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Abstract

Species within the same trophic level show different strategies to avoid competition. Among

these mechanisms, differences in body size, spatio-temporal segregation, and diet prefer-

ence often leads to a niche partitioning. Nonetheless, little attention on coexisting predatory

insects and their network interactions has been paid. In this study, we analyzed the strate-

gies to avoid competition among three sympatric mud-daubing wasps of the genus Trypoxy-

lon (Hymenoptera: Crabronidae) in oases and their surrounding xeric area from the Baja

California peninsula, Mexico. We compared the prey richness, composition and proportion

of spider guilds that were captured by the wasps. We tested whether the differences in wasp

body size explained the niche breadth, niche overlap and the size of spider prey. We

assessed the spider-wasp interactions through a network analysis. With the use of trap-

nests, we collected 52 spider species captured by the wasps. Both the guild and species

composition of preyed spiders was different between the three wasp species. Differential

proportions in the capture of spider guilds and a little diet overlap were found among the

wasp species. We found that the wasp body size was positively correlated with prey size,

but it was not a proxy of niche breadth. Moreover, the largest wasp species was able to nest

in both mesic and xeric habitats, while the two smaller species were restricted to the oases.

This study reveals that the diversity of spiders in oases of Baja California peninsula is crucial

to maintain highly specialized oasis-dependent wasp species. The niche partitioning

between mud-daubing wasps can be shaped by their inherent body size limitations and

hunting strategies through foraging specialization for specific spider guilds. Food selection

and slight differences in body size reduce competition and allow the coexistence of sympat-

ric wasps. Our study is the first approach exploring the interaction networks between mud-

daubing wasps and their spider preys, highlighting new insights into the morphological and

ecological factors that shape antagonistic interactions, and allow the coexistence of preda-

tors in deserts.
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Introduction

Among sympatric species, the competition and availability of resources determine how they

coexist in the community [1, 2]. When species compete for the same food, space or any envi-

ronmental resource, several mechanisms are displayed to avoid niche overlap [3], as well as

constrains or expansions of niche breadth and dispersion abilities [4–6]. The body size is

among morphological factors influencing the niche breadth [7–9], thus, in a cascade model of

trophic levels, larger predators would eat larger prey [10, 11]. Additionally, since body size can

represent physiological limitations to the foraging range, it can have a positive correlation with

the home range [9] and food consumption [12]. However, the niche segregation can be more

difficult to explain among sympatric species with similarities in body size (as in cryptic spe-

cies), since they are expected to be ecologically analogues [13].

On the other hand, behavioral differences (e.g. foraging specialization, territoriality) can be

strong mechanisms to avoid niche overlap [14]. Although predators often have diet shifts

according to the availability of prey, specific patterns of searching strategies still prevail [15].

Among terrestrial predatory arthropods, food selection (i.e. prey size, species availability),

hunting strategies, nesting behavior and breeding season have been pointed out as trade-offs

for their coexistence [10]. It has been documented that nesting preferences, individual diet

specialization and experience can be important factors to modify the hunting strategies among

predatory wasps and are probably helping to reduce competition [16–19]. Female digger

wasps can segregate their diets by patrolling different specific areas [20], or by hunting the

most abundant prey during the breeding season [21]. In this sense, niche breadth can be

strongly influenced by individual specialization and varies among species, populations, or

even by the spatio-temporal context [22, 23].

The behavioral and morphological factors shaping the niche breadth of highly sympatric

species is still poorly understood, especially within the group of spider-hunting wasps. Those

in the genus Trypoxylon Latreille (Hymenoptera: Crabronidae) are broadly known to feed

their offspring with a variety of spider species [24–26] (Fig 1). Regardless the abundance of spi-

ders in the community, most Trypoxylon wasps seem to be specialized for particular spider

families [27], but the strategies to avoid competition remain unknown among sympatric wasp

species. In this sense, ecological data of spider guilds may offer meaningful explanations to

understand the foraging strategies of wasps and competition [28, 29].

In insular habitats, where niche overlap tends to be higher than in mainland [30], the rapid

adaptation to environmental conditions plays a key role in the niche segregation of species

[31]. Patchy habitats can offer insular-like conditions that harbor unique biological assem-

blages that coexist with limited resources [32]. Within this framework, oases are insular-like

mesic habitats immersed in xeric ecosystems, with contrasting structure and function for sev-

eral species. Such contrast is very important for conservation programs, especially since oases

are small, fragile, and isolated environments [33, 34]. In these habitats, mechanisms to reduce

competition between predatory arthropods are poorly understood, and the interactions with

more than two-hundred spider species occurring in the oases from the Baja California penin-

sula are practically unknown [35]. In this study, we focused on disentangling those strategies

that reduce the competition between Trypoxylon wasp species in oases from the Baja California

peninsula to elucidate the strategies that allow their coexistence. Three Trypoxylon species

were studied, T. (Trypoxylon) bridwelli Sandhouse, T. (Trypargilum) dubium Coville and T.
(Trypargilum) tridentatum tridentatum Packard. Considering the isolation and limited food

resources in oases from the Baja California peninsula [36], we hypothesized that the three Try-
poxylon wasp species avoid food competition through a differential use of spider prey. Since

these wasp species share a number of morphologically similarities, we also hypothesized that
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the wasp body size plays a role in the size of spider prey, with the prediction that wasp body

size is positively correlated with prey size.

Materials and methods

Ethics statement

Field work was conducted with permission of Secretarı́a del Medio Ambiente y Recursos Nat-

urales, in agreement with the Subsecretarı́a de Gestión para la Protección Ambiental and the

Dirección General de Vida Silvestre who issued the Scientific Collector Permit: SGPA/DGVS/

09769/15. Our study does not involve any endangered or protected species.

Fig 1. Trypoxylon wasp. a) Female wasp introducing a captured orb-weaving spider into her nest (i.e. an abandoned

beetle bored stem). b) Brood cell provisioned with paralyzed spiders.

https://doi.org/10.1371/journal.pone.0225266.g001

Niche partitioning of mud-daubing wasps in oases

PLOS ONE | https://doi.org/10.1371/journal.pone.0225266 November 21, 2019 3 / 20

https://doi.org/10.1371/journal.pone.0225266.g001
https://doi.org/10.1371/journal.pone.0225266


Study area

Sampling was carried out from April to September during 2016 and 2017 on six localities

along the Baja California peninsula (BCP), in northwest Mexico. The north portion of the BCP

belongs to the Nearctic region, which is represented by xeric scrublands typical of the Sonoran

desert. In the southernmost area, there are taxa with Neotropical affinity and vegetation such

as tropical deciduous dry forest [37]. The sampled areas included oases located between 23˚N

and 30˚N, with sizes ranging from 0.06 to 2.6 km2 in size (Table 1).

Sampling protocol

We focused our analyses on three wasp species that occupied the nests (i.e. 133 in total): Try-
poxylon bridwelli (31 nests), T. dubium (47) and T. tridentatum (55). We used artificial cavities

to collect the wasp´s nests and identify their composition (i.e. spider prey). We set the traps in

both the oases and the surrounding desert to evaluate the prey composition between habitats.

The traps were set in gradual distances from the edge of the waterbody (inside the oasis)

towards the desert area. That is, from around 5.0 m to 3,500 m away from the waterbody.

In total, we offered 2,430 cavities equally distributed in 162 trap nests set in the six localities.

Trap nests consisted in three wooden blocks (10x17x2.5 cm each) set 1.5–2.0 m height, piled

and gripped together. Each nest contained five rows of tunnels with different diameter (3.1,

6.3, 1.9, 9.5, 12.7 mm) x 150 mm long [25]. From April to September 2016 we sampled the

southernmost oases: Santiago (SA), El Pilar (EP), and La Purı́sima (LP). From April to Septem-

ber 2017, the northernmost oases were sampled: El Sauzal (ES), San Borja (SB), and San Fer-

nando (SF). In both years, we monthly replaced the occupied traps.

The morphological differences of adults, immature larvae and external appearance of pupae

allowed the identification of wasp species and thus the association with their spider prey [26].

Inside the nests, the brood cells were carefully inspected, sorting and counting the spiders for

taxonomical identification. Taxonomic identification was done in the laboratory of Arachnol-

ogy and Entomology (CARCIB) of the Centro de Investigaciones Biológicas del Nororeste

(CIBNOR). Since the great majority of spiders were juveniles, identification to species level

was not always possible. However, the vast material of spiders from Baja California Sur depos-

ited in the CARCIB, allowed the correct distinction of most morphospecies. Because in some

cases we found the remaining parts of spider prey within the cells (i.e. already devoured by the

wasp larva), the identification was possible to family level.

Diversity and composition of prey

Spider prey was categorized into the trophic guilds suggested by Cardoso et al. [28] and Uetz

et al. [40]. These guilds were proposed as surrogates of spider families based on their foraging

strategy, prey range, and vertical stratification. Based on these categories, we classified the spi-

ders captured by the Trypoxylon species within the following guilds: ambush hunter, orb web,

spatial web, stalker, ground hunter, and specialist. For each wasp species, we calculated alpha

diversity of prey using Hill numbers and estimated the number of spider species through

Chao-1 [41, 42]. We compared the diversity of the overall spider prey captured by the wasps.

The rarefaction curves for each wasp species were estimated. These analyses were computed

on R v3.5.1 using the iNEXT package [43, 44].

To test the differences in composition of the spider communities captured by the three

wasp species, we used a Permutational Multivariate Analysis of Variance (PERMANOVA)

[45]. A multivariate analysis of homogeneity of group dispersions (PERMDISP) was used to

test heterogeneity of the prey community and as a measure of beta diversity [46]. We used a

Non-metric Multidimensional Scaling (NMDS) measured by Bray-Curtis distances to visualize
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the dissimilarities in the composition of spider species captured by the wasp species [47].

These analyses were done with vegan package in R [44, 48].

To evaluate if there is an effect of habitat and time in the amount of food the wasps can pro-

vide to the offspring, we used generalized linear mixed models (GLMM) to assess if the length

of brood cells depends on the habitat (oasis or desert) or if it varied through the time (i.e.

monthly variation). Models were fitted with lme4 package [49] in R [44].

Niche partitioning

In order to determine the relative level of dietary specialization and niche segregation of the

species, the niche breadth and niche overlap were calculated for the three Trypoxylon wasps

[50]. Hurlbert’s formula [51] was applied to obtain the standardized niche breadth (Bj) [52].

We used the Pianka´s index to measure niche overlap. Niche breadth index ranges from 0 to 1,

where values close to 1 indicate more specialization. Pianka´s index also ranges from 0 to 1,

where values close to 1 indicate a higher diet overlap. We used the spaa package to compute

these indexes [53]. We built a bipartite network (predator-prey) to calculate the complemen-

tary specialization index (H2´) and Shannon diversity of interactions between both trophic

groups [54]. H2´ index ranges between 0 (no specialization) and 1 (complete specialization).

Since this index can be sensitive to matrices constructed with few species, we compared our

data against 1000 random null models that avoid biases regardless the matrix size. With the

null model approach, we assessed that the spider-wasp interactions are not being reflections of

the sampling properties, thus producing random links between predator and prey [55, 56].

The network analysis was done with the package bipartite in R [44, 57, 58].

To test whether the size of predators influenced the niche breadth and prey size selection,

we measured morphological attributes of size on both wasps and spiders. We obtained the val-

ues of body length, facial and intertegular distance from the three Trypoxylon species. The spi-

der size was represented with the values of cephalothorax´s length and width [59]. Only female

wasps were considered since they are the responsible of hunting and transportation of spiders

to the nests [24]. The correlation between the wasp size and cephalothorax´s length-width

ratio of spiders was tested. We used a Linear Discriminant Analysis (LDA) to evaluate whether

the three wasp species were well separated according to the morphological measurements [60].

LDA was calculated with the psych package in R [44, 61]. Measurements were done under a

stereo microscope Nikon SMZ25, with 11x magnification, 1.1x zoom and a Nikon SRH 1x

objective.

Results

Altogether, 670 spiders were captured by the three Trypoxylon species that occupied 133 nests.

The spider prey comprised 11 families, 28 genera and 52 species divided into six guilds

Table 1. Sampled localities along the Baja California peninsula. SA = Santiago, EP = El Pilar, LP = La Purı́sima, ES = El Sauzal, SB = San Borja, SF = San Fernando.

Temperature (˚C), precipitation (mm), and relative humidity (Rh) were obtained from SMN [38]. Size was extracted from maps from INEGI [39].

Oasis Lat Long Size (km2) Elev (m) ˚C mm Rh (%)

SA 23˚28’ 109˚43’ 1.47 132 23.7 330.2 67.6

EP 24˚28’ 111˚00’ 0.25 120 22.2 154.8 65.6

LP 26˚11’ 112˚04’ 2.69 95 22.9 127 50.8

ES 27˚10’ 112˚52 0.21 150 21.9 121.1 63.3

SB 28˚44’ 113˚45’ 0.06 445 19.9 114.1 42.1

SF 30˚00’ 115˚14’ 1.29 450 18.2 91.1 37.8

https://doi.org/10.1371/journal.pone.0225266.t001
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Table 2. List of spider species and their guild category captured by each mud-daubing wasp. AH = ambush hunter, OW = orb web, SW = spatial web, ST = stalker,

GH = ground hunter, SP = specialist. Spiders within the nest in oasis = ●, desert = �, and both habitats = Δ. Guild categories from Cardoso et al. [33] and Uetz et al. [46].

Wasp species

Family Spider species Guild T. bridwelli T. dubium T. tridentatum
Anyphaenidae Hibana incursa ST ●

Hibana sp. ST ●
Araneidae Cyclosa turbinata OW ◯

Eustala californiensis OW ●
Eustala sp. OW ● ●
Gen. sp1 OW ●
Gen. sp2 OW ●
Metepeira arizonica OW Δ

Metepeira crassipes OW ●
Meteperia sp. OW ●
Neoscona sp1 OW ● ◯
Neoscona sp2 OW ●
Larinia sp1 OW ●

Dictynidae Emblyna sp. SW ●
Dictyna sp1 SW ●
Dictyna sp2 SW ●
Mallos pallidus SW ●

Cheiracanthiidae Cheiracanthium sp. ST ●
Gnaphosidae Gen. sp GH ●
Mimetidae Mimetus sp. SP ●
Oxyopidae Hamataliwa sp. ST ●

Oxyopes flavus ST ●
Oxyopes salticus ST ● ●

Philodromidae Tibellus sp. AH ● ●
Gen. sp. AH ●

Salticidae Colonus sp ST 4 Δ

Gen. sp1 ST ●
Gen. sp2 ST ●
Gen. sp3 ST ●
Habronattus ammophilus ST ●
Habronattus californicus ST ●
Habronattus conjunctus ST ●
Habronattus pyrrithrix ST ●
Habronattus sp. ST ●
Marpissa robusta ST ●
Paramarpissa sp. ST ●
Peckhamia picata SP ●
Peckhamia sp. SP ●
Phidippus phoenix ST ● ● ●
Salticus sp. ST ●
Sarinda cutleri ST ●
Sassacus vitis ST ●
Sassacus sp. ST ● ●

Theridiidae Euryopis sp. SW ● ●
Gen. sp SW ●

(Continued)
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(Table 2). Globally, a total of 45 spider species were preyed upon in oases and seven spider spe-

cies in the desert. The occurrence of spider species varied between the wasp species, but the

most common spiders included Sassacus, Eustala and Metepeira (Fig 2). Phidippus phoenix
Edwards (Salticidae) was the unique spider prey captured by the three wasp species. Individu-

als of the family Salticidae were the most recurrent in the nests (38.3%), followed by Araneidae

(33.2%) and Theridiidae (17.3%). Sassacus vitis Cockerell (Salticidae) (27.2%), M. arizonica
(Araneidae) (22.8%), and Theridion submissumGertsch & Davis (Theridiidae) (16.6%) were

the most frequent species in the nests. Only Trypoxylon bridwelli captured two different species

of ant-mimic jumping spiders (Peckhamia spp.), while only T. dubium and T. tridentatum
included nocturnal spiders in the diet (Table 2).

The abundance of spiders in the diet varied accordingly to the stage of development during

the life cycle (H = 33.8, d.f. = 2, p<0.001). The vast majority were in juvenile stages (69%) (Fig

3A). The peak of prey abundance occurred in July (i.e. 43.6%) (Fig 3B). However, neither the

habitat (GLMM, χ2
1 = 2.56, p = 0.11) nor the month of the year were predictors of the length

of brood cells (χ2
5 = 7.46, p = 0.18) and nest length (χ2

5 = 2.64, p = 0.75) (Fig 3C and 3D). The

temporal pattern of abundance across the time was the same either for males (H = 2.2, d.f. = 3,

p = 0.531), females (H = 1.6, d.f. = 3, p = 0.657) and juvenile spiders (H = 2.22, d.f. = 3, p =
0.527).

Among the six spider guilds, the group of stalkers was the most abundant (43.8%) and had

the highest richness (42.3%) within the nests (Fig 4A). The number of spider species per guild

varied among wasps (χ2
10 = 20.6, p = 0.024). None of the wasp species included all spider

guilds in their diet. Trypoxylon bridwelli consumed mostly stalkers (68.4%), T. tridentatum
mainly orb weavers (40.9%), and T. dubium was less selective, combining prey from stalkers

(38%) and space web guilds (28.5%) (Fig 4B).

The bipartite interactions between prey and predators showed a high degree of both overall

specialization (H2´ = 0.89) and diversity of interactions (H´ = 2.6). Our network significantly

differed from expected null models (Mean ± S.D.: 0.09 ± 0.01, p<0.001) (Fig 5).

The community structure of spider prey was significantly different between the mud-daub-

ing wasps (PERMANOVA F = 2.63, d.f. = 2, p = 0.001), and the variability in community struc-

ture (i.e. spider composition) was different between all of the wasp species (PERMDISP: F =
4.19, d.f. = 2, p = 0.02) (Fig 6).

The spider prey diversity (H´) was significantly different between the three wasp species

and the accumulation curves of prey diversity was asymptotic in T. dubium (Fig 7). Trypoxylon
tridentatum showed the richest composition of prey and nocturnal species, whilst T. dubium
showed the highest values of diversity, evenness and niche breadth. Moreover, T. bridwelli (the

Table 2. (Continued)

Wasp species

Family Spider species Guild T. bridwelli T. dubium T. tridentatum
Latrodectus hesperus SW ◯
Theridion sp. SW ●
Theridion submissum SW ◯

Thomisidae Mecaphesa celer AH ●
Mecaphesa sp. AH ● ●
Xysticus sp. AH ●
Xysticus phoenix AH ●

Nocturnal spider species are shaded grey.

https://doi.org/10.1371/journal.pone.0225266.t002
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smallest species) had the highest dominant prey composition and the poorest species richness

(Table 3). Diet overlap and similarity of prey species were very low among the three species.

The highest values of both indices were found between the two largest wasps, T. dubium and

T. tridentatum (Table 4).

There was a significant difference in the wasp body size that allowed the separation of the

three Trypoxylon species (F2, 69 = 773.6, p<0.001) (Fig 8A). Likewise, a significant difference in

the selection of prey size was found between wasp species (F2, 69 = 123, p<0.001) (Fig 8B). The

wasp body size was positively and highly correlated with the spider size (r = 0.86, p<0.001),

having T. dubium the widest range of prey size on its diet (2.0 to 4.75 mm length of cephalo-

thorax) (Fig 8C).

Fig 2. Studied Trypoxylon species and their most common preyed spiders. a) T. bridwelli and b) Sassacus vitis, c) T.
dubium and d) Eustala sp., e) T. tridentatum and f) Metepeira arizonica. Photographs by A. Falcón-Brindis and Luis E.

Robledo Ospina.

https://doi.org/10.1371/journal.pone.0225266.g002
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Discussion

According to our proposed hypotheses, each wasp species has a differential composition of spi-

der prey. Therefore, there is a low diet overlap between wasps. Moreover, we confirmed that

slight changes in the wasp body size (± 2 mm) play a role in the size of spider prey they hunt.

As it was predicted, larger wasp species captured larger prey.

Usually, isolated habitats tend to harbor less species that display more specialized interac-

tion networks [30]. As we found in this study, the wasp-spider interactions showed a highly

specialized network, where the wasps have a strong prey preference. The use of resources in

islands can be the result of selective pressures, since organisms undergo similar environmental

pressures and dispersal limitations [30, 31]. Such pressures can also be found in isolated patchy

environments (e.g. oases, caves, or sky islands), where coexisting species have developed sev-

eral mechanisms to avoid competition [3, 32].

Although niche specialization can be high in insular habitats due to the restricted amount

of resources [62], species can coexist through the niche segregation into multidimensional

axes such as space, time, strata, or diet [37]. The three wasp species coexisting in the oases of

Baja California Peninsula are displaying differential food specialization, which is probable the

result of isolation processes that have led to evolutionary selective pressures.

Trypoxylon (Trypargilum) species within the Nitidum Species Group seem to be specialized

for orb-weavers (Araneidae) and space web (Theriididae) species within the genera Eustala,

Metepeira, Eriophora (Araneidae), and Theridion (Theriidiae) [26]. Similarly, we found that

most of the diet of T. tridentatum and T. dubium (both within the Nitidum group) included

araneid and theridid spider species. However, it is likely that both species richness and abun-

dance of local prey at oases could have influenced the wasp´s prey choice. For example, the

prey composition of T. tridentatum seems to be variable across localities: Theridion submissum
(25% of total prey) in the southern Baja California peninsula [63, 64] and Eustala rosae (21%)

Fig 3. Spiders captured by the Trypoxylon wasps throughout the localities. a) Life cycle stage of captured spiders;

abundance was counted as adults (male, female) and juvenile individuals; b) monthly variation of total spider

abundance c) nest length and d) cell length. Whiskers represent the standard error. Blue bars = males,

orange = females, green = juveniles.

https://doi.org/10.1371/journal.pone.0225266.g003
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in Arizona [25]. In our work, we found thatMetepeira arizonica (46%) and T. submissum
(33%) where the main target. Our results reinforce the idea that local composition of spiders

may affect the wasp´s prey selection. Therefore, it is likely that T. dubium and T. bridwelli
show a similar response, especially among oases from the BCP, where the spider composition

is highly variable [36, 65].

Selection of spider prey

It has been proposed that three-dimensional (3-D) webs are more efficient than two-dimen-

sional (2-D) web architectures to avoid predation from mud-daubing wasps [27]. In some

cases, 2-D weavers such as Metepeira species can build 3-D barrier webs [66]. However, whilst

2-D species rest at the center of webs, 3D-weavers remain protected inside the silk network.

This defensive mechanism may explain why Trypoxylon are more prone to catch orb-weaving

species. Although, spiders use other strategies to avoid predators (e.g. cryptic of coloration, silk

retreats near webs, dropping from webs), web architecture is an important strategy of weaver

Fig 4. Captured spider guilds. a) Total species richness and abundance per spider guild. Bars represent the richness

(q = 0) and the line the abundance (right axis). b) Abundance of spider guilds in the diet of each wasp species.

AH = ambush hunter, OW = orb web, SW = spatial web, ST = stalker, GH = ground hunter, SP = specialist.

https://doi.org/10.1371/journal.pone.0225266.g004
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Fig 5. Bipartite interaction between wasps and spider guilds. Each guild contains the total number of spider species (right bars)

preyed upon by each wasp species (left bars). The thickness of bars indicate the abundance of predators and prey, respectively. The

line thickness represents the abundance of individuals captured by each wasp species.

https://doi.org/10.1371/journal.pone.0225266.g005
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spiders [67]. Even though the three wasp species preyed on web-building species, the speciali-

zation of T. bridwelli upon jumping spiders is noteworthy (>90% of prey species).

It has been suggested that both visual and chemical cues are likely the main mechanisms to

locate either web-building or non-web-building species [68–72]. In our study, the inclusion of

ant-mimic spiders in the diet of T. bridwelli, convey to the idea that probably chemical signals

are being followed to locate its prey. Moreover, since spiders occupy different microhabitats

and strata [73], it is likely that wasps are displaying specific patrolling behavior to locate their

prey. In this sense, stratified sampling of spiders may help to understand the patterns of wasps

´ foraging. More research is needed to determine the intricate combinations of chemical,

aggressive mimicry, shape, and color perception involved during the spider recognition [74].

The nutritional composition of prey also plays a role in the food preferences of predators

[75]. Among wasps, nutrition of larvae has a strong effect on reproductive fitness, foraging,

and brain gene expression of adults [76, 77]. It makes conceivable that protein, lipid and carbo-

hydrate supply is likewise critical in the fitness of adult Trypoxylon species. Especially because

their offspring need to storage energy and protein before the diapause period [24]. Female Try-
poxylon wasps usually prevent nutritional unbalance of larvae by providing more small body

size juvenile spiders until the biomass reaches the required energy [78]. This is perhaps the

explanation of the large number of juvenile spiders within the cells. However, the high amount

of juvenile prey may be also an artifact of population dynamics of spiders or environmental

effects on local the abundance [79].

Fig 6. Non-metric multidimensional scaling of the spider prey composition. See the high dissimilarity between wasp species.

https://doi.org/10.1371/journal.pone.0225266.g006
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Effect of body size on prey preference

Since larger Trypoxylon wasps hunted larger spider prey, the effect of body size fits well with

the assumption of cascade model (a positive predator-prey correlation) [10, 11]. However, this

model is not always true for arthropods in particular assemblages [80], and the small amount

of experiments is still a limitation to further assumptions. In our results, the body size was pos-

itively correlated with niche overlap but was not with the niche breadth. In this case, the over-

lap between wasps increased with the body size but the mid-sized species (T. dubium) showed

Fig 7. Species accumulation curve of captured spiders among the wasp species. The abscissa values represent the number of spiders that occurred within the

wasps´ nests. The curves were extrapolated with 95% confidence intervals. Values of Hill numbers of order q = 0 (species richness), q = 1 (effective number of

common species) and q = 2 (effective number of dominant species) are shown for each wasp species.

https://doi.org/10.1371/journal.pone.0225266.g007

Table 3. Summary of diversity and functional parameters between the three wasp species and their prey. The habitat indicates where the nests of each wasp species

were found. The wasp body length is the measurement from the frons to the last segment of metasoma (only females). All estimators and diversity indices were calculated

for the total number of spider species each wasp captured.

Wasp species

T. bridwelli T. dubium T. tridentatum
Habitat use oasis oasis oasis-desert

Wasp body length 9.7 ± 0.8 mm (n = 12) 11.7 ± 1.1 mm (n = 14) 13.2 ± 1.4 mm (n = 15)

Prey richness (S) 19 21 22

Prey evenness (J) 0.42 0.73 0.48

Chao-1 25.1 23.1 32.1

Prey diversity (H´) 1.26 2.24 1.48

Hill number (q = 1) 3.53 9.4 4.43

Prey dominance (D) 0.54 0.17 0.33

Nocturnal spiders 0 3 6

Niche breadth (Bj) 0.045 0.24 0.095

https://doi.org/10.1371/journal.pone.0225266.t003
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the widest niche breadth and range of prey size. Similarly, Polidori et al. [81] showed that the

body size between crabronid wasps was positively correlated with the prey size, but with the

niche breadth. These authors suggest that most solitary wasps experience a strong individual

specialization, which broadly influences the prey size selection. In addition, according to the

flight muscle ratio, thus the load-lifting capability, only a few wasp species are optimal foragers,

which is attributed to several biotic factors [82].

On the other hand, the seasonal variation can be a factor shaping the range of prey size and

niche breadth of wasps. In northern Brazil, Araújo & Gonzaga reported variation in the prey

selection of Trypoxylon (Trypargilum) albonigrum, finding a broader range of prey size and

niche breadth during the wet season [83]. However, the relationship between the wasp, prey

size and niche breadth is still under debate, especially since the prey preference of several wasp

species remain unknown. Although the identification of spider prey could be challenging con-

sidering the large amount of juveniles captured by the wasps, the appropriate identification of

morphospecies did not alter the analyses. In this sense, DNA approximations would be an

option to avoid misleads in the prey identification.

Habitat effect on niche partitioning

An alternative explanation for niche partitioning could be the effect of habitat use among wasp

species [25]. In other Trypoxylon species, habitat is an important factor explaining the compo-

sition and abundance of spider prey [84, 85]. In our study, the highest abundance and richness

of spiders were found in oases. The largest wasp species (T. tridentatum) used both oases and

desert habitats and in general hunted larger spider prey. Among insects, physiological limita-

tions have implications on their distribution and habitat use [86]. In a broad sense, insects

with larger body size are able to tolerate more environmental variability [87]. Moreover, flying

insects with larger body mass tolerate higher temperatures in extreme habitats (e.g. deserts)

due to higher surface area-volume ratios [88]. In dry environments, water loss rates are lower

in large bee species thus being less vulnerable to desiccation [89]. Although, temperature could

explain the microhabitat selection of some bees and wasps [90, 91], the thermoregulatory phys-

iology of wasps is still poorly understood [92]. Nonetheless, it seems that the body size of T.
dubium and T. bridwellimay be a physiological boundary in both thermal tolerance and prey-

lifting capacity.

Beyond microclimatic preferences, the coexistence of wasps could be mediated by temporal

segregation. For example, in Northeast Brazil, Santos & Presley [93] observed that social vespid

wasps had slight changes in their peak activity across the day, suggesting that environmental

factors such as temperature and humidity are playing a role in the foraging activity, thus,

reducing the interspecific competition. In other cases, the coexistence of social wasps is

allowed by broad differences in their diet (i.e. specialist vs opportunistic species) [94].

Conclusions

With these results, we disentangled the strategies that three mud-daubing wasp species have to

coexist in isolated and small mesic environments into a desert ecosystem. Differential use of

Table 4. Pairwise comparison of niche overlap using Pianka´s measure. Values of quantitative Sorensen index are in bold.

T. bridwelli T. dubium T. tridentatum
T. bridwelli - 0.011 0.002

T. dubium 0.062 - 0.041

T. tridentatum 0.038 0.064 -

https://doi.org/10.1371/journal.pone.0225266.t004
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Fig 8. Morphological differences associated to prey selection. a) Differences in body size between the three wasp

species, b) differences in spider prey size and c) range of prey size chosen by each Trypoxylon species. Dashed lines

indicate the median.

https://doi.org/10.1371/journal.pone.0225266.g008
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resources, either food or habitat (oasis or desert) allows the coexistence of ecologically similar

wasp species. In this regard, each wasp species is showing a high guild preference, presenting a

specialized predator-prey network to hunt certain spider species. Moreover, the wasp body

size is positively correlated with prey size, allowing the ecological differentiation for the three

Trypoxylon species.

On the other hand, the oases seem to work as islands for the studied wasp species, either as

the product of physiological boundaries or food preference. Therefore, the conservation of iso-

lated habitats become crucial for many species that depend on specific and limited resources.

Moreover, habitat characteristics can be crucial for cavity-nesting species [95], but the direct

effects on these guilds are poorly known. Since anthropogenic pressure is the main cause of

disturbance in oases of Baja California [29], highly specialized sympatric insects could be

threatened if habitat loss and fragmentation modify the structure of these insular-like

environments.
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and Alfonso Álvarez Casillas for their help with the assembly of the traps. Claudia Pérez
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35. Jiménez ML, Nieto-Castañeda IG, Correa-Ramı́rez MM, Palacios-Cardiel C. Las arañas de los oasis de

la región meridional de la penı́nsula de Baja California, México. Revista Mexicana de Biodiversidad,
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