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Abstract

Background: Due to the fact that pulmonary tuberculosis (PTB) is a highly infectious respiratory disease
characterized by high herd susceptibility and hard to be treated, this study aimed to search novel effective
biomarkers to improve the prognosis and treatment of PTB patients.

Methods: Firstly, bioinformatics analysis was performed to identify PTB-related differentially expressed genes (DEGs)
from GEO database, which were then subjected to GO annotation and KEGG pathway enrichment analysis to
initially describe their functions. Afterwards, clustering analysis was conducted to identify PTB-related gene clusters
and relevant PPI networks were established using the STRING database.

Results: Based on the further differential and clustering analyses, 10 DEGs decreased during PTB development were
identified and considered as candidate hub genes. Besides, we retrospectively analyzed some relevant studies and
found that 7 genes (CCL20, PTGS2, ICAM1, TIMP1, MMP9, CXCL8 and IL6) presented an intimate correlation with
PTB development and had the potential serving as biomarkers.

Conclusions: Overall, this study provides a theoretical basis for research on novel biomarkers of PTB, and helps to
estimate PTB prognosis as well as probe into targeted molecular treatment.
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Background
Tuberculosis (TB) is a kind of chronic infectious disease
induced by Mycobacterium tuberculosis (MTB) with a
relatively high rate of morbidity and mortality, and it has
developed as a threatening public health issue globally
(www.who.int/tb/publications/global_report/en/). Accord-
ing to the statistics reported by the World Health
Organization in 2019, there were approximately 10 million
newly diagnosed TB cases and about 1.4 million deaths
worldwide (including HIV-positive people), and the top

death toll was observed in low- and middle-income coun-
tries (http://apps.who.int/iris). Pulmonary tuberculous
(PTB) is the most common TB form [1], and the preven-
tion of PTB-related death can be greatly achieved via early
effective diagnosis [2]. Therefore, mining potential bio-
markers associated with PTB occurrence and development
is vital for PTB early diagnosis, prognosis assessment and
individualized treatment.
Clinically, disease-related biomarkers that are able to

predict possible responses before the start of treatment
or monitor follow-up therapeutic responses are crucial
for PTB treatment, as they can potentially identify the
patients with a big bacterial load and/or enhanced in-
flammatory response, which allows doctors to provide
more intensive surveillance and effective therapeutic
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strategies of a long period [3]. As an alternative of sputum
examination, serum-based biomarkers have attracted much
attention in recent years. Unlike sputum, serum is relatively
easy to be collected and it remains the available source of
biomarkers during treatment. Besides, serum-derived in-
flammatory and infectious markers are quantified, and mul-
tiple biomarkers can be combined into a predictive
biomarker signature, which can greatly increase the predict-
ive accuracy [4–7]. Recently, some biomarkers have been
verified to be implicated in PTB occurrence and develop-
ment, and can be used for PTB prognosis in clinic. For in-
stance, Klassert TE et al. [8] found that serum MASP1 was
significantly increased in PTB patients thus affecting the
lectin pathway complement activity in vitro, and it could be
involved in PTB occurrence under the MTB pathogenesis.
In addition, Yuzo Suzuki et al. [9] also discovered elevated
sCD206 in serum of PTB patients, which presented a close
relationship with prognosis and had been recognized as a
potential biomarker. Nevertheless, there is still a need for
effective biomarkers related to PTB development [2], which
is of great significance for PTB control globally.
This study applied bioinformatics analysis on the gene

expression profiles of PTB in GEO database and identi-
fied PTB-related hub genes via clustering analysis and
PPI networks. In the meantime, these hub genes were
analyzed for their functions in as well as associations
with PTB occurrence and development, which in turn
helps to exploit the potential genes valuable for PTB
treatment and prognosis estimation.

Methods
Data collection
Expression matrix relevant to PTB was accessed from
the GEO database. The enrolled expression microarray
was in accordance with the criterion that healthy con-
trols, TB samples and post-treatment samples (n ≥ 30)
shall be included. GSE54992 microarray was eventually
screened for this study, comprising 39 samples in total
classified as HC (healthy controls, n = 6), LTBI (latent
tuberculosis infection, n = 6), TB/TB0 (tuberculosis/ 0
month after initiation of anti-TB chemotherapy, n = 9),
TB3 (3 months after initiation of anti-TB chemotherapy,
n = 9) and TB6 (6 months after initiation of anti-TB
chemotherapy, n = 9).

Data processing
Firstly, the expression data of the GSE54992 microarray
were treated by the KNN algorithm of R language and
then normalized. The “limma” package was used to per-
form differential analysis on the normalized data to iden-
tify the differentially expressed genes (DEGs) in the
cases of TB vs LTBI and TB vs HC, with the threshold
set as |log2FC| > 1.5 and FDR < 0.05. The overlapping
DEGs were identified for subsequent analysis.

Enrichment analysis on the overlapping DEGs
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were per-
formed on the overlapping DEGs using the “ClusterProfi-
ler” package. Based on the GO analysis, gene annotations
were applied to describe the biological role of a gene prod-
uct in regard to three aspects: molecular function (MF),
biological process (BP) and cellular component (CC).
FDR < 0.05 was set as the threshold.

Clustering analysis
TCseq package is a tool that can be used to analyze dif-
ferent types of time course sequencing data via providing
a unified suite [10]. In this study, the TCseq package
was employed to classify the overlapping DEGs into vari-
ous types of Clusters (K = 6), with the genes in each
Cluster were then processed for GO annotation and
KEGG enrichment analysis.

Protein-protein interaction (PPI) network construction
The Search Tool for the Retrieval of Interacting Genes/
Proteins database (STRING; https://string-db.org/) is a
public database harboring known and predicted protein-
protein interactions [11]. Protein-protein interaction
(PPI) is an indispensable approach for research on pro-
tein functions as it helps to clarify the interactions
among proteins. In this study, the STRING database was
used to construct a PPI network with an interaction
score > 0.4. The network was then visualized using the
Cytoscape software (version 3.7.0).

Results
Identification of DEGs in PTB
Differential analysis was performed on the gene expres-
sion data from the PTB microarray GSE54992. In all,
431 DEGs in TB vs LTBI (including 212 up-regulated
genes and 219 down-regulated genes) and 491 DEGs in
TB vs HC (including 241 up-regulated genes and 250
down-regulated genes) were identified as shown in
Fig. 1a and b. Besides, a Venn Diagram was plotted and
309 overlapping DEGs were identified (Fig. 1c), which
were used for follow-up analysis.

Enrichment analysis on the overlapping DEGs
GO and KEGG enrichment analyses were conducted to
explore the biological function of the 309 overlapping
DEGs. Based on the GO analysis, these DEGs were mainly
activated in inflammation- and immunoregulation-
associated functions, as indicated by the top 10 most
enriched biological activities containing leukocyte migra-
tion, cell chemotaxis, neutrophil mediated immunity,
regulation of inflammatory response, T cell activation,
regulation of MAP kinase activity, acute inflammatory re-
sponse, cellular response to interleukin-1, B cell activation
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and macrophage activation (Fig. 2a). In addition, KEGG
analysis suggested that these DEGs were predominantly
enriched in NF-kappa B signaling pathway, TNF signaling
pathway, Toll-like receptor signaling pathway, IL-17 sig-
naling pathway, complement and coagulation cascades
and other pathways intimately relevant to inflammation
and immune (Fig. 2b). These results collectively demon-
strated that the 309 overlapping DEGs exerted their roles
predominantly in inflammatory and immunoregulatory
processes during PTB occurrence and development.

Clustering analysis and further enrichment analysis
After a preliminary understanding of the biological func-
tions of the overlapping DEGs, clustering analysis was
conducted for in-depth research. As revealed in Fig. 3a,
these DEGs were clustered into 6 Clusters. In anti-TB

chemotherapy-treated samples, the level of the genes in
Cluster 1 was decreased firstly and increased afterwards
and the minimum level appeared at the third month,
whereas the level of the genes in Cluster 2 exhibited an
opposite expression trend. Besides, the level of the genes
in Cluster 3 and Cluster 4 were elevated with time going
by. Reversely, the expression level of the genes in Cluster
5 and Cluster 6 were declined with time going by.
Thereafter, GO and KEGG enrichment analyses were
performed, finding that there was no result satisfied con-
sidering the genes in Cluster 1, 2 and 6, while only genes
in Cluster 4 presented an intimate correlation with PTB.
KEGG analysis discovered that the genes in Cluster 4
were mainly enriched in NF-kappa B signaling pathway,
TNF signaling pathway, Toll-like receptor signaling
pathway, IL-17 signaling pathway and other immune-

Fig. 1 Identification of DEGs in PTB. a, b: Volcano plots were made to screen the DEGs from TB patients compared to LTBI or HC. Black dots
represent genes that are not differentially expressed between TB patients and LTBI or HC, whereas the green dots and red dots represent the
down-regulated and up-regulated genes, respectively; c: A Venn Diagram was drawn for identifying the overlapping DEGs among TB vs HC
vs LTBI

Fig. 2 GO and KEGG enrichment analyses on the overlapping DEGs. a: The most enriched GO terms of the DEGs; b: The most enriched KEGG
pathways of the DEGs
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related pathways, and GO analysis showed some major
immune functions, such as T cell activation, apoptotic
cell clearance, leukocyte chemotaxis and acute inflam-
matory response (Fig. 3b and c). Genes in Cluster 4 were
thereby selected for further analysis.

PPI network construction and hub gene identification
DEGs in Cluster 4 were projected onto a STRING net-
work for functional enrichment analysis. A PPI network
bearing totally 39 nodes were sequentially established
with the threshold set as interaction score > 0.4 (Fig. 4a).
Besides, the top 10 genes with a relatively high node de-
gree were defined as hub genes and listed in Fig. 4b. Dif-
ferential and clustering analyses showed that these hub

genes were all down-regulated during PTB development
(detailed in Supplementary Table), and then up-
regulated after patients underwent anti-TB chemother-
apy. In view of these, we reasoned that the top 10 genes
might play an inhibitory role in PTB progression.

Discussion
It has been reported that great progress has been made on
the effective epidemic control of PTB due to the imple-
ment of the National TB Control Programme (2011–
2015). However, despite the reduction in prevalence of
smear-positive PTB cases (170/100,000 vs 57/100,000),
the burden of drug-resistant PTB is still sizable, which
prompts us to explore effective biomarkers for the

Fig. 3 Clustering analysis and enrichment analysis. a: Clustering analysis was performed to find gene Clusters in anti-TB chemotherapy-treated
samples. All overlapping DEGs were divided into several categories according to their expression levels. The Abscissa is the Cluster, and the
ordinate is the corrected Z-score of the expression. The larger the corrected Z-score, the higher the expression level, and vice versa, the lower the
expression level. Each broken line represents a gene. The greater the value the color represents, the closer the gene is to the average level in the
classification; b: The most enriched GO terms of the DEGs in the Cluster 4; c: The most enriched KEGG pathways of the DEGs in the Cluster 4

Fig. 4 PPI network construction and hub genes identification. a: The PPI network based on the genes in the Cluster 4; b: The top 10 genes with
a relatively high node degree
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improvement of current PTB treatment [12, 13]. Cur-
rently, there have been studies on identifying PTB-related
biomarkers for early diagnosis or prognosis estimation.
For instance, Guanren et al. [14] used bioinformatics ana-
lysis combined with clinical biochemical examination and
found that the gene expression and protein content of
serum SLAMF8, LILRB4 and IL-10Ra were all signifi-
cantly elevated in PTB patients, and all these three genes
were associated with poor prognosis. Michael et al. [15]
identified 10 metabolites of MTB from the volatile organic
compounds (VOCs) in breath, which were remarkably in-
creased and could be used as biomarkers for PTB diagno-
sis. This study adopted bioinformatics methods to identify
DEGs in PTB from the GEO database, which were then
processed for clustering analysis and projected into a PPI
network for screening candidate hub genes (CCL20, F3,
THBS1, PTGS2, PLAU, ICAM1, TIMP1, MMP9, CXCL8
and IL6) that were intimately associated with PTB occur-
rence and development. Hence, to clarify whether these
hub genes have the potential serving as biomarkers of PTB,
we retrospectively analyzed relevant research on PTB.
C-C motif chemokine ligand 20 (CCL20) is a special

chemokine ligand of the C-C motif chemokine receptor
6 (CCR6) functioning under multiple pathological condi-
tions [16]. It’s reported that cytokines and chemokines
both participate in protective immunity and immuno-
pathogenesis of TB, as well as in MTB-host-pathogen in-
teractions [17]. Lee JS et al. [18] investigated the level of
CCL20 and the corresponding regulatory mechanism in
PTB cases and healthy controls, finding that CCL20 was
up-regulated in PTB patients and mediated by proin-
flammatory cytokines. PTGS2 (Prostaglandin-endoper-
oxide synthase 2), also known as cyclooxygenase-2
(COX-2), is a type of enzyme responsible for generation
of intermediate PGH. For TB-infectious macrophages,
PGH-induced repair for plasma membrane damage is
crucial [19]. Moreover, the mechanism by which MTB
regulates COX-2 expression in macrophages is reported
to be an important factor during the initiation or main-
tenance of host immune response [20]. Wang L et al.
[21] revealed that COX-2 inhibition could suppress the
apoptosis of macrophages induced by secreted MTB
lipoprotein. Rand L et al. [22] reported that COX-2
could inhibit p38MAPK-PG signaling pathway to de-
crease MMP-1 activity, which could be considered as a
therapeutic target to attenuate the damage of PTB in-
flammatory tissues. ICAM1 (Intercellular adhesion mol-
ecule 1; CD54), a member of immunoglobulin super
family (Igsf) [23], is necessary for cell adhesion and acts
as an important player in inflammation-induced tissue
adhesion, tumor metastasis and immune response [24].
Du SS et al. [25] identified some differentially expressed
proteins associated with PTB diagnosis using protein
microarray technique, and found that ICAM1 had

relatively high sensitivity and specificity and had the po-
tential serving as an indicator for sputum-negative PTB
diagnosis. MMP-9 has been discovered to be involved in
the recruitment of macrophages and granuloma occur-
rence as suggested by Jennifer L et al., and early MMP
activity is a crucial part for lung MTB infection resist-
ance. To be specific, MMP-9 is a necessity for macro-
phage recruitment and tissue remodeling during PTB
progression [26]. CXCL8 (C-X-C motif chemokine lig-
and 8) inflammatory cytokine can be released during the
activation of macrophages so as to foster the establish-
ment of immune system network, and it has been de-
tected to be up-regulated in PTB sufferers [27]. Block
DC et al. [28] described that CXCL8 was the natural im-
mune regulator in active PTB patients. IL6 (interleukin
6) is regarded to be a biomarker for predicting the death
of HIV-negative PTB patients as supported by Wang Q
et al. [29] Besides, IL6 is also believed to be associated
with MTB infection and PTB susceptibility [30]. Simi-
larly, the alteration of fibrosis-related TIMP1 has been
identified to be tightly relevant to the pathological basis
of PTB susceptibility, as revealed by Marquis JF et al.
[31]. Collectively, the above results demonstrate that
these hub genes can function during PTB occurrence
and development by serving as immune regulators,
therapeutic targets, and potential biomarkers, and they
can affect PTB susceptibility and resist MTB infection.
In addition, these results support our study on mining
effective biomarkers of PTB from the 10 candidate hub
genes. Furthermore, some other genes like F3, THBS1
and PLAU have not been investigated currently for their
role in improvement of PTB treatment.
Although a relatively accurate prediction for PTB

prognosis could be achieved by the above hub genes we
identified, there are still some limitations in this study.
TB is a multifactorial disease that can be divided into
non-tuberculous mycobacteria (NTM) infections and
MTB based on the type of pathogen. NTM infections
are predominantly caused by mycobacteria except Myco-
bacterium tuberculosis, Mycobacterium bovis and Myco-
bacterium leprae, with symptoms similar to MTB,
making it hard to be diagnosed in clinic. Besides, NTM
infections are less toxic relative to MTB but have similar
clinical manifestations to MTB, and the identification of
NTM infections is generally realized by means of bacter-
ial culture [32]. Studies believed that patients have vari-
ous physiological and biochemical responses to NTM
infections and MTB. Feng et al. [33] made a study on
macrophages and believed that the activation of NF-κB
in MTB patients was more significant in comparison
with that in patients with NTM infections, and there
were differences in IL-8, IL-10 and TNF-α in different
infections. Additionally, Nurlela et al. [34] also discov-
ered that level of TNF-α in pleural fluid of patients with
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NTM infections and MTB was different, with that in
MTB sufferers significantly higher. In the present study,
due to the lack of proper data, analysis for the TB pa-
tients infected by different pathogens was not con-
ducted. Besides, this study is purely a bioinformatics
analysis without any in vivo and in vitro data. Therefore,
more analyses should be carried out to help us gain
more insight into the 10 hub genes, so as to bring bene-
fit to the patients with TB.

Conclusion
In sum, based on a series of bioinformatics methods and
a retrospective analysis, our study identified 7 hub genes
which showed an intimate correlation with PTB devel-
opment and prognosis and had the potential acting as
therapeutic targets and prognostic indicators. Mean-
while, there are some limitations in our study which will
be further solved in our follow-up studies.
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