
OPEN

SHORT COMMUNICATION

Polymorphisms in DCDC2 and S100B associate
with developmental dyslexia
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Genetic studies of complex traits have become increasingly successful as progress is made in next-generation sequencing.

We aimed at discovering single nucleotide variation present in known and new candidate genes for developmental dyslexia:

CYP19A1, DCDC2, DIP2A, DYX1C1, GCFC2 (also known as C2orf3), KIAA0319, MRPL19, PCNT, PRMT2, ROBO1 and S100B.
We used next-generation sequencing to identify single-nucleotide polymorphisms in the exons of these 11 genes in pools of 100

DNA samples of Finnish individuals with developmental dyslexia. Subsequent individual genotyping of those 100 individuals,

and additional cases and controls from the Finnish and German populations, validated 92 out of 111 different single-nucleotide

variants. A nonsynonymous polymorphism in DCDC2 (corrected P=0.002) and a noncoding variant in S100B (corrected

P=0.016) showed a significant association with spelling performance in families of German origin. No significant association

was found for the variants neither in the Finnish case-control sample set nor in the Finnish family sample set. Our findings

further strengthen the role of DCDC2 and implicate S100B, in the biology of reading and spelling.
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INTRODUCTION

Developmental dyslexia (DD) is characterized by deficiencies in
reading and writing with phonological difficulties persisting through-
out life.1 Previous studies have demonstrated genetic components for
DD with at least nine loci (DYX1-9) identified, and perturbed gene
expression or human loss of function phenotypes have revealed roles
for candidate genes in neuronal migration, axon guidance and more
recently in ciliary biogenesis and function.2–6 Recently, a study with
over 900 cases analyzed the effect of common polymorphisms on DD,
word reading and spelling using samples from eight European
countries.7 Nominal association was found for variants in single
populations; however, no variant reached a significant association in
meta-analysis of all samples. These results suggest the need for larger
sample sizes for association analyses of common variants. We
hypothesised that susceptibility genes can harbour unreported single-
nucleotide polymorphisms (SNPs) and novel variants in significant
association with DD. Consequently, we embarked on an alternative
approach using next-generation sequencing (NGS) of CYP19A1,
DCDC2, DIP2A, DYX1C1, GCFC2 (also known as C2orf3), KIAA0319,
MRPL19, PCNT, PRMT2, ROBO1 and S100B in 100 unrelated DD

cases from Finland. The first seven genes were selected because they
harbour variants with replicated genetic association; PCNT, DIP2A,
S100B and PRMT2 were selected as they are contained within a
deletion on chromosome 21q22.3 that co-segregates with DD in a
Dutch family.8

MATERIALS AND METHODS
Ethical permissions were obtained from the regional committees in Helsinki,

Finland (412/E9/04), Marburg and Würzburg, Germany (115/00), and Stock-

holm, Sweden (2008/153-32).
DNA from 100 DD cases (discovery sample) was divided into 10 pools á 10

individuals and the regions of interest (ROI) were captured using selector

probes (Halo Genomics, Uppsala, Sweden). The ROI included all RefSeq

(release 41) annotated exons as well as 3'-UTRs, 5'-UTRs and 50 base pair

intronic sequence flanking exons of the 11 target genes. Captured sequences

were sequenced on SOLID4 and 5500xl instruments (Life Technologies,

Carlsbad, CA, USA). We chose the CRISP algorithm9 for the subsequent

variant prediction and the parameters were set to allow detection of hetero-

zygous variants from single individuals in each pool. For detailed material and

method descriptions, see Supplementary Materials and Methods.
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RESULTS AND DISCUSSION

We identified 282 SNPs and novel variants in the ROI by SOLiD4
sequencing (Table 1). We also sequenced available DNA pools (9 out
of 10) on a 5500xl platform to increase the total sequencing coverage
and depth, and 291 SNPs and novel variants were detected (Table 1).
A total of 236 variants were detected in common by both sequencing
methods (Table 1). For validation of individual variants by genotyping,
we selected all (i) coding variants; (ii) novel variants neither present
in dbSNP130 nor the 1000 Genomes database (Pilots 1,2,3 release
March 2010); (iii) 3' and 5'-UTR SNPs and (iv) intronic SNPs
predicted by both CRISP and FreeBayes algorithms, making a total of

111 variants. Out of those, we validated 92 and 89 variants in case-
controls and families from Finland (including the discovery sample) as
well as families from Germany, respectively (Supplementary Tables 1
and 2). The extended case-control sample set (169 affected and 194
unaffected) included Finnish case-controls combined with unrelated
affected and unaffected individuals from families (Table 2). The
German family sample (419 affected and 118 unaffected individuals)
was stratified based on observed spelling ability (Table 2).
As we sequenced selected genes, we corrected transmission dis-

equilibrium test (TDT) and allelic association P-values for the number
of independent markers for each gene (Supplementary Materials
and Methods). Neither TDT in Finnish families nor allelic association
test in the extended case-control set revealed variants in
significant association with DD. TDT in the German families yielded
significant association (P-value= 0.0003; corrected P= 0.002, 7
independent markers) with spelling for the A allele of a non-
synonymous variant (rs2274305, p.Ser221Gly) in DCDC2 (Table 3)
using the group with most severe spelling deficiency (⩾2.5 s.d. below
expected spelling score, 72 affected). This confirms and strengthens
previous results.10 Power analyses11 (alpha= 0.05) show 98% power to
detect association with the rs2274305 SNP in the total German sample
and 59% in the 72 trios belonging to the ⩾ 2.5 s.d. group. Rs2274305
is predicted to be possibly damaging (Polyphen2)12 and is located
within the doublecortin domain, a structure important for the
neuronal migration function of DCDC2.13 Furthermore, we found a
3'-UTR variant (rs9722) in S100B in significant association with
spelling for the groups defined as 2 s.d. (T allele, corrected
P= 0.016, 1 marker, power= 69% at alpha= 0.05) and 1.5 s.d. (T
allele, corrected P= 0.016, 1 marker, power= 73% at alpha= 0.05)
below anticipated spelling score (Table 3). The association disappeared
in the ⩾ 2.5 s.d. group. This is likely an effect of reduced power
because of the limited number of cases (n= 72). Sequence variants in
the 3'-UTR may affect transcript stability, for example, by creating or
disrupting target sites for microRNAs (miRNAs).14–16 We therefore
searched for putative miRNA target sites overlapping rs9722 in
TargetScan predictions.17 Indeed, rs9722 was located in, or adjacent
to, multiple predicted miRNA target sites (Supplementary Table 2), a
result that warrant further analyses. None of the five validated novel
variants, distributed in PCNT and DIP2A, showed association with DD
and their low number makes tests for excess of rare variants in cases
versus controls, for example gene burden tests, unsuitable.
Tests combining case-controls and related individuals can increase

power. To explore this option, we used genotypes of the 92 validated
variants for the Finnish family (156 affected, 258 unaffected) and case-

Table 1 Total number of predicted SNVs after a targeted sequencing

Platform

Samples

(pools)

Overlapping

SNVs

Variants in

ROIa

Validated SNVs

(Finnish/German

sample)

SOLiD4 10 282 92/89

5500xl 9b 291

SOLiD4

+5500xl

10+9b 236 310 85c

Abbreviations: ROI, regions of interest; SNV, single-nucleotide variants.
aVariants predicted by the CRISP algorithm located in the captured ROI.
b90% of the libraries were sequenced by using the 5500xl platform.
cOverlapping validated SNVs from both sequencing runs (SOLiD4+5500xl) by using CRISP
variant prediction.

Table 2 Sample sets used in the study

Sample name Severitya Affected Unaffected Unknown Total

Discovery sample

(Finland)

100 (1) 0 NA 100

Case-control (Finland) 92 (NA) 67 (NA) NA 159

Extended case-control

(Finland)

169 (1.2) 194 (0.9) NA 363

Finnish families 156 (1.2) 258 (1) 0 414

German families total 419 (2.6) 118 (0.7) 511 (1) 1048

2.5 s.d. 72 (5.5) 0 NA 72

2.0 s.d. 171 (5.1) 0 NA 171

1.5 s.d. 177 (5) 0 NA 177

Abbreviation: NA, not applicable.
Male:female ratio is presented in parenthesis.
aSeverity cutoff for spelling performance in s.d. below the expected population average.

Table 3 Top ranking TDT results by using validated SNPs in the German family sample set

Severity/casesa Chr SNP Position (bp) A1 A2 T U OR Pb Corrected Pc Positiond Gene

⩾2.5 s.d./72 6 rs2274305 24399182 A G 41 14 2.929 0.0003 0.002 p.Ser221Gly DCDC2
15 rs600753 53546485 T C 24 42 0.571 0.0267 0.107 p.Glu191Gly DYX1C1

2 s.d./171 21 rs9722 46843667 T C 37 19 1.947 0.0162 0.016 3'-UTR S100B
6 rs2274305 24399182 A G 85 59 1.441 0.0303 0.240 p.Ser221Gly DCDC2

1.5 s.d./227 21 rs9722 46843667 T C 46 25 1.84 0.0127 0.013 3'-UTR S100B
6 rs2274305 24399182 A G 109 80 1.363 0.0349 0.280 p.Ser221Gly DCDC2

Total/419 6 rs6937665 24280905 G A 102 137 0.745 0.0236 0.189 3'-UTR DCDC2
15 rs2289105 49294800 A G 195 155 1.258 0.0325 0.195 Intronic CYP19A1

Abbreviations: Chr, chromosome; SNPs, single-nucleotide polypeptide; T, number of transmitted minor allele (A1); TDT, transmission disequilibrium test; U, number of untransmitted minor allele
(A1); OR, odds ratio.
aSeverity of spelling disability/number of cases
bUncorrected P-value.
cP-values are corrected for multiple testing (Bonferroni) for each gene separately and for the number of independent SNPs per gene.
dPosition within the genomic structure of the gene or position of the concerned amino-acid.
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control samples (92 affected, 67 unaffected) in MQLS (a more
powerful quasi-likelihood score test) capable of case-control associa-
tion testing with the related individuals.18 None of the variants showed
a significant association with DD. It is plausible that the association in
the families, at least in part, is driven by polymorphisms in other
genes.19,20

We conclude that sample sets based on related individuals with
severe phenotypes can increase the likelihood to find genetic associa-
tion. Our results strengthen a previous association signal in DCDC2 as
well as suggesting S100B as a new candidate gene for DD.
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