain miRNAs consistent with a causal role 
We integrated human brain genome-wide miRNA profiles with results from GWAS of brain traits using 
multiple independent but complementary approaches. First, we performed a miRNA-wide association study 
(miRWAS) using FUSION35, which consisted of estimating miRNA weights from the reference ROS/MAP 
dataset including both genetic and miRNA expression data. Next, the miRNA weights were integrated with 
the GWAS summary statistics of neurodegenerative and psychiatric traits.  For the weight calculation, we 
restricted ROS/MAP genome-wide genotyping to an LD reference panel of 1,190,321 SNPs provided by 
FUSION. Next, the SNP-based heritability for each miRNA was estimated using the miRNA and genetic data. 
For miRNAs with heritability p-value <0.01, FUSION computed the effect of SNPs on miRNA abundance using 
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multiple predictive models (top1, blup, lasso, enet, bslmm), and the most predictive model was selected. For 
each miRNA, SNPs were selected within a 500Kb window around the miRNA. Finally, the genetic effects, or 
GWAS Z-scores, of neurodegenerative or psychiatric traits were combined with miRNA weights by calculating 
the linear sum of Z-score × weight to perform miRWAS. 
 Next, we determined whether the identified miRNAs and the brain trait share causal variants 
through colocalization analysis using coloc20. FUSION includes an interface to the coloc software to compute 
an approximate colocalization statistic based on the marginal FUSION weights35. We used coloc to estimate 
the posterior probability that the miRNA and traits share a causal variant (PP.H4).  
 Subsequently, we performed SMR28 to verify that the identified miRNAs mediated the association 
between the GWAS loci and the brain trait and to rule out association due to linkage disequilibrium with the 
HEIDI test28.  
 In summary, a miRNA was declared as being consistent with a causal role in a brain trait if it met all 
of the following four criteria: i) the miRNA was associated with the brain trait in the miRWAS at FDR P-value 
< 0.05; ii) the identified miRNA and brain trait share a causal variant as reflected by the posterior probability 
of a shared causal variant (PP.H4) >0.5 per coloc); iii) the miRNA showed evidence for mediating the 
association between the GWAS loci and the brain trait in the Mendelian randomization analysis at SMR P-
value < 0.05, and iv) the mediation was not due to linkage disequilibrium based on HEIDI28 (HEIDI P-value ≥ 
0.05). 

4.7.8 Mediation analysis of multi-omics signals in the same loci  
Among the 4 identified causal miRNAs in brain illnesses, two were regulated by miR-QTLs in proximity 
(500Kb window) with eQTLs of causal mRNAs for the same brain illness, and one was regulated by miR-
QTLs in proximity with pQTLs for a causal protein for the same brain trait (Supplementary Table 17). These 
causal mRNAs and proteins were from a recent published work26. Because of their proximity, we sought to 
determine whether the causal miRNAs mediated the association between miR-QTLs and causal mRNAs or 
protein, respectively, for a particular brain trait using SMR for two molecular traits79. We used miR-QTL 
summary data as the exposure, and eQTL or pQTL summary data as the outcome. Mediation was defined as 
SMR P-value <0.05 and HEIDI P-value ≥ 0.05. 

5 Data availability 
miRNA data and miR-QTL summary statistics will be available upon publication on synapse.org at 
syn51247298. ROS/MAP resources are under controlled access to protect patient privacy and can be requested 
at https://www.radc.rush.edu. 

6 Online Resources 
miRBase miRNA clusters https://www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa&cluster=10000, 

accessed Aug 22 2022 
TargetScan Release 7.2 http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi  
PyschEncode reference enhancer list http://resource.psychencode.org 

7 Code Availability 
The analyses were conducted using publicly available software and R packages. Conversion between genome 
builds was done using LiftOver (https://genome-store.ucsc.edu/). Adapter trimming of miRNA reads was done 
using Trimmomatic v0.36 (http://www.usadellab.org/cms/?page=trimmomatic). miRNA quantification was 
done using mirDeep2 v0.1.2 (https://github.com/rajewsky-lab/mirdeep2/). Genotype filtering and VCF 
manipulation was done using vcftools v0.1.13 (https://vcftools.github.io), bcftools v1.9 
(https://github.com/samtools/bcftools), and PLINK v2.0a (https://www.cog-genomics.org/plink/2.0/). 
Identification of population outliers was done using EIGENSTRAT (https://github.com/DReichLab/EIG). Linear 
regression to identify miR-QTLs was done using PLINK v2.0a. Clumping of miR-QTL signals was done using 
PLINK v1.90b53 (https://www.cog-genomics.org/plink/1.9/). Genomic interval overlaps were characterized 
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using bedtools v2.27.0 (https://github.com/arq5x/bedtools2). Summary data-based Mendelian randomization 
was done using SMR v1.03 for miR-QTLs with target protein expression and v1.02 for miR-QTLs with GWAS 
traits (https://yanglab.westlake.edu.cn/software/smr/). miRWAS and colocalization analysis of miR-QTLs and 
GWAS traits was done using FUSION (including the FUSION interface to pass marginal FUSION weights to 
coloc) (http://gusevlab.org/projects/fusion/). Other analyses were done using R (version 3.6.0 unless 
otherwise noted) using base functions or the following R packages: data.table v1.14.2 for data manipulation; 
edgeR v.3.28.1 to normalize miRNA data; variancePartition v1.16.0 to estimate percent variance explained; 
sva v.3.34.0 for surrogate variable analysis; coloc v5.2.1 (using R version 4.1.1) for colocalization analysis of 
miR-QTLs and host gene eQTLs; qvalue v2.15.0 to calculate qvalues and replication statistics.  
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