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Abstract 

Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order pro-
cesses. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. 
Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed 
because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring 
stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected 
erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that 
may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected 
erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deforma-
ble, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ 
by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin 
derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may 
regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring 
stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear 
phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-phar-
macodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeu-
tic responses and in dose-optimization.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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Background
Malaria harms the infected host as a consequence of 
the blood stage infection. Illness results from the host 
responses to this infection and the increased destruc-
tion of both infected and uninfected erythrocytes. Vital 
organ pathology in the potentially lethal Plasmodium 
falciparum and Plasmodium knowlesi malarias results 
from microvascular dysfunction [1]. As P. falciparum 
matures the infected erythrocytes adhere to microvas-
cular endothelium (cytoadherence) interfering with vas-
cular function and, at high densities, reducing perfusion. 
The degree of sequestration and the vital organs affected 
determine the clinical pattern and outcome of severe fal-
ciparum malaria [1, 2]. Cytoadherence is not prominent 
in the other human malaria parasites.

Anti-malarial drugs damage and eventually kill malaria 
parasites. This limits the infection and its pathological 

consequences. The changes in parasite density that occur 
following anti-malarial treatment can be used to assess 
the therapeutic response to anti-malarial drugs [3, 4]. 
Recent developments in ultrasensitive DNA or RNA 
detection (uPCR) have revealed the previously unseen 
dynamics of malaria parasite clearance at low densities, 
and in treatment failure, regrowth following anti-malar-
ial drug treatment. The mechanisms of malaria parasite 
clearance, the factors affecting it, and the interpretation 
of parasite clearance data in anti-malarial drug trials are 
reviewed here.

Parasite multiplication in the human host
Malaria infection starts with the inoculation of a small 
number of sporozoites (median number estimated to 
be about 10) by a probing female anopheline mosquito. 
These motile parasites pass to the liver within an hour. 
Having invaded hepatocytes they then begin a period 
of rapid asexual multiplication [4, 5], dividing approxi-
mately every 8  h until each infected liver cell contains 
thousands of merozoites. Intrahepatic pre-erythrocytic 
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development can be inhibited by some anti-malarials 
(antifols, 8-aminoquinolines, atovaquone, KAF 156, 
DMB 265) and some antibiotics (e.g. azithromycin, tet-
racyclines). In Plasmodium vivax infections and in both 
species of P. ovale malaria a sub-population of sporo-
zoites form dormant liver stages called “hypnozoites” 
which awaken weeks or months later to cause relapses of 
malaria [4]. The hypnozoites can be killed only by 8-ami-
noquinolines of the currently available anti-malarial 
drugs.

Asexual parasite multiplication
At the completion of pre-erythrocytic development and 
following hepatic schizont rupture the newly liberated 
merozoites enter the blood stream and promptly invade 
erythrocytes. Then the growing intraerythrocytic malaria 
parasites begin to consume the red cell contents. The 
complete life cycle in the red blood cells approximates 
one day for P. knowlesi, two days for P. falciparum, P. 
vivax and Plasmodium ovale (two species) and three days 
for Plasmodium malariae [4]. A small sub-population of 
asexual parasites may stop growing and dividing for days 

or weeks (“dormancy”) [6]. Parasite multiplication rates 
in non-immune patients in this early stage of infection, 
before the symptoms of malaria have developed, range 
typically from 6 to tenfold per cycle (30–50% efficiency), 
but sometimes reach 20-fold [5, 7–9]. Initial multiplica-
tion rates are similar for P. falciparum and P. vivax. As a 
result, total parasite numbers in the blood rise exponen-
tially from 104 to 105 in the first asexual cycle to reach 
108 after 3–4 cycles (i.e. 6–8 days for P. falciparum and 
P. vivax) (Fig.  1). One hundred million parasites in the 
body of an adult human corresponds with a blood par-
asite density of about 50/µL [5, 7] and this density is 
usually associated with the onset of fever and illness in 
non-immune subjects (a “pyrogenic density”) [10, 11]. 
The addition of a pre-erythrocytic liver development of 
5.5–7  days plus 6–8  days of blood stage multiplication 
results in the usual incubation period of 11–15  days in 
falciparum or vivax malaria [10, 11]. People who have 
had multiple previous malaria infections acquire an anti-
toxic immunity (“premunition”) which results in higher 
parasite densities being tolerated without symptoms, 
although densities over 10,000/µL are usually associated 

Fig. 1  A comparison of parasite dynamics in human malaria infections as illustrated by Fairley [5] following his classic studies of induced malaria in 
volunteers. The total numbers of parasites in the body of an adult are shown in the vertical axes, and time in days is shown in the horizontal axis
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with illness even in areas of high malaria transmission 
[4, 10–12]. Immunity slows parasite multiplication and 
accelerates parasite clearance. In most infections after 
logarithmic parasite multiplication there is an abrupt 
reduction in parasite multiplication at high densities. 
Severe malaria is a consequence of a failure of the infect-
ing parasites to stop multiplying [13].

Sexual stage development
A sub-population of the blood stage parasites commit 
to sexual development forming male and female game-
tocytes. This reduces the parasite multiplication rate. 
Commitment (switching) to sexual development occurs 
immediately in vivax malaria (which becomes infec-
tious to mosquitoes at, or even below pyrogenic densi-
ties) whereas gametocytogenesis is delayed in falciparum 
malaria (Fig. 1) [14]. Switching increases with duration of 
infection, anaemia and other stresses to the parasite pop-
ulation such as partially effective anti-malarial treatment. 
In P. falciparum infections, the developing sexual stages 
sequester for about 7–10  days in venules and capillar-
ies and particularly in the bone marrow before reenter-
ing the circulation as immature stage 5 gametocytes [15]. 
As a result, peak P. falciparum sexual stage densities 
typically occur approximately 10 days after peak asexual 
densities [15]. Gametocytes are cleared relatively slowly 
from the blood so they accumulate with respect to asex-
ual parasites and can predominate in chronic infections. 
The gametocytes of P. falciparum malaria are relatively 
insensitive to most anti-malarial drugs (with the notable 
exception of the 8-aminoquinolines) whereas the game-
tocytes of the other human malaria parasites are consid-
ered as drug sensitive as their asexual counterparts [14, 
16].

Synchronicity of the blood stage infection 
and sequestration
Most natural malaria infections are relatively synchro-
nous so the temporal pattern of parasite density rise in 
untreated malaria is generally log linear with superim-
posed oscillations resulting from synchronous schiz-
ogony [5, 17] (Fig.  1). The total parasite biomass is the 
product of the blood volume and the parasite count 
except in falciparum malaria where, because of seques-
tration, the peripheral parasite count variably underesti-
mates the total parasite numbers. Sequestration describes 
the process whereby some 12–18 h after merozoite inva-
sion P. falciparum parasitized erythrocytes adhere to 
vascular endothelium and disappear from the circulation 
[1]. Once adherent they do not detach until schizont rup-
ture and so the parasites do not reappear in the circula-
tion until the next asexual cycle [18, 19]. This results in a 
sinusoidal wave form pattern of parasitaemia with sharp 

rises and falls in parasite density corresponding with 
schizogony and sequestration, respectively [5] (Fig. 1). In 
falciparum malaria, large numbers of parasitized eryth-
rocytes accumulate in the placenta and splenic pooling 
of parasitized erythrocytes may be significant in patients 
with splenomegaly [2, 20].

Malaria parasite clearance
Three independent processes contribute to the clear-
ance of malaria parasites from the peripheral blood 
circulation;

a.	 Host-defence mechanisms
b.	 Anti-malarial drug effects
c.	 Sequestration

In symptomatic malaria, there is usually one domi-
nant normally distributed population of parasite ages 
[17]. Sometimes “two brood” infections may be observed 
where two distinct age populations are evident [21]. In 
uncomplicated malaria, the age distribution of parasites 
at presentation to medical attention is not random. This 
is probably because previous cycle schizogony causes 
a pulse release of pro-inflammatory cytokines which 
provokes treatment-seeking [22]. Patients with uncom-
plicated malaria typically present to medical attention 
with a predominance of young ring stage parasites in 
the peripheral blood smear indicative of recent schiz-
ont rupture [4]. In contrast among patients with severe 
falciparum malaria the predominant parasite stages in 
peripheral blood smears appear randomly distributed. 
Marked fluctuations in parasite density shortly after 
starting treatment may therefore occur as a natural con-
sequence of the infection itself (Fig. 1). If the majority of 
parasites in the body are mature schizonts that have not 
yet ruptured, a sharp rise in parasite count may occur 
immediately after admission to hospital (these sudden 
parasitaemia rises also occur in uncomplicated malaria 
but go unnoticed because frequent parasite counts are 
seldom made in outpatients) [23–25]. Sudden alarming 
rises in parasite density were more common following 
the start of quinine than are now seen after artesunate 
treatment of severe falciparum malaria. Conversely in a 
synchronous infection, in which large P. falciparum ring 
stage parasites predominate in the blood smear, there 
may be a sudden decline in parasite density as these para-
sites sequester, giving the false impression of an excellent 
response to the anti-malarial treatment [7].

Plasmodium vivax, Plasmodium malariae, Plasmodium 
ovale, Plasmodium knowlesi
In all forms of malaria, parasitized erythrocytes can 
adhere to other erythrocytes (rosetting). Plasmodium 
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falciparum and P. knowlesi-infected erythrocytes agglu-
tinate with each other at high densities, and P. vivax 
infected erythrocytes can bind to chondroitin sulphate 
A (a cytoadherence receptor in the placenta), but there 
is little sequestration in these infections [1]. Except in 
falciparum malaria all parasite stages of development are 
seen in peripheral blood smears.

Parasite clearance from the blood reflects the stage-
specificity and intrinsic potency of the anti-malarial 
drugs used. The slowest parasite clearance rates are seen 
following treatment with antibiotics, (e.g. tetracyclines) 
[26, 27], where the predominant effect is seen the sec-
ond and subsequent drug-exposed cycles. The most rapid 
rates are seen following the start of treatment with the 
artemisinin derivatives and the spiroindolones [23, 28, 
29]. The “batting order” of anti-malarial activities (meas-
ured in terms of parasite clearance times) in susceptible 
vivax malaria is similar to that in susceptible falciparum 
malaria (Fig.  2) with two exceptions; sulfonamides are 
relatively ineffective in P. vivax, and primaquine has only 
very weak blood stage activity against P. falciparum [29, 
30].

Plasmodium falciparum
Although the parasite density may rise or fall suddenly 
after starting anti-malarial treatment, in most cases there 
is a lag phase before parasitaemia falls. Thereafter the 
decline is log-linear (i.e. clearance is a first order process) 
[31, 32]. Most anti-malarial drugs have relatively little 
effect on circulating malaria parasites and so the initial 
decline in parasite density results both from parasitised 
red cell sequestration and any ring stage parasite killing 
and removal [7]. The faster parasite clearance following 

chloroquine compared with quinine treatment of severe 
malaria [33] (before chloroquine resistance had emerged) 
was attributed to a greater effect on ring stage parasites. 
Parasite clearance is even faster with artemisinin deriva-
tives and the initial lag phase is less evident (Fig.  3) [1, 
32]. Rapid clearance results from drug damage to the 
circulating ring-stage parasites and their subsequent 
removal predominantly by the spleen [34]. This prevents 
cytoadherence [35] and the pathological consequences 
of sequestration, and it largely explains why artesunate 
reduces mortality substantially in severe falciparum 
malaria compared with quinine [36]. Artemisinin resist-
ance manifests as loss of ring stage susceptibility and thus 
slower parasite clearance [37–39]. The slope of the log-
linear phase of parasitaemia reduction (or the derived 
half-life) is particularly useful for assessing resistance to 
the artemisinins in vivo [31, 32, 37, 38] (Fig. 4), and is the 
metric which correlates best with heritability (i.e. has the 
strongest genetic association) [40]. Artemisinin resist-
ance is associated with mutations in the propeller region 
of the kelch protein [41]. Different mutations confer dif-
ferent levels of resistance (i.e. different mean parasite 
clearance half-lives: PC1/2) [38].

Measuring parasite clearance
A parasite clearance curve can be constructed from a 
series of frequent sequential parasite counts, comprising 
thin film counts at higher densities and thick film counts 
at lower densities (>50/µL) [31, 32, 38, 42]. Highly sen-
sitive uPCR methods can now quantitate a parasitae-
mia accurately down to densities of approximately 20/
mL. RNA measurement is even more sensitive but as 
there are changing numbers of transcripts per parasite 
genome during the asexual life cycle, accurate quantita-
tion of parasitaemia from mRNA measurement is more 
challenging. As uPCR DNA quantitation is possible at 
parasitaemias well below the pyrogenic density it is now 
possible to assess therapeutic responses to anti-malarial 
drugs in challenge studies without the volunteers becom-
ing ill, and also to follow treated symptomatic infections 
which later recrudesce and to treat them again before 
symptoms develop [43–45].

Mechanisms of parasite clearance
In general, anti-malarial drugs have their greatest activ-
ity against mature trophozoites, the most metabolically 
active stage of asexual parasite development which pre-
cedes DNA replication [46, 47]. A possible exception is 
chloroquine against P. vivax [48]. Very young ring stages 
of P. falciparum appear disproportionately sensitive to 
artemisinins [49]. The damaged and dead parasites in 
circulating erythrocytes are cleared predominantly by 
the spleen, as part of its normative function in removing 
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Fig. 2  Parasite clearance times in adult Thai patients with vivax 
malaria after different treatments [28–30]. Parasite counts were deter-
mined at ≤6 h intervals on thin films, and at ≤12 h intervals on thick 
films. The open circles are individual asexual parasite clearance times, 
the closed circles are corresponding gametocyte clearance times, and 
the red diamonds denote failure to respond and administration of 
rescue treatment
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intraerythrocytic particulate matter, although the liver, 
bone marrow and other lymphoid tissue play an impor-
tant secondary role in parasitized erythrocyte clear-
ance [34, 50–53]. In falciparum malaria, the sequestered 

mature trophozoites are killed in  situ and then disinte-
grate slowly. They leave behind erythrocyte membranes 
adherent to the vascular endothelium, and sometimes 
trapped malaria pigment, in the once sequestered ves-
sels which is observed in post-mortem brain smears and 
electron microscopy studies of patients who have died 
after days of anti-malarial treatment [1, 19, 54, 55]. Clear-
ance of this material is performed by circulating phago-
cytes (monocytes and polymorphonuclear leukocytes) 
[56]. At high parasite densities intraleukocytic pigment is 
observed commonly in blood films, and in severe malaria 
increased numbers of pigment containing neutrophils 
(>5%) have prognostic significance [57].

The spleen
The spleen plays a central role in the control and clear-
ance of intraerythrocytic infections [50]. The spleen’s 
normal function is to remove senescent red cells and 
circulating foreign material such as bacteria or cellu-
lar debris (often termed “refuse collection” and “polic-
ing” activities, respectively) [52, 53]. The structure of the 
spleen is complex with two overlapping blood circula-
tions—a rapid flow by-pass, called the fast closed circula-
tion, which typically takes 90% of the splenic blood flow 
(100–300  mL/min in a healthy adult), and a slow-open 
circulation in which the blood is filtered through nar-
row inter-endothelial slits. This slow filtration allows the 
blood elements to be assessed for antibody coating and 
deformability. Abnormal cells which fail inspection and 
other particulate material are retained [52, 53, 58]. In 
malaria, the spleen enlarges rapidly, and is often palpable 
(i.e. ≥3 times enlarged), and clearance function increases 
[59–66]. Pathology studies of fatal human malaria which 
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Fig. 4  Parasite clearance following the start of anti-malarial drug 
treatment with an ACT in falciparum malaria. After an initial and vari-
able lag phase, which depends on the stage of parasite development, 
the decline in parasitaemia is generally log linear [23, 31, 32, 37, 38, 
40, 42, 56, 97, 100, 122]. The rate constant of this decline, or its deriva-
tive half-life, is the best metric for the assessment of resistance to 
drugs acting on ring stage parasites-notably artemisinin derivatives 
[31, 37, 38, 40]. The simpler measure- the proportion of patients who 
have microscopy detectable parasitaemia on day 3 [100, 101] whilst 
useful for screening, is heavily dependent on starting parasite density; 
two infections with the same clearance half-lives (3 h) typically associ-
ated with full susceptibility to artemisinin derivative are compared 
with a 50-fold difference in admission parasitaemia which results in 
an 18-h difference in parasite clearance time. An artemisinin resistant 
infection (parasite clearance half-life 6 h) is shown for comparison [38]
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have examined the spleen show marked accumulation of 
parasitized erythrocytes of all stages [1, 2, 20, 50, 67–71]. 
Similar findings are reported in primate malaria [72]. 
Thus, the “activated” spleen retains parasitized red cells 
(including ring stage infected cells) and it removes para-
sites and parasitized cells. Splenectomy and splenic dys-
function increase the risk of severe malaria [50, 51, 71], 
and splenic hypofunction probably contributes to delayed 
parasite clearance in immunocompromized HIV infected 
patients receiving anti-malarial treatment [71, 73, 74]. 
In endemic areas splenomegaly in childhood is used a 
measure of malaria transmission intensity [4]. There are 
three processes whereby the spleen can remove malaria 
parasites.

Mechanical filtration
Splenic recognition of reduced erythrocyte deformabil-
ity and removal of stiff red cells is increased markedly 
in patients with acute malaria and splenomegaly. Eryth-
rocytes can be made into rigid spherocytes by heating 
to 51  °C, labelled with a suitable marker, and then used 
to assess splenic clearance function [75]. The mean half-
life (t½) for clearance of 51Cr-labelled heated red cells in 
adult Thai patients with acute malaria was 100 min, but 
this shortened to 20  min by 7–10  days after treatment 
[63]. In patients presenting with splenomegaly (reflect-
ing longer duration of illness) the t½ was 9  min sug-
gesting completely efficient removal of the spherocytic 
cells each passage through the slow open circulation of 
the spleen. As P. falciparum parasites grow the infected 
cells becomes more spherical and their deformability is 
reduced, particularly at the schizont stage [76]. Plasmo-
dium vivax does the opposite—as it grows the infected 
red cell enlarges and becomes more deformable [77]. In 
severe malaria, the entire red cell population (i.e. unin-
fected plus infected erythrocytes) becomes stiffer and 
there is accelerated splenic red cell clearance [78]. This is 
a major contributor to anaemia. Sequestration in falcipa-
rum malaria may have evolved as a mechanism to escape 
splenic filtration. The spiroindolone cipargamin provides 
the most rapid parasite clearance yet observed in the 
treatment of human malaria [28]. This PfATPase 4 inhibi-
tor causes rapid osmotic dysregulation, marked parasite 
swelling, and increased erythrocyte sphericity. Removal 
of the whole parasitized erythrocyte by splenic filtration 
is the likely clearance mechanism [79].

Pitting
The spleen also removes intraerythrocytic particles 
such as nuclear remnants (Howell-Jolly bodies), dena-
tured hemoglobin (Heinz bodies) or iron granules (in 
siderocytes) from intact erythrocytes without destroy-
ing the cells [52]. The “pitting” capability of the spleen is 

substantial. Crosby et  al. showed that siderocytes could 
be pitted of their iron granules with a half-life of 80 min 
in healthy subjects suggesting that pitting rates were 
close to removal rates for abnormal erythrocytes [80]. 
Through the same mechanism the spleen also removes 
damaged circulating intraerythrocytic malaria parasites 
without destroying the red cells [34, 81–84]. This is the 
main mechanism of ring stage parasite clearance fol-
lowing treatment with artemisinin derivatives in non-
immune patients [82–84]. The pitted “once-infected” 
erythrocytes can be identified as unparasitized red cells 
which stain strongly for malaria antigens (Fig.  5). These 
malaria antigen (RESA) positive parasite-negative red 
cells (RESA + RBCs) are usually present at low densities 
before artemisinin treatment, indicating that pitting of 
young malaria parasites also occurs normally, but their 
numbers rise in proportion to the decline in parasitaemia 
after treatment has started. In some patients with falci-
parum malaria the rise in RESA + RBCs may exceed the 
decline in parasitaemia indicating that there was splenic 
retention of ring stage infected erythrocytes before treat-
ment. This process has been elegantly recreated ex vivo 
by perfusing spleens removed at routine surgery with 
artesunate-treated parasitized erythrocytes. Sequential 
Giemsa-stained thin films of the circulating cells in the 
ex vivo spleen perfusion experiments showed that para-
site counts decreased with a half-life of 17–18 min, with 

Fig. 5  A thin immunofluorescence blood smear showing three red 
blood cells which stain positive for the P. falciparum ring erythrocyte 
stage antigen. The two lower cells also contain ring stage parasites 
which stain with acridine orange, the upper cell has no intraerythro-
cytic parasite indicating that it has already been removed by “pitting”. 
This is the main mechanism of ring stage parasite clearance in non-
immune patients following treatment with artemisinin derivatives 
[34, 82, 83]
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an overall clearance time of approximately 120 min [84, 
85]. The majority of parasites were retained in the red 
pulp, as expected from filtration and pitting in the slow-
open circulation. The pitting rates by the isolated spleen 
were comparable to those observed in vivo [83–86].

RESA + RBCs have shortened survival in the circula-
tion [86, 87]. In a study of 14 severe and 6 uncomplicated 
falciparum malaria patients in Thailand median parasite 
clearance time was 66  h, and the mean RESA  +  RBC 
life was 7.6  days compared with a mean red cell life of 
43  days. This accelerated destruction of pitted red cells 
is an important contributor to post-artesunate haemoly-
sis observed in some hyperparasitaemic non-immune 
patients following artesunate treatment [87, 88]. Studies 
in returned French travellers with severe malaria showed 
that a threshold of 180  million/µL RESA +  RBCs iden-
tified those patients who would develop delayed hae-
molysis with 89% sensitivity and 83% specificity [87]. By 
contrast, in malaria patients who have no spleen dead 
intraerythrocytic parasites can be seen in the circulation 
for more than a month following artesunate treatment! 
[34].

It has been suggested the principal determinant of 
parasite clearance following treatment with artemisinin 
derivatives is “immunity”, measured as splenic clearance 
function, and not anti-malarial parasiticidal activity [89, 
90]. This proposal was based on an earlier PK-PD mod-
elling study of parasite clearance following artemisinin 
treatment [91]. It was hypothesized that splenic clear-
ance of artemisinin killed parasites is somehow fixed or 
saturated at 0.26/h, corresponding to a clearance half-life 
of 2.7 h, and from this it was deduced that dead malaria 
parasites accumulate in the circulation awaiting splenic 
removal [89, 90]. Whilst immunity does accelerate para-
site clearance this hypothesis, and the deductions based 
upon it, are very unlikely to be true; all three forms of 
splenic clearance can exceed this value considerably even 
in healthy subjects with unprimed spleens [28, 58–60, 
62–65, 80, 83–85]. Saturation of splenic clearance func-
tion, if it occurred in  vivo, should manifest as capacity 
limitation in the relationship between parasitaemia and 
parasite clearance following treatment with artemisinin 
derivatives. This pattern is not observed (Fig. 6).

Antibody
Natural antibodies directed against modified band 3 
(“senescent antigen”) bind to old erythrocytes resulting 
in their clearance from the circulation [92]. Membrane-
bound anti–band 3 antibodies partially activate comple-
ment resulting in red-cell membrane deposition of C3 
fragments. The antibody-C3 complex is then readily rec-
ognized by phagocyte CR1 complement receptors [93]. 
This process may be accelerated in malaria infected red 

cells. The role of immune haemolysis in the pathogenesis 
of malaria anaemia has been controversial. However it is 
clear that the threshold for splenic recognition of eryth-
rocyte bound antibody is lowered markedly in malaria, 
although there is substantial inter-individual variability 
[64, 65]. Thus, red cells with low antibody coating, which 
would normally escape clearance, are removed in malaria. 
As with mechanical clearance, immune clearance usually 
increases after anti-malarial treatment has started (i.e. as 
part of the host-defence response to malaria), but unlike 
mechanical clearance it is not increased by splenomegaly. 
With heavy antibody coating (~8000 molecules per cell) 
erythrocyte clearance was very rapid in Thai adults with 
acute malaria—at rates comparable to mechanical clear-
ance [64].

Infusion of malaria hyperimmune serum results in 
rapid clearance of parasitized erythrocytes. One Thai 
patient who received 200 mg/kg over 4 h reduced para-
sitaemia 160-fold within 2 h associated with rapid splenic 
enlargement [94]. However, at the lower levels of anti-
body coating more likely to pertain generally in acute 
malaria clearance half-lives for coated 51Cr-labelled 
autologous erythrocytes halved from approximately 16 
to 8  h following anti-malarial treatment [65]. Thus, for 
parasitized red cells with low antibody coating immune 
clearance is much slower than either mechanical whole 
red cell clearance or pitting. As malaria parasites mature 
they express increasing quantities of antigenic proteins 
on the infected red cell surface. In falciparum malaria, 
the predominant surface expressed protein, PfEMP1, 
is the mediator of cytoadherence [95, 96], so increased 
antigenicity coincides with sequestration and escape 
from splenic filtration [1]. In Mali, an area of high 
malaria transmission, infected erythrocyte opsonization 
was found to correlate with pitting following artesunate 
treatment [97]. This may reflect overall augmentation of 
host-defence mechanisms as antibody mediated clear-
ance would have been expected to result in whole red cell 
removal.

Immunity and parasite clearance
Despite enormous research investment and effort immu-
nity to malaria is still poorly understood. In general 
terms, the acute malaria infection is contained by non-
specific host-defence mechanisms including splenic 
activation and fever (which inhibits schizogony). Later 
more specific humoral and cellular immunity control and 
finally eliminate the infection. After weeks of illness in 
untreated infections parasitaemia is eventually reduced 
to levels which are tolerated with few or no symptoms. 
Untreated malaria parasitaemia can persist at low densi-
ties for months or years [98]. In malaria-endemic areas, 
where people are infected frequently, most infections 
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are controlled at densities causing little or no symp-
toms, so some infections persist for weeks or months 
and many self- cure [4]. Illness results from infections to 
which the individual has insufficient immunity to con-
trol parasite multiplication [99]. In areas of higher trans-
mission, this is most likely in young children who have 
had few or no previous infections. In older children and 
adults rapid mobilization of both non-specific and spe-
cific host-defence mechanisms usually results in prompt 
resolution of the infection—even without anti-malarial 
treatment. As a result “immunity” complements the 
effects of anti-malarial drugs, accelerating parasite clear-
ance and augmenting cure rates [100–103]. Failing drugs 
(i.e. anti-malarials to which resistance has developed) 
always perform much better in semi-immune patients. 
Acquired immunity explains why cure rates are always 
higher in adults and older children in endemic areas and 
why anti-malarial treatment efficacy assessments in high 
transmission settings should always include young chil-
dren [7]. The magnitude of the effect of immunity on 
parasite clearance can be assessed by comparing parasite 

clearance rates in drug sensitive infections with simi-
lar drug exposure between high transmission and low 
transmission areas [32, 100], by assessing the effect of 
age on parasite clearance within an area of moderate or 
high transmission [101], or directly by correlating para-
site clearance rates with malaria antibody titres [104]. In 
a recent large study the relationship of parasite clearance 
to titres of antibodies specific to 12 P. falciparum sporo-
zoite and blood-stage antigens was assessed. P. falcipa-
rum antibodies were associated with significantly faster 
PC½ values but the effects were relatively small; maxi-
mum shortening  <40  min [104]. Immunity also reduces 
parasite multiplication (e.g. merozoite agglutinating 
antibodies) but this contributes relatively little to meas-
ures of immediate drug effect such as parasite clearance 
half-lives (PC1/2). In the largest assessment to date the 
effect of age on parasite clearance following treatment 
with artemisinin derivatives was estimated in a subset of 
3208 patients from areas without artemisinin resistance. 
Young children cleared parasites more slowly than older 
patients: PC1/2  was 11.3% (95% CI 2.6–20.8, p =  0.010) 

Fig. 6  Individual parasite clearance half-lives in relation to presenting parasite density (shown on a log scale per µL) in 6975 patients with acute 
uncomplicated falciparum malaria treated with an artemisinin derivative (from reference [32]). The upper panel shows data from areas unaffected by 
artemisinin resistance, the lower panel shows data from areas where artemisinin resistance is prevalent. There is no evidence for density depend-
ence in parasite clearance rates
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longer in infants aged <1 year and 9.4% (95% CI 3.5–15.7, 
p =  0.002) longer in children aged 1–4 years compared 
to older patients. Overall PC1/2 values were about 12 min 
faster in Africa than in Asia, where transmission is gener-
ally lower [101].

Dormancy and parasite clearance
There is evidence from both clinical and laboratory 
studies that asexual blood stage parasites may become 
temporarily inert or dormant and so survive therapeu-
tic concentrations of anti-malarial drugs. Dormancy 
is observed particularly following treatment with arte-
misinin derivatives [6, 105, 106] although it is unclear if 
the effect is a result of non-lethal cell damage or inter-
ference with cell cycling [107] (Fig. 7). It has been sug-
gested that artemisinin resistance reflects an increased 

propensity for dormancy, although clinical and labora-
tory studies are more indicative of reduced ring stage 
artemisinin susceptibility [6, 37, 38, 107–109]. The very 
high efficacy of ACT outside areas of artemisinin resist-
ance suggests that dormant forms (or more likely these 
parasites when they wake) do not survive the resid-
ual concentrations of partner drugs. In general, dor-
mant parasites are present at densities below the level 
of microscopy detection, although they may account 
for some of the “tail” in the parasite clearance curve 
observed particularly following the treatment of high 
parasitaemia infections, and they probably contribute 
significantly to persistent low density uPCR positivity 
(Fig. 7). The factors associated with dormancy, the met-
abolic state of the dormant parasites, and their natural 
history have yet to be characterized fully.
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Gametocytogenesis and parasite clearance
The sexual stages of P. falciparum are relatively insensi-
tive to the anti-malarial drugs so they commonly persist 
after clearance of the asexual stages. Gametocyte densi-
ties in falciparum malaria reflect the balance between 
formation, release from sequestration, and clearance. 
Dormant forms which “awaken” can also presumably 
form gametocytes contributing to apparent slow game-
tocyte clearance. Gametocytes are readily distinguish-
able by microscopy, but as for dormant parasites, are 
indistinguishable from asexual parasites by quantitative 
PCR for DNA. Both therefore contribute to an appar-
ent slow terminal elimination phase of parasite DNA in 
blood (Fig.  7). Gametocyte clearance also appears to be 
a first-order process although assessment of the rates of 
gametocyte clearance is often compromized by their low 
densities which results in greater errors in determining 
slopes (Fig. 7). Gametocyte clearance rates derived from 
microscopy over a few days following drug treatment may 
have underestimated the true clearance times of drug-
unaffected gametocytes [110, 111]. The persistence of 
low density P. falciparum gametocytaemia for weeks after 
successful treatment of the asexual stage infection is not 
compatible with current estimates of either drug effects 
against early stage gametocytes or clearance times. Treat-
ment with primaquine (or methylene blue) leads to rapid 
P. falciparum gametocyte clearance [112]. Gametocyte 
clearance underestimates drug effects in reducing infec-
tivity. The majority of gametocytes in the circulation are 
female, yet the most anti-malarials have greater effects 
on male gametocytes [113]. Sterilization precedes game-
tocyte clearance. This temporal discrepancy is greatest 
with the 8-aminoquinolines which sterilize P. falciparum 
infections within hours but the gametocytes take days to 
clear [16]. Finally, it should be noted that drugs such as 
antifols and atovaquone may prevent zygote formation 
in the mosquito without affecting gametocyte clearance 
[114–116].

Modelling parasite clearance
Intra-host models of malaria infection have been devel-
oped to help characterize anti-malarial drug effects and 
hopefully guide treatment recommendations and deploy-
ment strategies. Anti-malarial drugs are usually modelled 
to kill parasites by a concentration-dependent process 
that is first order whilst anti-malarial drugs exceed mini-
mum parasiticidal concentrations (MPC) [23, 89, 90, 108, 
117–119]. When anti-malarial drug concentrations fall 
below the MPC the effect is reduced and the decline in 
parasitaemia slows. The anti-malarial drug concentration 
when the parasite multiplication rate (PMR) is one can 
be termed a minimum inhibitory concentration (MIC) 
(Fig.  7) [23]. After anti-malarial blood concentrations 

fall below the MIC, the rise in parasite numbers is deter-
mined by the sub-MIC effects on multiplication and the 
effects of host immunity. Recrudescence occurs when 
parasitaemias reach densities detectable by microscopy 
(~50/µL). Stage specificity of anti-malarial drug action, 
second cycle effects, gametocyte switching, dormancy 
and increasing immunity can all be incorporated addi-
tionally in these PK-PD models.

As the anti-malarial drugs differ in their stage specifici-
ties of action [46, 47], the relationship between parasite 
stage distribution, pattern of drug exposure, parasite kill-
ing and clearance is complex. A weakness of many PK-PD 
models is that parasite killing by anti-malarial drugs is 
modelled as a single rate constant with a unit of time sub-
stantially less than the life span of the cell. A corollary is 
that for rapidly eliminated anti-malarials such as the arte-
misinins parasite damage is assumed to stop when drug 
concentrations decline. Thus, if a drug exceeded parasiti-
cidal concentrations for 8  h (e.g. artemisinins) each day 
and this resulted in a 10,000-fold reduction in parasite 
density per asexual cycle, then it could be reasoned that 
ensuring the drug was present continuously at concentra-
tions above the MPC would result in a 1012 fold reduction 
per day (i.e. 104 ×  104 ×  104). PK-PD modelling based 
on this assumption and saturated splenic clearance has 
concluded that giving artemisinin derivatives twice daily 
rather than once daily will “dramatically enhance and 
restore drug effectiveness” particularly in the manage-
ment of artemisinin resistant falciparum malaria [89, 90, 
108]. Clinical studies indicate that is untrue, presumably 
because single exposures provide near maximum effects, 
and the more mature sequestered stages remain suscepti-
ble in artemisinin resistance [102, 103, 120, 121]. Malaria 
parasites only need to be killed once in each generation. 
Current models of the time course of parasite killing 
may be oversimplifications. Another potential weakness 
is that parasite killing has been considered equivalent to 
or greater than parasite removal (mainly by the spleen), 
whereas it is likely that for drugs acting on ring stages 
(notably the PfATPase 4 inhibitors) drug affected viable 
parasites are removed, so splenic clearance rates may 
exceed the rates of killing of circulating parasites. For 
drugs which act on ring stage parasites the parasite clear-
ance rate (or derived half-life) is currently the best in vivo 
measure of drug effect [31, 32, 37, 38, 40, 108, 122].

Current unresolved challenges in pharmacokinetic-
pharmacodynamic modelling and anti-malarial dose 
optimization are how to structure models of parasite 
clearance, how to characterize the effects of host immu-
nity and parasite “dormancy”, and our incomplete under-
standing of the behaviour of hypnozoites in P. vivax and P. 
ovale infections. Further improvements in parasite quan-
titation at low densities, particularly the quantitation of 
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low density gametocytaemia, and development of meth-
ods which distinguish viable from dead or dying para-
sites will likely improve model fits, and thus their utility 
in predicting therapeutic responses. Two experimen-
tal approaches provide good characterization of initial 
anti-malarial responses; the human challenge model (in 
which “immunity” plays little or no role) [43, 44] and the 
laboratory model of immunodeficient mice transfused 
with human blood and infected with P. falciparum [123]. 
Identifying the anti-malarial MIC in an infection requires 
detailed individual prospective study of pharmacokinet-
ics and sequential quantitation of parasitaemia using 
both microscopy and uPCR [117, 124]. The MIC is a 
critical PK-PD variable guiding dose optimization. It pro-
vides a method of calibrating in vitro susceptibility data 
from cultured parasites, and therefore marrying popula-
tion pharmacokinetic data from different patient groups 
with susceptibility data from parasites all over the world 
to inform optimal dosing.

Conclusions
The spleen plays a central role in the clearance of cir-
culating malaria parasites. Splenic clearance functions 
increase markedly in acute malaria. Anti-malarial drug 
treatment damages malaria parasites and either the 
entire infected erythrocyte is removed or, if the ring stage 
parasite is affected, the intraerythrocytic parasite may 
be “pitted” out and the once infected cell is returned to 
the circulation, where its survival is shortened. Parasite 
clearance appears to be a first order process. There is no 
evidence for saturation of the effect. After treatment with 
artemisinin derivatives some asexual parasites become 
temporarily dormant, and may regrow after drug expo-
sure. Artemisinin resistance in P. falciparum reflects 
reduced ring stage susceptibility and manifests as slow 
parasite clearance which is assessed in  vivo from the 
slope of the log-linear phase of parasitaemia reduction. 
This is commonly measured as a parasite clearance half-
life. Sequestered P. falciparum parasites are killed in situ 
by anti-malarial drugs. Pharmacokinetic-pharmacody-
namic (PK-PD) modelling of anti-malarial drug effects on 
parasite clearance has proved useful in predicting thera-
peutic responses and in dose-optimization.
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