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Abstract: High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi prod-
ucts. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and
emulsification degrees on the thermal stability of surimi gel were investigated. The results showed
the gel properties of surimi gels were modulated by oil types and emulsification degrees. In detail, the
rising pre-emulsification ratio caused the increase of the emulsifying activity index (EAI) and decrease
of emulsifying stability index (ESI) for both emulsions. The larger droplet sizes of perilla seed oil
than soybean oil may be responsible for their emulsifying stability difference. The gel strength, water
retention, dynamic modulus and texture properties of both kinds of surimi gels displayed a firstly
increased and then decreased tendency with the rising pre-emulsification ratios. The peak values
were obtained as perilla seed oil emulsion with emulsification ratio of 20% group (P1) and soybean
oil emulsion with emulsification ratio of 40% group (S2), respectively. Anyway, all emulsion gels
showed higher thermal stability than the control group regardless of oil types. Similar curves were
also obtained for the changes of hydrogen bond, ionic bond and hydrophobic interactions. Overall,
perilla seed oil emulsion with emulsification ratio of 20% (P1 group) contributed to the improved
thermal stability of surimi gels.

Keywords: surimi gel; thermal stability; gel properties; oil types; emulsification degree

1. Introduction

Surimi-based products have been highly popular due to their unique texture and rich
nutrients [1]. Specially, the emerging ready-to-eat (RTE) surimi products are drawing more
and more interest owing to their great convenience. The essential sterilization steps have
to be conducted for RTE surimi products, which is usually achieved by high-temperature
treatments above 100 ◦C. However, the thermal treatments would inevitably destroy
the molecular interactions supporting gel structure, further decreasing the technological
properties of surimi products [2]. It is thereafter very important to enhance the thermal
stability of RTE surimi products.

To date, various methods have been explored to enhance the thermal stability of
surimi products. For example, some non-muscle protein ingredients are introduced into
surimi systems, serving as fillers to form relatively stable gel products supported by the
hydrogen bonding interactions [3]. Gao et al. [4] found that the addition of soy protein
benefits for the improved gel strength of the meat paste based on their inherent gelation
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properties. Besides, the addition of non-muscle protein can also change the gel properties
of surimi products via the modulation of microstructure. Previous studies have observed
that porcine plasma protein contributed to the formation of a firm and uniform network
structure, which significantly enhanced the gel properties of the bighead carp surimi [5].
Although the additions of non-muscle proteins largely affect the gel strength, some other
attributes such as flavor are hardly improved.

The additions of exogenous oils have been confirmed to improve flavor, and color
of surimi products except for texture [6]. Previous studies have been focused on the
effects of animal fat on functional properties of meat [7,8]. However, the cardiovascular
risks from the intake of animal fat with high saturated fatty acids cause the increasing
healthy concerns [9]. In contrast, it has been established that vegetable oils show great
health benefits due to their rich unsaturated fatty acid composition. More importantly, the
pre-emulsified oils display the comparable quality contributions to animal fat [10]. For
example, Youssef et al. [11] reported that the addition of pre-emulsified lipids significantly
improved the microstructure of surimi products. The similar results are also supported by
the recent reports from Zhou’s group [6,12,13]. The interactions between pre-emulsified oils
droplets and myofibrillar proteins are responsible for the formation of interfacial protein
membrane (IPF), which further occupy the voids in the protein gel matrix network. The
presence of droplet fillers or copolymers reduced porosity and improved homogeneity of
microstructure, and thereafter enhanced thermal stability of gel meat products [14]. It needs
to be noticed that the effects of pre-emulsified oils on meat gels are largely determined by
oil types and emulsification degree.

Perilla seed oil is a kind of edible vegetable oil and rich in polyunsaturated fatty acids
(α-linoleic acid), which shows numerous healthy benefits (decreasing blood-lipoids and
cholesterol, inflammation inhibition and anti-aging effects). The soybean oil has been
widely used for the emulsified meat products. In this work, a comparable study on effects
of perilla seed oil and soybean oil with pre-emulsification treatments on thermal stability of
surimi products was performed. The inherent properties of pre-emulsification particles and
gel properties of emulsion surimi gels were characterized. Furthermore, the soluble protein
content involving the emulsion surimi gels was also emphasized. The results may provide
some constructive suggestions for the design and development of RTE surimi products
with high thermal stability and desired gel properties.

2. Materials and Methods
2.1. Materials

Frozen cod surimi was purchased from Zhejiang Yufu Food Co., Ltd. (Hangzhou,
China), and stored at −80 ◦C until use. Soybean oil was purchased from Cofco Fulinmen
Food Marketing Co., Ltd. (Tianjin, China), and perilla seed oil was purchased from Hebei
Jiafeng vegetable Oil Co., Ltd. (Hebei, China). The other chemical reagents were purchased
from Shanghai Lingfeng Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Fatty Acid Composition

The weighed oil of 0.1 g was dissolved in 2 mL n-hexane, and transferred into a 5 mL
centrifuge tube. Afterward, 0.5 mL of the NaOH-CH3OH solution was mixed for 2 min
using a vortex shaker, and the upper organic phase was transferred to a 5 mL centrifuge
tube. An appropriate amount (about 2 g) of anhydrous sodium sulfate was then added for
dehydration before shaking and centrifuging (8000× g, 5 min) [15].

Gas chromatography equipped with a flame ionization detector (7890A, Agilent Tech-
nologies, San Francisco, CA, USA) was employed to determine the fatty acid composition
of the two vegetable oil samples. A DB-17MS capillary column (30 m× 0.25 mm× 0.25 µm)
was used with He as the carrier gas (purity 99.999%) at the flow rate of 1 mL/min. The sam-
ple passed through a 0.22 µm organic membrane, and a 1 µL injection was administrated.
The split ratio was 10:1, and the sample collection time was 30 min. The inlet and detector
temperatures were both set at 260 ◦C. The temperature of the FID detector increased from



Foods 2022, 11, 179 3 of 12

initial 130 ◦C to 190 ◦C at 5 ◦C/min for 2 min and then increased to 240 ◦C at 5 ◦C/min for
10 min [16].

2.3. Extraction of Myofibrillar Proteins

The myofibrillar protein extraction was performed as described by Kim et al. [17].
In brief, two parts of 0.58 mol/L saline (0.49 mol/L NaCl, 17.8 mmol/L Na5P3O10, and
1 mmol/L NaN3, pH 8.3, 2 ◦C) solution was mixed with one part of ground meat for 1 h.
The slurry was then centrifuged at 12,000× g at 4 ◦C for 1 h. The myofibrillar protein extract
was finally strained through layers of cheesecloth.

2.4. Preparation of Pre-Emulsified Oils

A homogeneous test was performed with a ULTRA-TURRAX (IKA. T25 digital, Berlin,
Germany). The various pre-emulsification ratios of 20%, 40%, 60% and 80% of perilla seed
oil and soybean oil were obtained by emulsifying the different amounts (0.6 g, 1.2 g, 1.8 g
and 2.4 g) of oils, named as P1, P2, P3, and P4, and S1, S2, S3, and S4, respectively. The P0
and S0 were the control group of perilla seed oil and soybean oil without any emulsification
treatments. In detail, two types of oils were emulsified by 10 mL-myofibrillar protein
solution of 1 mg/mL under homogenization for 1 min at 10,000 r/min. The overall addition
amount (3 g) of oil was introduced into surimi (100 g) for subsequent preparation of surimi
gel (Section 2.8).

2.5. Droplet Diameter

The droplet diameter of emulsions was measured at room temperature using a OLYM-
PUS BX41TF instrument. The emulsion prepared above was dispersed in 0.05% coomassie
blue containing 0.1% SDS immediately, and then was observed by an optical microscope
equipped with a digital camera [18]. Magnification was 100 times.

2.6. Particle Size and Distribution

The particle size of emulsions was measured at room temperature using a Zetasizer
Nano-ZS900 instrument (Malvern Instruments Co. Ltd., London, UK). Measurements were
performed in three replicates [19].

2.7. Emulsifying Activity (EAI) and the Emulsifying Stability Index (ESI)

After homogenization, 20 µL of each emulsion was diluted with 5 mL of 0.1% (w/v)
SDS solution and shaken rapidly. The absorbance was measured at 500 nm [20].

The following Equations (1) and (2) were used for calculation of EAI and ESI, respectively.

EAI (m2·g−1) = 2 × 2.303 × A0 × N/(C × Φ × 104) (1)

ESI (min) = A0/(A0 − A10) × T (2)

N = dilution factor (1000); C = protein concentration (mg/mL); Φ = oil volume fraction;
T = 10 min; A0 = absorbance at 0 min; and A10 = absorbance at 10 min.

2.8. Preparation of Emulsion Surimi Gel

Ten pieces of frozen surimi of 100 g were cut into about 1 cm × 1 cm × 1 cm after half
thawing. Then, 2% (w/w) salt, emulsion and fat were put into the beating machine. The
samples without oil emulsion were regarded as control group. The moisture content of the
final mixture in 10 groups was controlled at 78%, and the total amount of fat (perilla seed
oil and soybean oil) accounted for 3% of surimi quality. The mixed sample was chopped at
3000 r/min for 5 min (below 8 ◦C). The chopped fish pulp was poured into the collagen
casing (22 mm in diameter). After the bubbles were drained, the two ends were tied tightly.
A two-stage heating method was used (40 ◦C for 1 h and 90 ◦C for 20 min), and the resultant
surimi gels were placed in an autoclave for sterilization at 115 ◦C for 10 min, then cooled
immediately and stored in a refrigerator at 4 ◦C until measurements [14].
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2.9. Color

Whiteness was measured using a colorimeter (Color Quest XE, Tokyo, Japan) [21].
The L* (lightness), a* (redness), and b* (yellowness) were obtained by eight replicate
measurements for each sample. The whiteness (W) was calculated using the following
Equation (3):

W = 100 − [(100 − L*)2 + a*2 + b*2]1/2 (3)

2.10. Gel Strength

A penetration test was performed with a texture analyzer (TA. XT Plus, Los Angeles,
CA, USA) [12]. Surimi samples were equilibrated at room temperature (about 25 ◦C) for 2 h
prior to the gel strength. Samples were cut into cylinders (22 mm in diameter and 20 mm
in height). The test conditions were as follows, probe: P/5S; pre-test speed: 1.00 mm/s; test
speed: 2.00 mm/s; post-test speed: 10.00 mm/s; displacement: 15 mm; triggering mode:
automatic (power); trigger force: 10.0 g. Measurements were performed in eight replicates.

2.11. Water Holding Capacity

The determination of water holding capacity for the samples was measured by cen-
trifuge [12]. Gel samples were cut into thin slices, and approximately 2 g samples were
weighed and placed between two layers of filter paper. Subsequently, the samples were
placed at the bottom of centrifuge tubes and centrifuged at 10,000× g for 15 min. After
centrifugation, gels were weighed again. Measurements were performed in eight replicates.

WHC (%) = W2/W1 × 100 (4)

where W1 refers to initial weight of gels (g), W2 refers to final weight of gels (g).

2.12. Texture Analysis

Texture analysis was performed with a texture analyzer (TA. XT Plus, USA) [21].
Samples were cut into cylinders (22 mm in diameter and 20 mm in height) and equilibrated
at room temperature (about 25 ◦C) for 2 h. TPA test conditions were as follows, probe:
P/36R; pre-test speed: 1.00 mm/s; test speed: 2.00 mm/s; post-test speed: 10.00 mm/s;
strain: 50%; triggering mode: automatic (power); trigger force 10.0 g. Measurements were
performed in eight replicates.

2.13. Rheological Properties

The rheological properties were determined by a rheometer (MCR302, Anton Paar
Ltd., Sydney, Austria). A slit of 1 mm was set and silicone oil was used to prevent water
evaporation. The storage modulus (G′) was measured with the dynamic temperature
sweep from 20 ◦C to 120 ◦C was performed at the heating rate of 4 ◦C/min at 0.1 Hz [22].

2.14. Determination of Protein Solubility

The weighted chopped gel (2 g) was homogenized for 1 min with 10 mL 0.05 mol/L
NaCl solution (SA), 0.6 mol/L NaCl solution (SB), 0.6 mol/L NaCl + 1.5 mol/L urea
solution (SC), 0.6 mol/L NaCl + 8 mol/L urea solution (SD), and 10 mL 0.6 mol/L NaCl
+ 8 mol/L urea + 0.05 mol/L β-mercaptoethanol solution (SE), respectively. The samples
were placed at 4 ◦C for 1 h and then centrifuged for 15 min at 10,000× g. Subsequently,
the coomassie brilliant blue method was used to determine the protein content of the
supernatant [23]. The index of ionic bands, index of hydrogen bonds, index of hydrophobic
interactions and index of disulfide bond were expressed as follows:

index of ionic bands = SB − SA;
index of hydrogen bonds = SC − SB;
index of hydrophobic interactions = SD − SC;
index of disulfide bond = SE − SD.
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2.15. Statistics Analysis

The data were analyzed by SPSS 17.0 software. Duncan multiple test was used to
determine the significance between the data at p < 0.05 level. All values were presented as
means ± standard deviation.

3. Results and Discussion
3.1. Fatty Acid Composition

Five fatty acids including saturated fatty acids (palmitic acid and stearic acid), as well
as unsaturated fatty acids (oleic acid, linoleic acid and linolenic acid) with the different
percentages are found in both perilla seed oil and soybean oil (Table 1). Perilla seed oil has
the highest linolenic acid percentage of 54.44% in fatty acid composition, while linoleic
acid accounts for the highest proportion (43.82%) in soybean oil. Besides, it also can be
observed that perilla seed oil has the higher proportion of unsaturated fatty acids (90.09%)
than that of soybean oil (82.03%). The respective fatty acid compositions of two types of
oils are consistence with the previous studies [24].

Table 1. Fatty acid composition of perilla seed oil and soybean oil.

Palmitic Acid Stearic Acid Oleic Acid Linoleic Acid Linolenic
Acid

Perilla seed oil 8.51% 1.11% 19.83% 15.82% 54.44%
Soybean Oil 13.66% 2.03% 31.77% 43.82% 6.44%

3.2. Droplet Size and Distribution

The droplet diameter and particle size distribution reflect homogeneity of fat spheres
in the emulsion system, which further reveal the stability of the emulsion system. The
droplet diameter and size distribution of perilla seed oil and soybean oil with the differ-
ent emulsifying ratios are shown in Figure 1. An increasing droplet size of emulsion is
found for two types of oils along with the rising pre-emulsification ratio (Figure 1A). For
example, the average particle size of perilla seed oil and soybean oil emulsion increases
from 821.62 nm and 464.29 nm (20% emulsification ratio) to 2746.31 and 1155.43 nm (40%
emulsification ratio), respectively (Figure 1B). However, two kinds of emulsions have a
similar size distribution with the peaks at 220.25 nm and 1005.73 nm (Figure 1C). The
increasing emulsification ratio means more available surfactants are required to further
reduce the droplet size of the emulsions. However, the insufficient amounts of stabiliz-
ers may difficultly meet the requirements of increasing interfacial area, thus leading to
the formation of larger droplets. It is worth noting that the droplet size of perilla seed
oil emulsions greatly depends on emulsifying ratios relatively to soybean oil emulsions.
In particular, a sharp increase in mean droplet size is observed for perilla seed oil with
emulsifying ratio of 60% (P3 group). Additionally, the mean particle size of perilla seed
oil emulsion is significantly higher than that of soybean oil with the same emulsification
ratio. The difference in droplet size of two emulsions may be ascribed to their distinct
fatty acid composition. The perilla seed oil has a higher unsaturation degree of fatty acid
than soybean oil (Table 1). Previous studies have also consolidated that the droplet size
distribution of emulsified fatty acids is largely determined by saturation degree of fatty
acids [10]. The drop coalescence and flocculation between the fat particles can be prevented
by the resulting interfacial protein membranes from adsorbed salt-soluble proteins. Han
et al. [25] found that the low unsaturated fatty acids were conducive to the adsorption and
diffusion of salt-soluble proteins, effectively preventing the drop coalescence and floccula-
tion of fat particles. Inversely, the fatty acids with high unsaturation degree would weaken
the binding ability with interfacial protein membrane due to the reduced hydrophobic
interactions, resulting in coalescence of fat particles [26].
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3.3. Emulsifying Properties

Emulsifying activity depends on protein–lipid and protein–protein interactions, while
emulsifying stability is affected by the various factors associating with the continuous and
dispersed phases [27]. The quality of emulsified meat products can be assessed by these
two important indicators. The effects of oil types and emulsifying ratio on EAI and ESI
are shown in Figure 2. The rising pre-emulsification ratio leads to the increase of EAI and
decrease of ESI for two kinds of emulsions. The results may be ascribed to the amounts of
proteins surrounding the oil/water interface, which is one of stabilization mechanisms in
emulsified meat products. The higher pre-emulsification ratio is achieved by the increasing
oil globules in the given protein emulsifier systems, which decreases ESI by reducing
interfacial film thickness. Besides, the increase of emulsion particle size (Figure 1) also
causes the poor emulsion stability. EAI refers to the emulsifying activity of emulsifier
per unit weight. In this work, the different amounts of oils were emulsified by the given
amounts of myofibrillar protein, and thereafter the various pre-emulsification ratios were
obtained. The results suggest that rising pre-emulsification ratio leads to the increase of
EAI for two kinds of emulsions. The reason may be no saturated emulsifying status is
achieved for the present dosage of protein. We speculate that a subsequent decrease of
EAI may be observed for the emulsion with the higher pre-emulsification ratios (>0.8),
due to less availability of protein. Some differences in EAI and ESI are observed for both
two emulsions. The large droplets sizes of perilla seed oil relatively to soybean oil may
be responsible for their stability difference [28]. The difference in the EAI of emulsion are
closely related to their distinct protein adsorption ability [25]. The higher unsaturation
degree of perilla seed oil confers its enhanced binding ability with proteins, which further
improves the emulsifying activity of emulsions.
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3.4. Gel Properties

Effects of oil types and emulsifying ratio on the gel properties of surimi subjected to
heating treatments are shown in Figure 3A. Soybean oil emulsion gel shows the relatively
greater whitening effect, compared to perilla seed oil emulsion. The less pigmentation
and higher brightness of soybean oil may be responsible for the color differences [14]. The
increasing pre-emulsification ratio causes the whiteness improvement of surimi gel, and
the highest whiteness is obtained when the pre-emulsification ratio reaches 80%. Such
whitening effect of vegetable oil is ascribed to the light scattering effect of oil droplets in
surimi gel [29].

The gel strength and water retention are important quality indicators, which determine
the popularity of surimi products. The thermal stability of emulsion gels is reflected by
gel properties (gel strength, water retention and texture properties) of surimi subjected to
heating treatments. Effects of the pre-emulsification ratios and oil types on gel strength
and water retention of two emulsion gels subjected to heating treatments are shown in
Figure 3B. The gel strength and water retention of both two kinds of surimi gel display a
firstly increased and then decreased tendence along with the rising pre-emulsification ratios.
Moreover, the emulsion gels display the higher thermal stability than the control group re-
gardless of oil types. The similar results are also reported in the recent studies [8]. The initial
increase in gel strength is ascribed to introduction of emulsifying system. On one hand, the
rising addition of myofibrillar pre-emulsified oil contributes to the enhanced gel strength
of surimi to some extent by the incorporation of proteins [30]. On the other hand, the oil
surface is coated with protein membrane to form fine oil droplets after pre-emulsification,
which further induces the formation of interfacial protein films via interaction with the
hydrophobic regions of myofibrillar protein [31]. The resultant interfacial protein films can
effectively prevent the polymerization and flocculation between fat particles. Gel strength
and water retention largely depend on the gel microstructure (Figure S1) [32]. The oil
globules entrapped in the matrix induce the formation of the denser and homogeneous
gel structure, which endows the great mechanical strength and water-holding capacity.
However, the size of oil globules increases along with the higher pre-emulsification ratio
(40%), which retards the formation of the ordered gel network structure to some extent
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by weakening the protein-water interaction [14]. Specially, the pre-emulsification ratios
where gel strength and water retention obtain the greatest value are different for the two
types of surimi. For example, the addition of perilla seed oil with pre-emulsification ratio
of 20% (P1 group) allows the highest gel strength, while pre-emulsification ratio of soybean
oil delays to 40% (S2 group). This is closely related to the droplet diameter. The similar
droplet diameter of P1 as S2 can be evenly dispersed in the internal structure of the gel,
increasing the compactness and uniformity of the three-dimensional network structure of
surimi gel (Figure S1). Moreover, the emulsion surimi with perilla seed oil always shows
the higher gel strength and water retention than that with soybean oil under the same
pre-emulsification ratio. The difference in gel strength and water retention may be ascribed
to the unsaturation degree. The high surface hydrophobicity (high unsaturation degree)
may facilitate the favorable crosslink between protein–protein and protein–fat to form the
better interfacial protein films, which benefits for the stable gel properties [31].
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The effects of perilla seed oil and soybean oil with different pre-emulsification ratios
on texture properties (hardness and chewability) of surimi gel are displayed in Figure 3C,D.
An initial increase in hardness and chewiness of emulsion surimi gels is observed with
rising of pre-emulsification ratio until 20% (P1) or 40% (S2), where texture properties
reach the highest value. For example, the gel hardness and chewability of perilla seed oil
and soybean oil emulsion gels increase by 33.10%, 57.91% and 28.17%, 39.54% compared
to control group, respectively. However, hardness and chewiness of surimi gels remain
stable when the pre-emulsification ratio exceeds over 40%. Such a nonlinear tendency of
texture profiles as a function of the pre-emulsification ratio may be ascribed to the filling
effects of oil globules, which are supported by the previous reports [14]. Oil globules
with pre-emulsification treatment are filled in the protein matrix by physical restrictions,
contributing to the formation of gel network with a denser structure (Figure S1). Besides,
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the resultant interfacial protein films from dispersed oil globules and the hydrophobic
regions of myofibrillar protein also benefit the development of a denser microstructure. The
homogeneous gel structure endows the great mechanical strength to resist deformation [9].
When pre-emulsification ratio exceeds over 40%, the larger oil droplets retard the formation
of the ordered gel network structure to some extent by weakening the protein–water
interaction (Figure S1) [33].

3.5. Rheological Properties

The dynamic temperature sweep curves ranging of 20~120 ◦C of surimi gel emulsified
by perilla seed oil and soybean oil are shown in Figure 4. In general, a similar change of
storage modulus (G′) as a function of temperature is found for two types of emulsion gels.
The initial enhancement of the G′ indicates the formation of a weak gel network, and the
greatest G′ value is achieved when heated to 45 ◦C. The heating treatments induce the
exposure of active groups, which further promote the aggregation of myosin head [34]. A
sharp decrease in myosin tail expansion temporarily deteriorates the gel network structure.
The sharp increase of G′ after 52 ◦C suggests the formation of thermally irreversible gel
structures [35]. However, the G′ magnitude displays a significant difference in surimi gels
with the different pre-emulsification ratios. The G′ values of both two emulsion gels display
a firstly increased and then decreased tendency along with the increasing pre-emulsification
ratios. The G′ reaches the peak value when the pre-emulsification ratio is 20% and 40% for
perilla seed oil and soybean oil, respectively. However, the further rising pre-emulsification
ratio does not cause a continuously increase of the G′ value. The results are also consistent
with gel strength and texture results. The pre-emulsified oil globules allow for the formation
of the denser and homogeneous gel structure modulated by interfacial protein films, which
is responsible for the enhanced dynamic modulus (Figure S1). However, the formation of
the ordered gel network structure is retarded due to lager oil droplets by weakening the
protein–water interaction. The G′ has two maximum values, which are closely related to the
types of oil and the composition of fatty acids. Due to the higher proportion of unsaturated
fatty acids, the structure transitions were conspicuously observed in the surimi systems
using perilla seed oil during heating.
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3.6. Protein Solubility

The ionic bonds, hydrogen bonds, hydrophobic interactions and disulfide bonds
support the three-dimensional network integrity of surimi gel in the different ways. It
is thereafter of great significance for underlying thermal stability mechanisms by the
insights into the various interactions. determine the technological properties of surimi
products [36]. Ionic bonds mainly stabilize the tertiary and quaternary structure of proteins,
while hydrogen bonds are responsible for secondary structure of proteins. The resultant
disulfide bonds from oxidation of sulfhydryl groups support the formation of protein
spatial structures. The aggregation protein molecular is mainly mediated by hydrophobic
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interactions [37,38]. The effects of oil types and emulsification ratio on the protein solubility
of surimi gel are shown in Figure 5. The increase of pre-emulsification ratio causes a firstly
increased and then decreased change for hydrogen bond, ionic bond and hydrophobic
interaction. The peak value is achieved when the pre-emulsification ratio of perilla seed
oil and soybean oil is 20% and 40%, respectively. The similar change to gel properties
also suggest that these interaction forces are the inherent contributors. The oppositive
results are observed for changes of disulfide bond. The reasons may be the introduction
of emulsion systems induces the changes of protein conformation and the corresponding
interaction forces [25]. Meanwhile, the disulfide bonds are formed by the oxidation of
sulfhydryl groups, which reflect the structural stability of myofibrillar protein. The results
reveal that the sulfhydryl groups of myofibrillar protein are not liable to oxidation under
the pre-emulsification ratio. The higher structure stability of myofibrillar protein is ascribed
to the greater other interactions (hydrogen bonds and hydrophobic interactions), which
are also well regarded as the main contributors associating with the structure stability
of protein. The introductions of interfacial protein membrane embedding oil droplets
contribute to the enhanced hydrogen bonds. The rising pre-emulsification treatments
also cause more exposure of hydrophobic groups, and thereby improve hydrophobic
interaction. The higher pre-emulsification ratio is achieved by the increasing oil globules in
the given protein emulsifier systems. The insufficient amounts of proteins may meet the
requirements of increasing interfacial area with difficulty, thus leading to the formation
of larger oil droplets. The hydrophobic binding sites of oil may be difficultly exposed
due to the drop coalescence, which decreased the hydrophobic interaction with protein.
These resultant lager oil droplets from over-emulsification treatments may fail to stabilize
emulsion gel systems due to the weakening hydrophobic interactions, which further affect
the structure integrity evidenced by increased disulfide bonds [6].
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4. Conclusions

The introduction of emulsion has been proven as a valid method for the preparation
of surimi products with the improved quality. In the present work, emulsion-formulated
surimi gels were prepared to enhance the resistance to heating treatments. The results show
that the thermal stability of emulsion gels was improved, evidenced by the changes of gel
properties of surimi after heating treatments. The gel properties of both kinds of surimi
gels can be modulated via the oils and the rising pre-emulsification ratios. The gel strength,
water retention, elastic modulus and texture properties of both kinds of surimi gels display
a firstly increased and then decreased tendency with the rising pre-emulsification ratios. In
general, perilla seed oil emulsion surimi gels with an emulsification ratio of 20% (P1 group)
contribute to the improved thermal stability, compared to the soybean oil emulsion gels.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods11020179/s1, Figure S1: The microstructures of surimi gel emulsified by perilla
seed (A) oil and soybean oil (B) subjected to heating treatments (40×).
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