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Abstract 

Circadian and circannual cycles trigger physiological changes whose reflection on human 

transcriptomes remains largely uncharted. We used the time and season of death of 932 

individuals from GTEx to jointly investigate transcriptomic changes associated with those 

cycles across multiple tissues. Overall, most variation across tissues during day-night and 

among seasons was unique to each cycle. Although all tissues remodeled their transcriptomes, 

brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity 

showed stronger day-night regulation. Core clock genes displayed marked day-night differences 

across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their 

nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways and it 

was enriched among genes associated with the immune response, consistent with the seasonality 

of viral infections. Furthermore, they unveiled cytoarchitectural changes in brain regions. 

Altogether, our results provide the first combined atlas of how transcriptomes from human 

tissues adapt to major cycling environmental conditions. 

 

 

Introduction 

The yearly and daily movement of the earth around the sun and around itself has created a 

continuously changing environment since the origin of life to which all organisms across the 

phylogenetic spectrum have adapted. In mammals, in particular, behavioral adaptations to daily 

rhythm include the regulation of sleep and feeding cycles. Recent studies have investigated how 

the physiological responses to the daily cycle are reflected at the transcriptomic level. These 

studies have reported large-scale circadian gene expression oscillations in mice (Zhang et al. 

2014), baboons (Mure et al. 2018), and humans (Ruben et al. 2018; Anafi et al. 2017). Unlike 

the circadian process, circannual rhythm in mammals has been less studied. Animals exhibit a 

range of behavioral and physiological adaptations in different seasons, such as hibernation and 

alterations of the coat color in polar animals (Drew et al. 2007; Ferreira et al. 2017). One way 

in which mammals regulate their seasonal reproductive behavior, growth, food intake, and 

migratory behavior is via the brain-gonadal and other hormonal axes (Hanon et al. 2008; 

Dardente et al. 2014; Lomet et al. 2018). In humans, numerous pathologies present a strong 

seasonal pattern, which is particularly prominent for many infectious diseases, but also observed 

in complex cardiovascular and psychiatric disorders (Watson et al. 1984; Philpot et al. 1989; 
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Pell et al. 1999; Pell and Cobbe 1999; Torrey et al. 2000; Owens and McGorry 2003; Xu et al. 

2013; Li et al. 2017a; Sharon et al. 2019). Nevertheless, despite its relevance for human 

physiology and disease, genome-wide studies on circannual rhythms are scarce. Castro Dopico 

et al. (2015) analyzed the transcriptome of white blood cells from children in Germany, from 

individuals affected with type 1 diabetes from the UK, and from asthmatic cohorts from distinct 

geographical locations (Dopico et al. 2015). They found many genes with seasonal expression 

profiles, inverted between Europe and Oceania. These seasonal expression profiles were 

prominent in genes from the immune system. To our knowledge, however, there are no genome-

wide studies of the transcriptional impact of these adaptations to seasonal variation across 

multiple human tissues. 

 

Here, we leverage on the deep transcriptome data across human tissues produced by the GTEx 

consortium (16,151 RNA-seq samples of 932 post-mortem human donors from 46 tissues) 

(GTEx Consortium 2020) to investigate the transcriptional impact of circadian and circannual 

rhythms in an unprecedented number of tissues. GTEx transcriptional measurements are taken 

exclusively at the donor’s death; therefore, there is a single time-point measure per individual. 

In addition, GTEx metadata only includes the time of the day and the season of death, but not 

the actual day, the week or even the month of death. This prompted us to artificially discretize 

circadian and circannual variation into day-night and season-specific variation. Despite all these 

caveats, we show that, when aggregated over many individuals, these transcriptional snapshots 

randomly distributed along time create temporal trajectories that recapitulate day-night and 

seasonal transcriptional variation, and they constitute, therefore, a unique resource to investigate 

this variation. 

 

Results 

Tissue-dependent day-night variation in gene expression 

We first used MetaCycle (Wu et al. 2016), a suite designed to analyze rhythmic data, and that 

has been previously used to investigate circadian patterns (e.g. Ruberto et al. (Ruberto et al. 

2021) and Mishra et al. (Mishra et al. 2021)). While MetaCycle uses three methods to identify 

oscillating genes, only Lomb-Scargle is suited for GTEx data, due to the uneven distribution of 

the time of death. Using this method, from the 18,018 protein-coding genes expressed in at least 

one tissue (median TPM ≥ 1), we identified 187 (1%) that were circadian in at least one tissue 
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(non-adjusted P ≤ 0.05; Table S1). This number is much smaller than that previously reported 

in baboon (Mure et al. 2018), where 82% of the protein-coding genes had circadian patterns in 

at least one of the 64 studied tissues. Lack of power to detect genes with circadian gene 

expression patterns can be partially attributed to the characteristics of the GTEx resource. As 

reported, the GTEx metadata only includes the time of the day and the season of death, and 

there is no information about the location of death. Therefore, we focused only on the 

individuals in which the time of death could be unequivocally classified as either day [8:00-

17:00) (351 individuals) or night [21:00-5:00) (315 individuals), and excluded those in which 

death occurred outside these intervals (the twilight zone; 222 individuals) (Fig. 1A). We then 

identified genes that were differentially expressed between day and night. 

 

For this purpose, we carried out a differential gene expression analysis using voom/limma (Law 

et al. 2014) controlling for the effects of season of death, sex, body mass index, age, and post-

mortem interval. We performed an initial comparison across tissues with high sensitivity, 

applying loose cut-offs of a non-adjusted P ≤ 0.05 and an absolute log2 fold-change ≥ 0.1. From 

the 18,022 protein-coding genes expressed in at least one tissue (median TPM ≥ 1), we found 

that 12,530 (70%) were differentially expressed between day and night in at least one of the 46 

tested tissues (day-night genes, Supplementary Dataset 1), which is a number in line with the 

results found in baboon. However, it should be noted that, while this approach increases the 

power to detect significant changes in gene expression, it does not necessarily lead to the 

identification of all genes with circadian patterns of gene expression, since the circadian peaks 

may occur at the twilight time zones that we are ignoring. Consistently, most of the gene-tissue 

pairs detected by MetaCycle as circadian were also identified as day-night by our analyses 

(210/339, 62%; Table S1), with most exceptions peaking at or around the twilight (Table S2). 

 

Per tissue, 5.5% of expressed protein-coding genes were day-night on average. The tissue with 

the largest number of day-night genes was lung, with 2,418 genes (17.2% of genes expressed in 

this tissue; Fig. 2A). Other tissues with a proportionally large number of day-night genes were 

the heart left ventricle (2,202 genes, 19.2%) and whole blood (1,900 genes, 19%). On the other 

hand, the tissue with the fewest differentially expressed day-night genes was salivary gland, 

with only 85 genes (0.63% of genes expressed in this tissue; Fig. 2A). Other tissues with 

proportionally low number of day-night genes were colon transverse (92, 0.67%) and testis 
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(105, 0.66%). Brain regions also showed a relatively small number of day-night changes 

(ranging from 0.86% to 7.8%; Fig. 2A). Caudate was the brain region with the highest number 

of day-night genes (1,026 7.8%), followed by the cerebellum (766, 5.7%), which was reported 

to have a sleep stage–dependent activity (Canto et al. 2017). Some tissues showed a bias in the 

number of genes overexpressed during the day (diurnal genes) versus the night (nocturnal 

genes) (Fig. 2A and Table S3). Stomach was the tissue with the strongest diurnal preference, 

while non-sun exposed skin was the tissue with the strongest nocturnal preference. In contrast, 

sun exposed skin showed diurnal preference (0.7 log2 day/night genes ratio), suggesting that 

UV plays a role in the activation of gene expression. 

 

Recurrent day-night variation in gene expression across tissues 

We next computed the number of tissues in which a given gene showed a day-night pattern (Fig. 

2B). We found that, on average, day-night genes exhibited a day-night pattern in 2.6 tissues out 

of 39 tissues in which they had detectable expression (median TPM ≥ 1), indicating a rather 

tissue-specific response to day-night cycles. Overall, we found that genes identified as day-night 

in more than one tissue significantly tended to be consistently up-regulated in either day or 

night, and this consistency largely increased with the number of tissues in which genes were 

detected as day-night (Table S4; see Methods). 

 

We focused on a set of 16 genes that form the molecular core clock and are the main regulators 

of the circadian rhythm (Bargiello et al. 1984; Shearman et al. 2000; Liu et al. 2008) (Table S5). 

With the exception of RORC and RORB, the core clock genes were expressed in almost all 

tissues, and, with the exception of RORB, they showed differential day-night expression in 

multiple tissues (Fig. 2B). This is in agreement with the hypothesis that one molecular clock 

program is present in all tissues but the circadian processes triggered downstream are highly 

tissue-specific (Scheiermann et al. 2013). Core clock genes usually have effect sizes (difference 

between day and night expression) that are larger than those of non-core clock day-night genes 

(Fig. S1). ARNTL, a positive regulator of the core clock, was the gene with a day-night pattern 

in the largest number of tissues (33 tissues; Fig. 2B). Its expression at the time of death, 

aggregated across the GTEx donors, nicely captures the known circadian behaviour of this gene 

(Fig. 2C), strongly indicating that, in spite of all the caveats associated with the data collection 

and available metadata, the GTEx data can be effectively used to investigate gene expression 
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patterns during the day-night cycle. A recent study described ARNTL as the main regulator of 

the inter-tissue timekeeping function in mouse (Welz et al. 2019), and our results suggest that 

it may play a similar role in humans. Similarly, NPAS2 was the second gene with a day-night 

pattern in the largest number of tissues (31 tissues; Fig. 2B,D) and has also been reported as 

being circadian in many mouse (Li et al. 2018) and baboon (Mure et al. 2018) tissues. 

 

Among the core clock genes, the thyroid had the highest number of day-night cases (12 out of 

16 genes; Fig. 3A). In contrast, we did not detect any of them as day-night in stomach, testis, 

and vagina, consistent with their overall low number of day-night changes (Fig. 2A), and with 

previous studies in testis in rodents (Bittman 2016). Clock genes showed a largely consistent 

pattern of day-night expression across tissues (i.e. they were either consistently up- or down-

regulated at the same time of the day; Fig. 3A). One exception was NR1D2, whose expression 

was consistently higher diurnally in brain subregions but nocturnally in all other tissues (Fig. 

3B and Fig. S2). For the core clock genes that showed day-night differences in both human and 

baboon in any of the available 20 homologous tissues (Table S6), we found that most orthologs 

had a similar behavior in both species (59 similar vs. 15 opposite gene-tissue pairs; P = 1.277 

× 10-7 one-sided binomial test; Fig. 3C), consistent with their shared diurnal regimes. In contrast, 

core clock genes in mouse (a preferentially nocturnal mammal) largely showed the opposite 

behavior than their human counterparts (13 similar vs. 38 opposite gene-tissue pairs; P = 3.105 

× 10-4 one-sided binomial test; Fig. 3C and Table S7). 

 

Next, we identified 445 genes with a consistent day (282) or night (165) pattern in multiple 

tissues (P ≤ 0.05 two-sided binomial test across all tissues, brain regions and/or across non-

brain tissues; see Fig. S3, Table S8 and Methods). We defined these genes as “high-confidence 

day-night genes” (Fig. 2B). High-confidence day-night genes included most clock genes (with 

the exception of TIMELESS, RORA and RORB) and were significantly enriched for circadian 

and photoperiodism related Gene Ontology (GO) terms (Fig. 3D and Table S9). Moreover, this 

gene set significantly overlapped those annotated as circadian in the Circadian Gene DataBase 

in humans (Li et al. 2017b) (87 genes, P = 3.074 × 10-8 one-sided Fisher test), and substantially 

expands the set of genes known to be varying during the day-night cycle. Additional GO terms 

were enriched among high-confidence day-night genes, including apoptosis and cell cycle 

regulation (genes peaking during the day) or fatty acid metabolism, cellular respiration and 
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various signalling pathways (genes peaking during the night)(Fig. 3D and Table S9). An 

example of high-confidence day-night gene with previously unknown circadian variation is 

THRA (Fig. S4A), a thyroid hormone receptor that peaks at night in 15 tissues (including the 

thyroid), the expression of which was found disrupted in the hypothalamic structures of rats in 

constant darkness or lighting (Klimina et al. 2019). Other examples of high-confidence day-

night genes present in a large number of tissues are the ribosomal protein RPS26 (day in 16 

tissues), the nuclear pore complex protein NPIPB5 (day in 16 tissues), and the transcription 

corepressor TRIM22 (day in 13 tissues) (Fig. S4B-D). 

 

One of the physiological signatures of the day-night rhythmicity is the sleep-wake cycle. 

Therefore, we next focused on a set of 254 protein-coding genes expressed in GTEx and that 

were previously reported to increase the risk of insomnia or to be associated with other sleep 

traits in humans (Jansen et al. 2019) (Table S10). From this gene set, 186 (73.2%) exhibited a 

significant day-night variation in at least one tissue, closely matching the genome-wide behavior 

across tissues (Fig. S5). Moreover, none of them belonged to the core clock and they did not 

significantly overlapped with our set of high-confidence day-night genes (7 genes in common; 

P = 0.49, one-sided Fisher test) or with those annotated as circadian in the Circadian Gene 

DataBase in human (Li et al. 2017b) (P = 0.31, one-sided Fisher test over expressed genes). 

These results thus suggest that genes involved in sleep disorders and traits do not appear to be 

particularly impacted by circadian or day-night gene expression patterns. However, four sleep 

genes were high-confidence day-night (Fig. S6) and annotated as circadian in the Circadian 

Gene DataBase (Li et al. 2017b) either in human (PC) or in other species (PITPNC1 and PDE4B 

in mouse and QSOX2 in Arabidopsis thaliana), pointing at a potential relevance, in specific 

cases, on day-night regulation of sleep behaviours. 

 

Tissue-dependent seasonal variation in gene expression 

Next, we analyzed the seasonal variation of gene expression. To make the analyses consistent 

with those of day-night patterns and to minimize the impact of GTEx reporting only the season 

and not the actual day of death (see Methods), we set out to identify season-specific genes, i.e. 

genes that are differentially highly or lowly expressed in one particular season vs. the others. 

This minimizes some of the impact of measurements taken around the seasonal boundaries. 

Including as co-variates day-night variation as well as sex, BMI, age and post-morten interval, 
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and using a comparable definition of differential gene expression (raw P ≤ 0.05 and absolute 

log2 fold-change ≥ 0.1, see Methods), we found that 16,408 (91.1%) of all expressed protein-

coding genes were differentially expressed in at least one season in at least one tissue (hereafter 

seasonal genes; Supplemental Dataset 2). There were no large differences in the number of 

seasonal genes across seasons, ranging from 12,026 genes in summer to 13,192 in fall. Per tissue 

and per season, the average number of seasonal genes were similar among seasons and 

comparable to day-night patterns (5.3% in spring, 4.9% in summer, 6.5% in fall, and 5.3% in 

winter, compared with 5.5% day-night genes), but there were many more unique seasonal genes 

than day-night genes per tissue when all seasons were considered together (17.7%). The effect 

sizes of seasonal genes were also similar to those observed in day-night genes (Fig. S7). 

 

In stark contrast to day-night patterns, the tissue with the highest proportion of genes showing 

seasonal changes was testis (25.6% of expressed genes; Fig. 4A), with the highest variation 

occurring in fall and spring (Fig. S8). Most other tissues with large seasonal changes were brain 

subregions in summer, fall, and winter. Most of these tissues did not show a clear bias in the 

direction of the expression changes (i.e. the number of season-specific up- or down-regulated 

genes was similar; Fig. S8 and Table S11). Testis, however, exhibited a massive gene up-

regulation in fall and down-regulation in spring. 

 

Although the overlap between seasonal and day-night genes was statistically significant for 

most tissues, most differentially regulated genes were unique to one or the other type of 

variation (Table S12). Moreover, consistent with the distinct set of top varying tissues, the 

number of day-night and seasonal genes across tissues did not correlate (Spearman's rho = -

0.12; Fig. 4B). Tissues with larger day-night than seasonal variation included various tissues 

from the thoracic cavity (e.g. lung and the heart’s left ventricle), which may reflect changes in 

heart rate and breathing patterns between day and night (Penzel et al. 2003). On the other hand, 

tissues with more seasonal than day-night genes included most brain subregions and gonadal 

tissues, likely mirroring the involvement of brain-gonadal axis in regulating seasonal 

physiology and behavior (Plant 2015) (Fig. 4C). 

 

Recurrent seasonal variation of gene expression across tissues 
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On average, seasonal genes showed seasonal expression in a number of tissues comparable to 

that of day-night genes: 2.5 in spring, 2.5 in summer, 3 in fall, and 2.5 winter, compared with 

2.6 tissues for day-night genes. These genes also tended to be consistently up- or down-

regulated across tissues. Therefore, as per day-night variation, we defined sets of high-

confidence seasonal genes that varied in a consistent manner across multiple tissues for each 

season separately (Table S13; see Methods). In total, we identified 1,748 unique genes: 308 in 

spring (138 up and 170 down), 361 in summer (158 up and 203 down), 1,072 in fall (691 up 

and 381 down), and 322 in winter (89 up and 233 down) (Fig. 5A, Table S13). The top enriched 

gene functions were largely specific for individual seasons, although some regulatory categories 

such as transcription and translation were shared by multiple sets (Fig. 5B and Table S14). As 

expected, multiple immune-related terms were enriched in fall and winter. 

 

An interesting example of high-confidence seasonal gene is GLTSCR1, a component of the 

SWI/SNF chromatin remodeling complex also known as BICRA, which increased in fall in 16 

tissues (e.g. in cerebellar hemisphere; inset of Fig. 5A). Similarly, RTF1, a component of the 

RNA polymerase II transcription-associated PAF1 complex, decreased in fall in nine tissues 

(Fig. S9A). This complex is deeply conserved across eukaryotes, and it has been described to 

be involved in the regulation of flowering time in plants (Ko et al. 2011; Dorcey et al. 2012) 

and to be required for induction of heat shock genes in animals (Tenney et al. 2006; Alpsoy and 

Dykhuizen 2018). PAF1c has been proposed to establish an antiviral state to prevent infection 

by incoming retroviruses: in case of infection by influenza A strain H3N2, PAF1c associates 

with viral NS1 protein, thereby regulating gene transcription (Liu et al. 2011). Other examples 

include C4A, decreasing in spring in 21 tissues (Fig. S9B), which localizes to the 

histocompatibility complex, and KRT1, which decreases in 24 tissues in winter (Fig. S9C), and 

encodes a keratin gene that is a downstream effector of the corticotropin hormone release 

pathway (Slenter et al. 2018). Krt1 mutations in mouse have been associated with various 

phenotypic defects, ranging from abnormal circulating interleukin (Roth et al. 2012) to aberrant 

pigmentation of the epidermis (McGowan et al. 2006). Seasonal pigment variation is well 

known in mammals from the northern hemisphere (Zimova et al. 2018), which might suggest a 

conserved role of the corticotropin release pathway in pigment seasonal variation. 
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Finally, we focused on a set of 192 genes (1.1% of all expressed genes) that exhibited the 

strongest quantitative seasonal expression differences (at least a two fold-change in expression 

in one tissue-season pair). These were usually highly tissue specific, since only seven of these 

genes belonged to the set of 1,370 genes with recurrent seasonal patterns. These genes were 

enriched for functions related to epidermal differentiation and immunity (Fig. 5C), consistent 

with previous results in blood cells (Dopico et al. 2015). In line with the enrichment for multiple 

immune-related functions, these genes also exhibited significant overlap with gene sets that 

have been associated with COVID-19, including genes whose expression changes upon SARS-

CoV-2 infection and genes predicted to be functionally related to ACE2 (Fig. S12), although 

ACE2 itself did not show a strong seasonal pattern. In particular, 24 out of the top 200 genes 

among the latter predictions (12.5%) were strongly seasonal, with 20 of them being up-regulated 

in the intestine specifically in the winter. 

 

Seasonal variation of gene expression of hormone genes 

Hormones (Watts 2020; Tendler et al. 2021) have been described to broadly regulate the body's 

seasonal physiology (Hanon et al. 2008; Dardente et al. 2014; Lomet et al. 2018). Thus, to 

explore whether genes that encode peptide hormones undergo particularly strong seasonal 

changes, we used a list of 62 genes with hormone-encoding capability based on Mirabeau et al. 

(Mirabeau et al. 2007) (Methods, Table S15). Overall, we found 39 (63%) hormone genes to be 

seasonal in at least one tissue (Fig. S10), a significant depletion respect to the whole genome (P 

= 7.011 × 10-14, two-sided proportion test). However, five hormone genes were included in at 

least one high-confidence seasonal gene set (Fig. 5D). Among these, POMC, a well-known 

photoperiodic hormone, was seasonal in 26 tissue-season pairs, mainly in summer. POMC 

expression has been shown to be dependent on longer-term photoperiod in the Siberian hamsters 

(Bao et al. 2019). Other seasonal hormones also have well known roles, mainly in the 

cardiovascular system and growth: UCN, a corticotropin for stress response and appetite 

regulation (Cullen et al. 2001; Vandael and Gounko 2019) and ADM, which is important for 

vasodilation (Geven et al. 2018). GNRH1, the gonadotropin-releasing hormone 1, which 

influences seasonal changes in other mammals (Hart et al. 1984), is seasonal in two artery 

tissues: the aorta and the tibial one. Mutations in GNRH1 have been shown to be related to 

ischemic heart disease, which shows a seasonal pattern (Bhatia et al. 2017; Schooling and Ng 

2019). Interestingly, leptin (LEP), a hormone involved in seasonal food-seeking behaviour, 
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thermoregulation (Fischer et al. 2020), and obesity (Srivastava and Krishna 2007; Cahill et al. 

2013), was altered only in winter in three tissues: adipose visceral, nerve, and blood (Fig. S10). 

Hormone genes were found robustly expressed not only in the tissues where they are seasonal 

but in several tissues. The tissue in which the largest number of seasonal hormone genes were 

robustly expressed (median TPM ≥ 5) was the hypothalamus (19 genes, Fig. S11). Pituitary was 

also among the tissues with a large number of seasonal hormones (11), together with testis (13) 

and frontal cortex (12). 

 

Seasonal changes in brain cytoarchitecture 

Various studies have shown seasonal histological variation in different brain regions from 

several mammals, including anterior cingulate cortex in shrews (Lázaro et al. 2018), dendritic 

spines in amygdala in response to short days (i.e. in fall) in white-footed mice (Walton et al. 

2012) and the volume of suprachiasmatic nucleus in humans (Hofman and Swaab 1992). To 

investigate potential seasonal changes in human brain’s cytoarchitecture, we used gene 

expression profiles of cell-type specific markers for a variety of brain cell types (McKenzie et 

al. 2018): astrocytes, neurons, oligodendrocytes, microglia, and endothelial cells (Table S16). 

We found that astrocyte markers significantly increased their expression in fall and decreased 

in summer (Fig. 6; see Methods for statistical analysis). In particular, we observed significant 

increased expression of astrocyte markers in the hypothalamus and frontal cortex in the fall, and 

a decrease in the cerebellum and frontal cortex in the summer. Oligodendrocyte markers, in 

contrast, tended to decrease expression in the fall, in particular in nucleus accumbens and 

anterior cingulate cortex (Fig. 6). In winter, all oligodendrocyte markers increased their 

expression in nucleus accumbens. Moreover, we observed a significant increase in the 

expression of neuronal markers in winter, particularly in the hypothalamus and spinal cord, and 

a global decrease in the fall (Fig. 6). These results are thus consistent with previous histological 

studies in humans and other mammals (Hofman and Swaab 1992; Walton et al. 2012; Lázaro et 

al. 2018) that showed that the relative volume or cytoarchitecture of astrocytes, 

oligodendrocytes and neurons change with the season in a subregion-specific manner. 

 

Discussion 

By leveraging the rich transcriptome data produced by the GTEx project, we have investigated 

the impact of the circadian and circannual cycles in the human transcriptome across multiple 
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tissues. Ruben et al. (Ruben et al. 2018) has also recently used the GTEx data to investigate 

circadian variation in gene expression; however, in that case, the time of death was inferred 

from the expression of known circadian genes. Here, in contrast, we use the actual time of death 

reported in the GTEx metadata. Even though GTEx captures a single snapshot of the tissue 

transcriptomes of the donors at the time of death, since this time is approximately uniformly 

distributed throughout the day and the year, the aggregation of the data snapshots across 

individuals produces trajectories that allowed us to investigate temporal variations in gene 

expression. Moreover, although there is an impact of the death of the individual in the 

transcriptome, which is tissue-specific, this can be properly controlled for (Ferreira et al. 2018). 

The GTEx medatada, however, by making accessible only the time of the day and the season of 

death of the donors makes this investigation challenging. We have addressed this limitation by 

discretizing the continuous circadian variation into day versus night, and the circannual 

variation into seasons. This impacts the way in which we specifically formulate the questions, 

i.e. we do not refer to the variations reported here as circadian and circannual, but as day-night 

and seasonal, respectively, and restricts the statistical methods that can be employed to analyze 

the data. Thus, while ANOVA would appear the natural approach to identify seasonal changes 

in gene expression, the large variation in the date of death within each season decreases in 

practice the power to detect significant changes in gene expression; therefore, we opted for 

focusing on a method that allows leveraging the unknown date of death and that could be more 

directly compared with that employed for the day-night analyses (i.e. performing pairwise 

differential gene expression analyses). Despite these and other caveats (e.g. effect of artificial 

lights, ethnic origins, date of the RNA extractions, etc.), our approach was able to properly 

capture at least part of the real circadian and circannual transcriptional variation, since we have 

been able to recapitulate previous findings regarding day-night variation. 

We performed an initial comparison of both types of variation within and among tissues using 

relaxed cut-offs, finding that the effect of day-night variation in gene expression was 

comparable to that of the seasonal cycle, but affecting different genes and tissues. Remarkably, 

day-night variation in gene expression was more prominent in liver, lung, heart, and upper 

digestive tract, reflecting the involvement of the organs of the thoracic cavity in circadian 

processes (Nosal et al. 2020), while seasonal variation had the strongest effect in brain 

subregions and testis, mirroring the role of the brain-gonadal hormonal axis in regulating the 

physiological responses to seasonal variation (Kang et al. 2020). Moreover, we showed that the 
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effect of day-night and/or seasonal variation for most genes was highly tissue-specific. In the 

case of the day-night genes, this is in agreement with the hypothesis that one molecular clock 

program is present in all tissues, but the circadian processes triggered downstream are highly 

tissue-specific (Scheiermann et al. 2013). However, subsets of genes showed highly consistent 

up- or down-regulation during day or night or in specific seasons across multiple tissues, which 

we defined as high-confidence day-night or seasonal genes, respectively. 

 

Importantly, the day-night high-confidence set was highly enriched for genes with a known 

circadian pattern and included most known core clock genes. In addition, various metabolic 

functions were enriched among day or night genes, in line with multiple reports (e.g. (Neufeld-

Cohen et al. 2016; Hatori et al. 2012)). The direction of the change in gene expression for the 

core clock genes and other high-confidence day-night genes was highly consistent among 

tissues, but we found two cases in which changes in gene expression occurred unexpectedly in 

opposite directions between brain and non-brain tissues. This is the case of NR1D2 and RGS1, 

in which the day-night changes in gene expression occurred in the opposite direction in the brain 

than in tissues from the rest of the body. This suggests that the cellular environment could 

modulate the interpretation of the core clock signals, and produce different (or even opposite) 

outputs in different tissues in response to the same environmental cues. 

 

Among all core clock genes, ARNTL and NPAS2 had a differential day-night transcriptional 

behaviour across the largest number of tissues. In the circadian negative feed-back loop, ARNTL 

forms an heterodimer with either NPAS2 or its paralog CLOCK, positively regulating the 

circadian pattern (Scheiermann et al. 2013). Interestingly, we found that NPAS2 shows day-

night gene expression differences in a much larger number of tissues than CLOCK (30 vs. 12 

tissues), suggesting a more relevant role for NPAS2 in the circadian modulation across tissues 

in human. Similarly, NPAS2 was detected as cycling in 23 baboon tissues compared to eight 

tissues for CLOCK (Mure et al. 2018). In contrast, mouse Clock and Npas2 cycled in a similar 

number of tissues (eight and seven out of 12 tested tissues, respectively) (Li et al. 2018). 

Whether this difference is a lineage-specific divergence between primates and rodents, or it may 

be related to distinct diurnal-nocturnal habits (diurnal for human and baboon, nocturnal for 

mouse) will require investigation in other mammalian groups. In the latter scenario, however, 
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the differential use of NPAS2 and CLOCK could contribute to establishing the opposite 

circadian patterns across tissues that we observed between primates and mouse. 

 

At the seasonal level, our results highlight the importance of the brain-gonadal hormonal axis. 

Many physiological and behavioral changes across seasons such as breeding, mating, molting, 

foraging, and hibernation (Walton et al. 2011; Dardente et al. 2014; Ebling 2014; Watts 2020) 

are known to be regulated by the endocrine system in mammals and birds, especially by the 

brain-thyroid and brain-gonadal axes, and can elicit different reactions depending on the 

receiving tissues. This is reflected in the tissue-specific seasonal variation in gene expression 

that we have uncovered, which affects prominently testis and many brain regions. When 

investigating specifically the expression patterns of genes involved in functions related to the 

hormonal axis, we found these to be predominantly seasonal in core tissues from the endocrine 

system, such as hypothalamus and pituitary. Surprisingly, however, we found that hormone 

genes are overall depleted for seasonal variation. 

 

Infectious diseases are well-known to have a seasonal pattern, as illustrated, for instance, by the 

current COVID-19 pandemics or the yearly peaks of flu infections. Consistently, we have 

observed a significant enrichment for immune related functions among both the winter high-

confidence gene set (Fig. 5B) as well as the strongly seasonal genes (Fig. 5C). Moreover, we 

have found a significant number of genes in various COVID-19 related pathways and associated 

gene sets to be strongly seasonal in a tissue specific manner. In particular, these included genes 

that change expression in response to SARS-CoV-2 infection and genes predicted to be 

functionally related to ACE2, an endogenous membrane protein that mediates SARS-CoV-2 

infection. These genes are likely not specific to SARS-CoV-2 infection, and their strong 

seasonality revealed here could shed light on the molecular mechanisms underlying the 

seasonality of viral infections in general. 

 

Finally, by evaluating cell type-specific markers, our results suggest a substantial seasonal 

remodeling of the cytoarchitecture of certain human brain areas. We found a general increase 

of astrocytes in fall and winter and a decrease in summer across many subregions. These 

changes in the expression of cell type markers, similar to the volumetric changes described in 

other mammals, were subregion-specific. Interestingly, we found a reduction of neuronal 
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markers in the anterior cingulate cortex in fall, a subregion whose neuronal soma and dendrite 

size shrank in the cold season in shrews (Lázaro et al. 2018). Whether or not these and other 

putative cytoarchitectural changes are conserved in other mammals, which are their functional 

implications, and how they might contribute to the seasonal patterns of some psychiatric and 

brain diseases (Philpot et al. 1989; Joseph-Vanderpool et al. 1991; Owens and McGorry 2003; 

Walton et al. 2012; Lim et al. 2017) need to be further investigated. 

 

In summary, our work expands our understanding of the transcriptional impact of the 

physiological changes associated with the day-night cycle and, for the first time across multiple 

human tissues, of the seasonal cycle. Moreover, these results constitute a large resource for the 

community to further investigate the impact of day-night and seasonal variation in the human 

transcriptome. 

 

Methods 

RNA-seq datasets 

The RNA-seq data was generated, mapped and quantified by the GTEx consortium (GTEx v8) 

(GTEx Consortium 2020). Tissues with less than 100 donors were discarded from the analyses 

(Kidney - Medulla, Kidney - Cortex, Cervix - Ectocervix, Fallopian Tube, Cervix - Endocervix, 

and Bladder) as well as two cell lines (Cells - EBV-transformed lymphocytes and Cells - 

Cultured fibroblasts). For the Whole Blood tissue, all pre-mortem samples were discarded from 

the analysis for homogeneity with the other tissues. After filtering for samples with available 

covariates for the differential analyses, we employed 16,151 samples from up to 46 tissues for 

932 individuals. GTEx individuals are biased toward old males (median age = 55 years, 67% 

male). GENCODE v26 (Harrow et al. 2012) was used for GTEx as well as the annotation for 

the protein-coding genes. 

 

MetaCycle 

The function meta2d from the R package MetaCycle (v.1.2) was runned for each 46 tissues 

separately using the default parameters. Genes with a median TPM < 1 per tissue were filtered 

out and the time of death of the individuals were converted into hours. 

 

Classification of the time of death as day or night and by season 
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Circadian patterns had been previously analyzed using the GTEx data, but inferring the time of 

death from the expression of marker genes (Ruben et al. 2018; Anafi et al. 2017). Here we use, 

instead, the actual time of death as provided by the GTEx consortium. Using this time of death, 

individuals had been classified between dead during the day or dead during the night if their 

time of death was falling into the following intervals [08:00-17:00) and [21:00-05:00) 

respectively (Fig. 1A). Other times of death have been discarded for the day-night analysis to 

avoid taking into account any RNA-seq samples coming from people where the day status was 

unsure, i.e. twilight. Using this classification, 351, 315 and 266 individuals have been classified 

as day, night and twilight respectively, of which only the 666 day and night individuals (11,527 

samples) were used for differential expression for the day-night cycle. The time corresponding 

to day and night was manually curated from the Boston (Massachusetts) sunrise and sunset 

intervals during the year (using https://www.timeanddate.com/sun/usa/boston). The season of 

death was provided by the GTEx consortium with 190, 221, 282, and 239 donors that died in 

spring, summer, fall, and winter respectively. Note that for the season, no people were discarded 

regarding the time of death. We also provide the information about the month in which the RNA 

was extracted for each season of death (Table S17). 

 

Differential gene expression between day and night 

Differential expression between day and night was performed separately on the 46 tissues using 

samples from the 666 individuals classified as day or night, ranging from 98 samples (Uterus) 

to 560 samples (Muscle - Skeletal). Genes were filtered per tissue, removing all genes with a 

median TPM < 1 over the day and night samples, leading to 18,022 protein-coding genes 

expressed in at least one tissue (31,530 genes including all biotypes). The analyses were run 

using R v3.6.1 (Team 2019), the TMM normalisation method from edgeR (with the 

calcNormFactors function) (Robinson et al. 2010; McCarthy et al. 2012), and the voom-limma 

pipeline (with the voom, lmFit, and eBayes functions) (Law et al. 2014; Ritchie et al. 2015) 

using default parameters. The significance of the time of death was assessed correcting for the 

following covariates: sex if the tissue was not sex-specific; age; body mass index (BMI); the 

postmortem interval; the season of death. All genes with an associate P ≤ 0.05 and an absolute 

log2 fold-change ≥ 0.1 were considered as day-night. Results, including all biotypes, are 

available in Supplementary Dataset 1 (including p-values, adjusted p-values and log2 fold-

changes). The number of differentially expressed genes across experiments was not affected by 
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the number of samples (Fig. S13A) and no effect was observed regarding the ratio of day/night 

samples and the number of differentially expressed genes between day and night (Fig. S13B). 

The volcano plots of the analyses for each tissue are available in Supplementary Dataset 3. 

 

Season-specific gene expression  

Differential expression between seasons was performed separately on the 46 tissues using 

samples from the 932 individuals, ranging from 139 samples (Brain - Substantia nigra) to 789 

samples (Muscle - Skeletal). Genes were filtered as described in the section ‘Differential 

expression between day and night’. This resulted in a set of 18,018 protein-coding genes 

expressed in at least one tissue (31,517 genes including all biotypes). The effect of each season 

was assessed by comparing one season against all the others, leading to four differential 

expression analyses, one for each season (see ‘Differential expression between day and night’ 

for details). This approach was taken to make the analyses more consistent with that of day-

night variation (i.e. using the exact same method), and to minimize the impact of the fact that 

only the season, but not the actual day, of death is known in GTEx (i.e. two individuals could 

have died one day apart but in two different seasons, or 90 days apart but still within the same 

season). The covariates used were the following: time of death classified as: day, night or 

twilight; sex if the tissue was not sex-specific; age; BMI; postmortem interval. All genes with 

an associate P ≤ 0.05 and an absolute log2 fold-change ≥ 0.1 were considered as seasonal. 

Results, including all biotypes, are available in Supplementary Dataset 2 (including p-values, 

adjusted p-values and log2 fold-changes). The number of seasonal genes was not related to the 

number of samples per the tissue (Fig. S14A) and no relation was observed between the 

proportion of samples available for a given season over the total and the ratio of up- and down-

regulated genes. (Fig. S14B). The volcano plots of the analyses for each tissue-season pair are 

available in Supplementary Dataset 3. 

 

Testing tissues for day or night 

To test if day-night genes in two tissues or more are more prone to be either day or night, we 

computed for each gene the ratio of day tissues over the total number of tissues for this gene. 

Genes will be considered to have a "consistent" ratio if their ratio is < 0.25, mainly night tissues, 

or > 0.75, mainly day tissues. For each number of tissues, from two to ten tissues, we calculate 

the percentage of genes that are considered to have a consistent ratio and the expected 
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probability to be in the consistent ratio distribution following a binomial distribution with a 

probability of success (day tissue) equal to 0.5 and a number of draws equal to the number of 

genes that are day-night for this number of tissues. We then performed a binomial test for each 

number of tissues. The results are available at Table S4. 

 

Definition of the high-confidence gene sets 

To define the five high-confidence gene sets (one for day-night genes and four for the seasonal 

genes), we perform three binomial tests per gene: i) using all tissues, ii) using only non-brain 

tissues, and iii) using only brain regions. The number of draws was the number of tissues in 

which the gene was day-night or seasonal and the number of successes the number of tissues in 

which the gene was day or up. Only two of the tested genes have divergent behavior between 

non-brain and brain tissues: NR1D2 (11 night non-brain tissues and 9 day brain tissues) and 

RGS1 (6 day non-brain tissues and 6 night brain tissues). No divergent behavior was observed 

for the seasonal genes. 

 

Comparison of human, baboon and mouse core clock genes 

The baboon results were downloaded from Mure et al. (Mure et al. 2018). We extracted the 

significant genes using the same threshold as Mure et al. (P ≤ 0.05). Common tissues between 

GTEx and baboon have been manually curated (Table S6). The mouse circadian genes were 

downloaded from the CirGRDB database (Li et al. 2018), which include genes already defined 

as circadian, and we only selected the genes found by RNA-seq and from the publication with 

the PubMed ID 25349387, corresponding to the publication by Zhang et al. (Zhang et al. 2014). 

Common tissues between GTEx and the mouse tissues list had been manually curated (Table 

S7). This dataset was used to compute the number of occurrences of Clock and Npas2 in mouse 

tissues. 

 

To perform the comparison of the core clock genes in human vs baboon, we extracted the core 

clock genes in both species in the 20 common tissues between the GTEx and the baboons’ 

tissue. From this, we analyzed only genes that were significant in both species, i.e. we discarded 

the genes found significant in either baboon or human but not in both. The same analysis was 

done to compare human and mouse. 
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Functional enrichment analyses 

The high-confidence sets for day-night and seasonal genes, separated by day/up- and 

night/down-regulated genes, were used as input for the enrichment analysis tool Enrichr (Chen 

et al. 2013; Kuleshov et al. 2016). Results for GO Biological Process were retrieved and are 

provided fully in Tables S9 (day-night) and S14 (seasons). To simplify visualizations in Fig. 

3D and 5B,C, we disregarded GO terms with fewer than 10 total genes. In addition, we removed 

redundant categories by excluding those terms sharing at least 80% of genes with a category 

with a lower p-value. For COVID-19 related gene sets, gene sets with an adjusted p-value 

greater than 0.05 were discarded. 

 

Circadian and hormone gene sets 

The protein sequences, along with the IDs, of proteins annotated as circadian, either 

experimentally or by orthology, in human were downloaded from the Circadian Gene DataBase 

website (http://cgdb.biocuckoo.org/) (Li et al. 2017b) the 01/26/2021. The correspondence 

between the Ensembl protein ID and the UniProtKB ID with the Ensembl gene ID was 

downloaded using BioMart from Ensembl (Smedley et al. 2015). The list of hormone genes was 

downloaded from Mirabeau et al. (Mirabeau et al. 2007). The Ensembl peptide IDs were linked 

to their respective Ensembl gene ID using R and the biomaRt package (Durinck et al. 2005, 

2009). The gene IDs for hormones with deprecated peptide IDs were retrieved manually using 

the Ensembl website (http://www.ensembl.org) and the ones that were obscelets were removed. 

Two hormone genes were added manually: GH1 and LEP. The list is available at Table S15. 

 

Statistical assessment of cell-type specific marker changes across seasons 

For each cell type, we evaluated a fixed number of markers (Astrocyte: 10, Endothelial: 10, 

Microglia: 9, Neuron: 11, Oligodendrocytes: 10) from (McKenzie et al. 2018) (Table S16). We 

assessed the significance of the number of up- or down-regulated markers for each cell type in 

each specific region-season pair (each cell in Fig. 6) as well as for all regions together (top row 

in Fig. 6). For this purpose, we first counted the total number of instances in which markers for 

a given cell type are up and down-regulated across the entire set of region-season pairs 

(Astrocyte: 42 up, 36 down; Endothelial: 12 up, 20 down, Microglia, 9 up, 8 down; Neuron, 27 

up, 12 down; Oligodendrocytes, 18 up, 27 down). Then, we performed 1,000,000 

randomizations of the up and down instances across seasons and regions. We conservatively 
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allowed only up or down markers in a given region-season pair for each cell type, since this is 

what we have observed in the real data (i.e. no cell type markers showed contradictory patterns 

in any region-season pair). To calculate the p-value for each region-season pair we simply 

obtained the number of randomizations in which the number of up- or down-regulated markers 

was equal or higher than the tested region-season pair and divided it by one million. These p-

values were Bonferroni corrected for multiple testing (260 tests). To calculate the p-value across 

regions, we sum all up and down instances across regions, and again obtained the number of 

randomizations in which the number of up- or down-regulated markers was equal or higher than 

the sum across regions and divided it by one million. These p-values were also Bonferroni 

corrected for multiple testing (20 tests). 

 

Data access 

All GTEx open-access data are available on the GTEx Portal 

(https://gtexportal.org/home/datasets). All GTEx protected data are available via dbGaP 

(accession phs000424.v8). Access to the raw sequence data is now provided through the AnVIL 

platform (https://gtexportal.org/home/protectedDataAccess). 
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Main Figures 

 

 

 

Fig. 1: Day-night and seasonal classification of the GTEx samples. (A) Samples from GTEx 

were classified as either day or night depending on the time of death of the donor, respectively 

between 08:00 and 17:00 (351 individuals) and between 21:00 and 05:00 (315 individuals). (B) 

Samples from GTEx were assigned to the different seasons (spring, summer, fall and winter), 

according to the reported season of death of the donor. 
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Fig. 2: Distribution of the day-night genes in the GTEx tissues. (A) Number of genes found 

as day-night, i.e. genes differentially expressed between day and night (barplots; bottom x-axis), 

and log2 ratio between the number of genes up-regulated during the day vs the night (red dots; 

top x-axis) for each tissue. Tissues are sorted by the total number of day-night genes. (B) Yellow 

dots represent the number of tissues in which a given gene is classified as day-night (y-axis) vs 

the number of genes that are classified as day-night in that number of tissues (x-axis, log10 

scale). Gene names for core clock genes are shown next to the dot with the corresponding 

number of tissues in which they are identified as day-night. Black diamonds show the number 
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of high-confidence day-night genes per number of tissues (see Fig. S3 for further details). (C) 

Expression of ARNTL in the thyroid in GTEx samples at the time of death of the GTEx donors 

(in hours). The colors of the dots represent the classification of the individuals according to their 

time of death: during the day (yellow), during the night (blue), or during twilight (grey). The 

samples classified as twilight were discarded for the day-night analysis. The “circadian” curve 

was created using the geom_smooth function from ggplot2 in R with the ’loess’ method. 
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Fig. 3: Day/night differential expression of the core clock genes in human, baboon, and 

mouse. (A) Day/night differential expression of the 16 core clock genes in GTEx tissues. Cells 

in the matrix are colored according to the log2 fold-change obtained with the voom-limma 

pipeline, from yellow (day) to blue (night). Genes without significant effects were colored in 

grey. In addition, we labelled each gene (“Main gene time”) as day (night) if it was up-regulated 
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in more tissues during the day (night) than during the night (day). We labelled the tissues 

similarly (“Main tissue time”) depending on the number of genes that were up-regulated during 

the day (night) on that tissue. One gene, RORA, and one tissue, the aorta, were upregulated in 

the same number of times during the day and the night, and have not been labelled. Genes and 

tissues have been sorted according to i) their main time and ii) their number of significant 

effects. (B) Expression of NR1D2 in the artery - tibial (red) and in the brain - cortex (yellow) 

GTEx samples at the time of death of the GTEx donors (in hours). Curves were obtained from 

the Z-score of the expression TPMs using the geom smooth function from ggplot2 in R with the 

’loess’ method (C) Comparison of human and baboon (left) and human and mouse (right) 

orthologous core clock genes in common tissues. Only gene-tissue pairs that are significant for 

both compared species are shown. Cells are separated into two with i) on the bottom left, the 

day-night classification of the gene in the tissue in human, and ii) on the top right, the 

baboon/mouse phase obtained from Mure et al. (Mure et al. 2018) or Li et al. (Li et al. 2018), 

respectively. (D) Top 10 enriched Gene Ontology Biological Process annotations for day and 

night high-confidence genes separately. See Methods for details. 
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Fig. 4: Distribution of the seasonal genes in the GTEx tissues. (A) Number of unique genes 

found as seasonal (x-axis), i.e. genes differentially expressed in at least one season when 

compared to the others, per tissue (y-axis). The numbers in parentheses represent the percentage 

of unique seasonal genes in a given tissue over the number of expressed genes in that tissue. (B) 

Number of unique seasonal vs. day-night genes per tissue. Statistics from a Spearman’s 

correlation are shown. Tissue colors correspond to the GTEx color panel. (C) log2 ratio between 

the number of day-night genes vs seasonal genes for each tissue and season separately. The 

higher the log2 value, the more day-night genes compare to the number of seasonal genes. 

Tissues were clustered using Euclidean distance and the Ward’s method. 
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Fig. 5: Seasonal genes and associated functions. (A) Distribution of the number of tissues (x-

axis, log10 scale) in which genes were classified as seasonal (green: spring, red: summer, light 

blue: fall, dark blue: winter). The names of the genes found as seasonal in a large number of 

tissues for a given season are depicted and the font color corresponds to their respective season. 

Black diamonds show the number of high-confidence seasonal genes per number of tissues. (B) 

Enriched Gene Ontology biological process annotations for up and down high-confidence 

seasonal genes separately per season (green: spring, red: summer, light blue: fall, dark blue: 

winter). Top terms with a raw P < 0.005 are shown; see Methods for details. (C) Gene Ontology 

enrichment of Biological Processes of the set of 192 strongly seasonal genes as computed by 

Enrichr (Chen et al. 2013; Kuleshov et al. 2016). (D) Seasonal log2 fold-change of the five 

hormone-coding genes included in at least one high-confidence seasonal gene set. Genes 

without significant effects are colored in grey. 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2021.02.28.433266doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.28.433266
http://creativecommons.org/licenses/by-nc/4.0/


 

37 

 

 
Fig. 6: Seasonal variation in cell-type specific markers across human brain regions. 

Percentage of the marker genes down-regulated (blue) or up-regulated (red) for five brain cell 

types: astrocyte, endothelial, microglia, neuron, and oligodendrocytes, in brain subregions 

(depicted in the brain scheme above, downloaded and modified from the GTEx web portal). All 

significant markers for a cell type for a specific season in a subregion were differentially 

expressed in the same direction, over or under expressed. Markers without significant effects 

were colored in grey. P-values were obtained by randomizing the observed number of up- and 

down-regulated markers per cell type across regions and seasons conservatively allowing only 

up- or down-regulated makers for a given region-season combination (see Methods for details). 

*** P < 0.001, ** 0.001 ≤ P < 0.01, * 0.01 ≤ P < 0.05. 
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