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Abstract 

Background:  Despite significant progress in surgical treatment of hypoplastic left heart syndrome (HLHS), its mortal-
ity and morbidity are still high. Little is known about the molecular abnormalities of the syndrome. In this study, we 
aimed to probe into hub genes and key pathways in the progression of the syndrome.

Methods:  Differentially expressed genes (DEGs) were identified in left ventricle (LV) or right ventricle (RV) tissues 
between HLHS and controls using the GSE77798 dataset. Then, weighted gene co-expression network analysis 
(WGCNA) was performed and key modules were constructed for HLHS. Based on the genes in the key modules, 
protein–protein interaction networks were conducted, and hub genes and key pathways were screened. Finally, the 
GSE23959 dataset was used to validate hub genes between HLHS and controls.

Results:  We identified 88 and 41 DEGs in LV and RV tissues between HLHS and controls, respectively. DEGs in LV tis-
sues of HLHS were distinctly involved in heart development, apoptotic signaling pathway and ECM receptor interac-
tion. DEGs in RV tissues of HLHS were mainly enriched in BMP signaling pathway, regulation of cell development and 
regulation of blood pressure. A total of 16 co-expression network were constructed. Among them, black module 
(r = 0.79 and p value = 2e−04) and pink module (r = 0.84 and p value = 4e−05) had the most significant correla-
tion with HLHS, indicating that the two modules could be the most relevant for HLHS progression. We identified five 
hub genes in the black module (including Fbn1, Itga8, Itga11, Itgb5 and Thbs2), and five hub genes (including Cblb, 
Ccl2, Edn1, Itgb3 and Map2k1) in the pink module for HLHS. Their abnormal expression was verified in the GSE23959 
dataset.

Conclusions:  Our findings revealed hub genes and key pathways for HLHS through WGCNA, which could play key 
roles in the molecular mechanism of HLHS.

Keywords:  Hypoplastic left heart syndrome, Weighted gene co-expression network analysis, Protein–protein 
interaction network, Hub genes, Pathways
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Introduction
Hypoplastic left heart syndrome (HLHS) is a group of 
complex congenital heart malformations characterized 
by severe stenosis or atresia of the aortic valve and mitral 
valve, ascending aorta, and left ventricular dysplasia [7, 
12, 19]. It was first proposed by Noonan and Nadas [29]. 
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HLHS accounts for 1.4–4.1% of congenital cardiovas-
cular malformations, and the prevalence of live births is 
about 2:10,000–3:10,000 [16]. The dysplastic left ventri-
cle cannot provide adequate systemic circulation perfu-
sion and oxygen supply. Oxygenated blood bypasses the 
dysplastic left heart to supply the whole body through 
an atrial septal defect and an open arterial catheter, fol-
lowed by symptoms such as strenuous breastfeeding, dif-
ficulty breathing, rapid heartbeat, pulse weakness, dull 
skin or cyanosis, and severe heart failure. HLHS accounts 
for 25% of all babies who die of congenital heart dis-
eases. Without diagnosis and treatment, 95% of babies 
die within one month after birth [10]. The treatment of 
HLHS remains extremely challenging. Patients usually 
undertake aggressive palliative operations. Despite the 
diagnosis and treatment of the disease have made great 
progress since the first implementation of Norwood 
surgery in 1983, the morbidity and mortality of HLHS 
patients are still high [23].

The exact cause of HLHS is still unclear. Increasing 
evidence suggests that genetic pathology is involved in 
the progression of HLHS. Approximately 30% children 
with HLHS have genetic syndrome or other extracardiac 
abnormalities [27]. Various syndromes caused by chro-
mosomal abnormalities are also associated with HLHS, 
including Turner syndrome (X chromosome monomer), 
Edwards syndrome (Trisomy 18) and DiGeorge syn-
drome (22q11.21 deletion) [40]. It has been reported 
that several specific genes are related to HLHS such 
as HAND1, TBX5, FOXC2, GJA1, NKX2-5, NOTCH1, 
MYH6 and ERBB4 [6]. Theis et al. demonstrated that the 
compound heterozygous mutation of the allele NOTCH1 
is the basis of impaired cardiac development in patients 
with HLHS [37]. During human embryonic development, 
TAB2 is abundantly expressed in the endocardial pad, 
which plays an important role in the outflow tract and 
valve formation. TAB2 haploinsufficiency is also a risk 
factor for HLHS [6]. Therefore, genomics analysis is of 
great significance for the precise management and treat-
ment of HLHS.

Weighted correlation network analysis (WGCNA), as 
a systematic biological method, may describe the pattern 
of gene association between different samples [28]. It can 
be used to identify highly synergistically changing gene 
sets, and to identify potential biomarkers and therapeu-
tic targets based on the interconnectivity of gene sets and 
the association between gene sets and phenotypes. Com-
pared with only focusing on DEGs, WGCNA utilizes the 
information of thousands of genes with the most changes 
or all genes to identify gene sets of interest and to per-
form correlation analysis with phenotypes [5]. The advan-
tages of WGCNA are as follows: one is to make full use of 
information, and the other is to convert the association 

of thousands of genes and phenotypes into the associa-
tion of several gene sets and phenotypes, eliminating the 
problem of multiple hypothesis test correction [39]. In 
this study, we firstly constructed a co-expression network 
for HLHS. Furthermore, we identified hub genes and 
pathways for HLHS progression, which deserve further 
research in more basic experiments and clinical research.

Materials and methods
Data acquisition and preprocessing
The workflow of this study is shown in Fig. 1. Two HLHS 
mRNA expression profiling datasets were downloaded 
from the Gene Expression Omnibus (GEO; https://​www.​
ncbi.​nlm.​nih.​gov/​geo). GSE77798 RNA-seq expres-
sion profiling dataset was composed of 16 left ventricle 
(LV) and right ventricle (RV) from HLHS mice (n = 6) 
and littermate controls (n = 10). The dataset was based 
on GPL13112 Illumina HiSeq 2000 (Mus musculus) 
[22]. GSE23959 microarray expression profiling dataset 
included 6 RV samples from HLHS neonates and 10 LV 
and RV from controls on the GPL5188 [HuEx-1_0-st] 
Affymetrix Human Exon 1.0 ST Array [probe set (exon) 
version] platform. Quality control was achieved via array-
QualityMetrics package in R [18]. Robust multi-array 
average (RMA) background correction was performed 
on the raw expression data. The processed signals were 
transformed into log2, followed by quantile normaliza-
tion. The robust K-Nearest Neighbor (KNN) algorithm 
was executed to process missing values [14].

Differential expression analysis
Differentially expressed genes (DEGs) were screened 
between HLHS and control samples using Linear Models 
for Microarray Data (limma) package in R [33]. False dis-
covery rate (FDR) was calculated via Benjamini–Hoch-
berg method. log2|fold change (FC)|> 1 and FDR < 0.05 
were set as the threshold value.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were analyzed via Metascape 
online database (http://​metas​cape.​org/​gp/​index.​html) 
[42]. Metascape integrates more than 40 bioinformatics 
knowledge bases into a single user interface, which pro-
vides comprehensive gene list annotation and analysis 
resources.

WGCNA
WGCNA package in R was utilized to construct co-
expression network [20]. The gene co-expression similar-
ity matrix was composed of the absolute values of the 
correlation coefficients between genes. For continuous 
variables of genes, Pearson correlation coefficients were 
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used (the range of correlation coefficients is [0, 1]), and 
the correlation matrix was as follows: S = [Si,j] (i, j refers 
to the ith, jth gene). Soft threshold value was calculated 
through an exponential adjacency function, as follows: 
ai,j = power (Si, j, β) =|Si, j|β (ai,j is the adjacency function 
between the ith and jth genes; β refers to soft threshold 
value). To make the co-expression network in line with 
the characteristics of scale-free network, soft threshold 
value was screened under the threshold of R2 > 0.8. Then, 
correlation matrix S = [Si,j] was converted into adjacency 
matrix A = [Ai,j] by pickSoftThreshold function. The top-
ological overlap dissimilarity measure (TOM) was used 
to calculate the degree of correlation between genes, as 
follows: TOMIJ =

∑
u aiuauj+aij

min (ki, kj)+1−aij
 ( aij is [0, 1]). Gene 

modules were assigned based on the degree of connec-
tion between modules. Therefore, TOM was converted 
into dissimilarity degree, as follows: 
dissTOMij = 1 −  TOMij. Then, a hierarchical clustering 
tree diagram of genes was constructed and gene modules 
were assigned using dynamic cutting method. 

Afterwards, we calculated eigengene that refers to the 
first principal component of all gene expression level vec-
tors in the modules. Correlation between eigengene of 
each module and clinical traits including HLHS and heart 
region was analyzed.

PPI network
Interested genes were imported into STRING online 
database (version 11; http://​string-​db.​org/) [35]. Protein–
protein interactions were visualized using Cytoscape 
(version 3.8.0) [9].

External dataset validation
The expression patterns of hub genes between HLHS 
and controls were validated using an external GSE23959 
microarray expression profiling dataset.

Results
Identification of DEGs and pathways for LV and RV HLHS
To eliminate the changes in intensity caused by the exper-
imental technique, and to make the data of each sample 

Fig. 1  The workflow of this study: data acquisition, preprocessing, analysis and verification

http://string-db.org/
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and parallel experiment at the same level, GSE77798 
RNA-seq expression profiling data were pre-processed, 
including data filtering, normalization, logarithmization, 
and estimation of missing values. GSE77798 RNA-seq 
expression profiling was processed by quantile normali-
zation (Fig.  2A). Following normalization, under the 
threshold of FDR < 0.05 and log2|FC|> 1, we identified 
44 up-regulated and 44 down-regulated genes between 
LV HLHS and controls (Fig.  2B). Furthermore, 21 up-
regulated and 20 down-regulated genes were screened 
between RV HLHS and controls. KEGG enrichment 
analysis results showed that DEGs in LV HLHS were 
distinctly enriched in several key pathways including 
connective tissue development, BMP signaling path-
way, skeletal muscle contraction, intermediate filament-
based process, apoptotic signaling pathway, extracellular 
matrix (ECM)-receptor interaction, cellular component 
assemble, mechanical stimulus, regulation of ion trans-
port, organelle localization, response to hypoxia, antigen 
processing and presentation and cell adhesion molecules 
(CAMs) in Fig.  2C. Moreover, DEGs in RV HLHS were 
significantly involved in regulation of catalytic activity, 
extracellular matrix organization, BMP signaling path-
way, positive regulation of cell development, hematopoi-
etic progenitor cell differentiation, regulation of blood 
pressure and cell surface receptor signaling (Fig.  2D). 
GO enrichment analysis including biological process 
(BP), cellular component (CC) and molecular component 
(MF) was performed. As shown in Fig. 2E, DEGs in LV 
HLHS were most significantly enriched in regulation of 
ion transmembrane transport, extracellular matrix and 
actin binding. Furthermore, DEGs in RV HLHS were 
most significantly enriched in protein serine/threonine 
kinase signaling pathway, extracellular matrix and gly-
cosaminoglycan binding (Fig. 2F).

Construction of a co‑expression network and key modules 
for HLHS
As shown in Fig.  3A, there were no outlier samples. To 
ensure a scare free network, soft threshold value (β) was 
set as 8 (R2 = 0.8) in Fig. 3B. DEGs with similar expres-
sion patterns were assigned into modules by average link 
clustering and dynamic tree cutting methods (Fig.  3C). 
Finally, 16 co-expression modules were conducted for 
HLHS. The correlation results among the gene profile 
and the sample trait of HLHS and heart region were pre-
sented in Fig. 3D. The black module and pink module had 
the most significant correlation with HLHS (MEblack: 
r = 0.79 and p value = 2e−04; MEpink: r = 0.84 and p 
value = 4e−05) and heart region (MEblack: r = 0.73 and 
p value = 9e−04; MEpink: r = −0.70 and p value = 0.002) 
basing on the gene significance (GS) algorithm. Thus, the 
two modules were considered the most relevant for HLHS 

progression. There were 249 genes in the black module 
and 222 genes in the pink module. Figure 3E shows the 
relationships among different modules through an eigen-
gene adjacency heatmap. To further validate the roles of 
the two modules in HLHS progression, we carried out 
KEGG pathway enrichment and PPI network analyses. In 
Fig. 3F, the genes in the black module were most signifi-
cantly enriched in TGFβ in extracellular matrix, collagen 
metabolic process, ECM receptor interaction, PI3K-Akt 
pathway and dilated cardiomyopathy, especially extracel-
lular matrix organization. The genes in the extracellular 
matrix organization pathways were used to conduct a 
PPI network. We found that Fbn1 (degree = 13), Thbs2 
(degree = 11), Itga8 (degree = 9), Itga11 (degree = 9) and 
Itgb5 (degree = 9) could be hub genes for HLHS. For 
the genes in the pink module, heart development, heart 
valve morphogenesis and cardiac chamber development 
were the most significantly enriched pathways (Fig. 3G). 
Among the genes in the three pathways, five hub genes 
were identified including Map2k1 (degree = 8), Ccl2 
(degree = 7), Itgb3 (degree = 5), Edn1 (degree = 4) and 
Cblb (degree = 4) through PPI network.

Identification and validation of hub genes for HLHS
We examined the expression patterns of these hub 
genes in the black and pink modules from PPI networks 
between HLHS and controls in the GSE77798 dataset. 
For hub genes in the black module, compared to LV con-
trols, the expression of Fbn1, Itga11 and Itgb5 were sig-
nificantly higher in RV controls, LV HLHS and RV HLHS 
(all p values < 0.05) in the GSE77798 dataset (Fig.  4A). 
Furthermore, Itga8 and Thbs2 had higher expression lev-
els in LV HLHS and RV HLHS than in LV controls (all 
p values < 0.05). For hub genes in the pink module, com-
pared to LV controls, the expression Cblb was distinctly 
higher in RV HLHS (p value < 0.05). Ccl2 had a signifi-
cantly higher expression in LV HLHS compared to LV 
control (p value < 0.05). In comparison to LV controls, the 
expression of Itgb3 was significantly higher in LV HLHS 
(p value < 0.05). However, its expression was distinctly 
lower in RV controls and RV HLHS compared to LV con-
trols (both p value < 0.05). Edn1 and Map2k1 exhibited 
higher expression levels in LV and RV HLHS than in LV 
controls (all p values < 0.05).

After normalization (Fig. 4B), the expression patterns of 
these hub genes were further validated in the GSE23959 
dataset. Compared to LV controls, the expression of 
Fbn1, Itga8, Itga11 and Itgb5 had higher expression lev-
els in RV controls and RV HLHS (all p values < 0.05) in 
Fig. 4C. Furthermore, Thbs2 expression was significantly 
higher in RV HLHS in comparison to LV controls (p 
value < 0.05). Compared with LV controls, the expres-
sion of Cblb and Edn1 in RV HLHS (both p values < 0.05). 
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Fig. 2  Identification of DEGs and pathways for LV and RV HLHS. A Data normalization. Before normalization (left), after normalization (right) and 
histogram of data (bottom). B DEGs between LV/RV and controls. Red represents up-regulation and green represents down-regulation. C KEGG 
pathway enrichment map of DEGs in LV HLHS. D KEGG pathway enrichment map of DEGs in RV HLHS. E GO enrichment analysis results of DEGs in 
LV HLHS. F GO enrichment analysis results of DEGs in RV HLHS. The size of the circle is proportional to the number of genes enriched. The shade of 
the circle color represents adjusted p value
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Fig. 3  Construction of a co-expression network and key modules for HLHS. A Cluster dendrogram. B Analysis of the scale-free topology model 
fit index and mean connectivity for different soft threshold values. The horizontal axis is the soft threshold (power), and the vertical axis is the 
evaluation parameter of the scale-free network (left) or mean connectivity (right). C Gene dendrogram via average linkage hierarchical clustering. 
Different colors exhibit the module assignment through the dynamic tree cutting. D Heat maps showing the module-trait relationships. Each cell 
contains correlation coefficient and p value. Red indicates positive correlation and blue indicates negative correlation. E Eigengene adjacency 
heatmap. Each row and each column respectively correspond to one module eigengene. Green indicates low adjacency and red indicates high 
adjacency. The diagonal and red rectangle represents one meta-module. F, G KEGG pathway enrichment map and PPI network for the black and 
pink modules. For PPI network, the color shade of nodes is proportional to degree
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Itgb3 had lower expression levels both in RV controls 
and RV HLHS in comparison to LV controls (all p val-
ues < 0.05). Moreover, Map2k1 had a lower expression 
level in RV HLHS than in LV controls (p value < 0.05). 
KEGG pathway enrichment analysis of all DEGs was pre-
sented using the GSE23959 dataset. As shown in Fig. 4D, 
LV DEGs were most significantly enriched in the heart 
development and extracellular structure organization. 
Additionally, cell–matrix adhesion and extracellular 

structure organization were the most significant path-
ways for RV DEGs (Fig. 4E).

Discussion
HLHS is characterized by LV hypoplasia and increased 
biomechanical pressure on RV by single ventricular 
physiology [32]. By analyzing HLHS gene RNA-seq 
profile data, we obtained 14,889 genes for HLHS. The 
expression profiles of these genes were used as data 
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sources to perform WGCNA on HLHS and a total of 
16 co-expressed gene modules were identified in this 
study. Among them, black module and pink module were 
the two modules most relevant to HLHS. Based on the 
genes in these two modules, we constructed PPI net-
works. Finally, 10 hub genes were confirmed for HLHS, 
which were differentially expressed in LV and RV tis-
sues between controls and HLHS. By verifying these hub 
genes in the HLHS expression profile data of an inde-
pendent cohort, we found that most of the genes were 
consistent in the HLHS cohort of different data sources, 
indicating that our analysis method was accurate and 
reproducible.

We identified five hub genes for HLHS in the black 
module, including Fbn1, Itga8, Itga11, Itgb5 and Thbs2. 
Fbn1 (Fibrillin-1) has been found to be associated with 
heart development [26]. Its mutation could increase 
genetic susceptibility to thoracic aortic aneurysms [15]. 
Furthermore, its mutation leads to Marfan syndrome 
(MFS) that is the most common hereditary connec-
tive tissue disease [31]. In this study, Fbn1 had distinctly 
higher expression in LV/RV HLHS compared to controls. 
Furthermore, a significant difference in Fbn1 expression 
was detected between LV and RV for control mice and 
neonates. Itga8 (Integrin Subunit Alpha 8) inhibits NFκB 
and JAK-STAT signaling and cardiac injury in myocar-
dium without stress [3]. Itga8 expression was significantly 
higher in LV/RV HLHS in comparison to controls both 
in the GSE77798 and GSE23959 datasets. Itga11 (Integ-
rin Subunit Alpha-11) expression has been detected to 
be increased in methylglyoxal-induced collagen-treated 
human cardiac fibroblasts and streptozotocin-treated 
Sprague–Dawley rat cardiac fibroblasts, which may pro-
mote the formation of pre-fibrotic fibroblasts and fibrotic 
stroma in diabetic cardiomyopathy [36]. Itgb5 (Integrin 
Subunit Beta 5) has been identified to be in significant 
correlation with coronary artery disease and age-depend-
ent organ fibrosis [4, 38]. Thbs2 (Thrombospondin 2) 
mediates cell–matrix interactions, vascular integrity and 
thrombosis [13]. In our study, its expression was lower in 
LV HLHS than controls, which was higher in RV HLHS 
compared ton controls.

Five hub genes including Cblb, Ccl2, Edn1, Itgb3 and 
Map2k1 were screened for HLHS in the pink module. 
Cblb (Casitas B-cell lymphoma-B) is lowly expressed in 
plaques for human atherosclerosis, thereby leading to 
CD8+ T cell-induced macrophage death and acceler-
ating atherosclerosis [34]. Our findings revealed that 
Cblb expression was significantly down-regulated in 
RV HLHS not LV HLHS in comparison to controls. 
It has been reported that targeting Ccl2 (C–C Motif 
Chemokine Ligand 2) could ameliorate atherosclero-
sis [41]. Moreover, Dectin-2-mediated Ccl2 in resident 

tissue macrophages can facilitate cardiac arteritis [25]. 
In mice, Ccl2 expression was up-regulated in LV HLHS 
than controls. However, no significant difference in Ccl2 
expression was detected between HLHS and controls. 
Edn1 (Endothelin 1) genetic locus is correlated to spon-
taneous coronary artery dissection [1]. It was highly 
expressed in LV/RV HLHS compared to controls in mice, 
and was highly expressed in RV HLHS than control neo-
nates. Itgb3 (Integrin Subunit Beta 3) is related to myo-
cardial infarction risk [21]. Map2k1 (Mitogen-Activated 
Protein Kinase Kinase 1) mutation is often in association 
with the clinical phenotype of the cardiovascular system 
skin syndrome [30]. Our study found that Map2k1 was 
highly expressed in LV HLHS and lowly expressed in RV 
HLHS compared to controls in mice. Furthermore, its 
low expression was found in human RV HLHS in com-
parison to controls.

Complex life phenomena are the result of the interac-
tion of a large number of biological components. Biologi-
cal research has shifted from collecting gene and protein 
information to systematically using this information 
to clarify the synergy between them. In this study, we 
tried to probe into the molecular mechanism of HLHS 
through functional enrichment analysis of DEGs-related 
HLHS. DEGs in LV HLHS were distinctly involved in 
heart development, apoptotic signaling pathway and 
ECM receptor interaction. Abnormally expressed genes 
related to heart development could contribute to the pro-
gression of HLHS. Furthermore, imbalance of apoptotic 
signaling pathway in cardiomyocytes may be an impor-
tant factor of HLHS. As a previous study, RV tissues in 
HLHS exhibit immature ECM and increased cardio-
myocyte apoptosis [8]. Thus, the roles of these DEGs in 
HLHS need further exploration. DEGs in RV HLHS were 
mainly enriched in BMP signaling pathway, regulation 
of cell development and regulation of blood pressure. 
Dysregulation of the BMP pathway is the basis of many 
diseases of different organ systems in humans [24]. As a 
previous study, changes in gene expression in the BMP 
pathway has been found in RV tissues for neonates with 
HLHS [32]. Cardiomyocytes from neonates with HLHS 
exhibit multiple expression and function differences [17], 
which could be mediated by a variety of DEGs at a tran-
scriptional level [11]. Our study found that DEGs in RV 
HLHS were involved in the regulation of blood pressure, 
as previous studies [2].

Facing the increasing amount of high-throughput data, 
it is a difficult problem about how to effectively extract 
useful information to obtain the regulatory relationship 
between genes in the research of systems biology. The 
regulatory relationship between genes has spatiotempo-
ral specificity. In different organs, different physiological 
conditions and pathological states, and at different time 



Page 9 of 10Liu et al. BMC Cardiovasc Disord          (2021) 21:300 	

points, this regulatory relationship will change accord-
ingly. It is these changes that determine cell prolifera-
tion, differentiation, as well as occurrence, development 
of HLHS. The modularity of the biological network is 
the result of living organisms to achieve specific biologi-
cal functions. Modularity provides us with a simple and 
effective method to understand the regulatory relation-
ship between genes, which is an indispensable method 
in the research of systems biology. This study is the first 
to analyze HLHS data by WGCNA. Our results showed 
that WGCNA can discover biologically meaningful 
gene modules, and the hub genes related to the clinical 
information found are consistent with literature reports, 
which also proves the accuracy and effectiveness of 
WGCNA of gene expression data. Further excavation of 
information on gene modules will help us better under-
stand the role and significance of hub genes, key signaling 
pathways, as well as the regulatory mechanisms between 
genes on the development of HLHS.

Conclusion
In this study, we identified hub genes and key pathways 
for HLHS via WGCNA. These findings showed that these 
hub genes could play an important role in HLHS and car-
diovascular diseases, which provided important clues for 
further revealing the molecular mechanism of HLHS.
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