Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diiodidomercury(II)]- $\mu_{2}-$ 2-aminopyrazine- $\kappa^{2} N^{1}: N^{4}$]

Sadif A. Shirvan, ${ }^{\text {a* }}$ Mohammad R. Asghariganjeh, ${ }^{\text {a }}$ Manouchehr Aghajeri, ${ }^{a}$ Sara Haydari Dezfuli ${ }^{\text {a }}$ and Farzaneh Hossini ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran, and ${ }^{\text {b }}$ Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshar, Iran
Correspondence e-mail: sadif_shirvan1@yahoo.com
Received 7 February 2012; accepted 12 February 2012
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.020 \AA$; disorder in main residue; R factor $=0.083 ; w R$ factor $=0.224$; data-to-parameter ratio $=17.9$.

In the crystal of the title polymeric compound, $\left[\mathrm{HgI}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]_{n}$, the $\mathrm{Hg}^{\mathrm{II}}$ cation is located on a twofold rotation axis and is coordinated by two I^{-}anions and two 2-aminopyrazine ligands in a distorted $\mathrm{HgI}_{2} \mathrm{~N}_{2}$ tetrahedral geometry. In the crystal, the 2-aminopyrazine ligand is equally disordered over two positions about an inversion center, and bridges the $\mathrm{Hg}^{\text {II }}$ cations with pyrazine N atoms to form a polymeric chain running along the c axis. In the polymeric chain, the amino groups link to the coordinated I^{-}anions via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.

Related literature

For related structures, see: Sun et al. (2009); Pagola et al. (2008); Boonmak et al. (2010); Gao \& Ng (2011); Goher et al. (2008).

Experimental

Crystal data

$\left[\mathrm{HgI}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$	$b=6.8791(8) \AA$
$M_{r}=549.50$	$c=9.6239(11) \AA$
Monoclinic, $C 2 / c$	$\beta=103.828(10)^{\circ}$
$a=15.3389(19) \AA$	$V=986.1(2) \AA^{3}$

$Z=4$

Mo $K \alpha$ radiation
$\mu=21.81 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.275, T_{\text {max }}=0.417$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083 \quad 52$ parameters
$w R\left(F^{2}\right)=0.224 \quad \mathrm{H}$-atom parameters constrained
$S=1.08$
933 reflections
$T=298 \mathrm{~K}$
$0.50 \times 0.05 \times 0.04 \mathrm{~mm}$

2648 measured reflections 933 independent reflections 911 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.173$

Table 1
Selected bond lengths (Å).

$\mathrm{Hg} 1-\mathrm{I} 1$	2.6373 (13)	$\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	2.497 (11)

Symmetry code: (i) $-x, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{I} 1^{\mathrm{i}}$	0.86	2.83	$3.67(3)$	169

Symmetry code: (i) $-x, y,-z+\frac{3}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

[^0]
References

Boonmak, J., Nakano, M., Chaichit, N., Pakawatchai, C. \& Youngme, S. (2010). Dalton Trans. 39, 8161-8167.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, S. \& Ng, S. W. (2011). Acta Cryst. E67, m1049-m1050.
Goher, M. A. S., Mautner, F. A., Sodin, B. \& Bitschnau, B. (2008). J. Mol. Struct. 879, 96-101.
Pagola, S., Pike, R. D., deKrafft, K. \& Tronic, T. A. (2008). Acta Cryst. C64, m134-m136.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, D., Luo, G.-G., Zhang, N., Huang, R.-B. \& Zheng, L.-S. (2009). Acta Cryst. C65, m478-m480

supplementary materials

catena-Poly[[diiodidomercury(II)]- μ_{2}-2-aminopyrazine- $\left.\kappa^{2} N^{1}: N^{4}\right]$

Sadif A. Shirvan, Mohammad R. Asghariganjeh, Manouchehr Aghajeri, Sara Haydari Dezfuli and Farzaneh Hossini

Comment

2-Aminopyrazine is a good ligand and numerous complexes with 2-aminopyrazine have been prepared, such as that of silver (Sun et al., 2009), copper (Pagola et al., 2008), cobalt, iron and cadmium (Boonmak et al., 2010) and zinc (Gao \& Ng , 2011; Goher et al., 2008). Here, we report the synthesis and structure of the title compound.
The asymmetric unit of the title compound, (Fig. 1), contains one half molecule. The $\mathrm{Hg}^{\mathrm{II}}$ atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-aminopyrazine and two I atoms. The $\mathrm{Hgd}-\mathrm{I}$ and $\mathrm{Hg}-\mathrm{N}$ bond lengths angles are collected in Table 1.
Intermolecular $\mathrm{N}-\mathrm{H} \cdots$ I hydrogen bonds (Table 2) seem to be effective in the stabilization of the polymeric structure (Fig. 2).

Experimental

For the preparation of the title compound, a solution of 2-aminopyrazine ($0.15 \mathrm{~g}, 1.50 \mathrm{mmol}$) in methanol (10 ml) was added to a solution of $\mathrm{HgI}_{2}(0.55 \mathrm{~g}, 1.50 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$ and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless needle crystals of the title compound were isolated (yield $0.63 \mathrm{~g}, 76.4 \%$).

Refinement

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. In the crystal, the 2 -aminopyrazine ring is equqlly disordered over two positions about an inversion center.

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

supplementary materials

Figure 1
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: \#1: $-x, 1-y, 1-z ; \# 2:-x, y, 3 / 2-z$].

Figure 2
A packing diagram of the title complex. Hydrogen bonds are shown as dashed lines.
catena-Poly[[diiodidomercury(II)]- μ_{2}-2-aminopyrazine- $\left.\boldsymbol{\kappa}^{2} N^{1}: N^{4}\right]$

Crystal data

$\left[\mathrm{HgI}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$
$M_{r}=549.50$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=15.3389$ (19) \AA
$b=6.8791$ (8) \AA
$c=9.6239(11) \AA$
$\beta=103.828(10)^{\circ}$
$V=986.1(2) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator ω scans
$F(000)=944$
$D_{\mathrm{x}}=3.701 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2648 reflections
$\theta=2.7-26.0^{\circ}$
$\mu=21.81 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle, colorless
$0.50 \times 0.05 \times 0.04 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.275, T_{\text {max }}=0.417$
2648 measured reflections
933 independent reflections
911 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.173$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.083$
$w R\left(F^{2}\right)=0.224$
$S=1.08$
933 reflections
52 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$k=-8 \rightarrow 8$
$l=-11 \rightarrow 8$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.1405 P)^{2}+17.0935 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=2.67 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.69 \mathrm{e}^{-3}$
Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
C1	$0.0725(10)$	$0.383(2)$	$0.5415(17)$	$0.042(3)$	
H1	0.1234	0.3063	0.5710	0.050^{*}	
C2	$-0.0746(11)$	$0.455(2)$	$0.542(2)$	$0.044(3)$	
H2C	-0.1274	0.4240	0.5694	0.054^{*}	0.50
N1	$-0.0046(8)$	$0.3371(17)$	$0.5809(12)$	$0.040(2)$	
N2	$-0.154(2)$	$0.409(5)$	$0.578(4)$	$0.059(8)$	0.50
H2A	-0.1586	0.3048	0.6251	0.071^{*}	0.50
H2B	-0.1999	0.4856	0.5531	0.071^{*}	0.50
Hg1	0.0000	$0.05992(11)$	0.7500	$0.0451(6)$	
I1	$0.16288(9)$	$-0.07523(19)$	$0.76493(17)$	$0.0629(7)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.038(7)$	$0.040(7)$	$0.051(7)$	$0.005(6)$	$0.016(6)$	$0.008(7)$
C2	$0.034(7)$	$0.046(8)$	$0.055(9)$	$-0.003(5)$	$0.016(6)$	$0.005(6)$
N1	$0.039(6)$	$0.035(5)$	$0.050(6)$	$0.002(4)$	$0.018(5)$	$0.004(5)$
N2	$0.054(17)$	$0.062(17)$	$0.070(17)$	$0.020(14)$	$0.032(15)$	$0.034(14)$
Hg1	$0.0390(8)$	$0.0411(8)$	$0.0576(8)$	0.000	$0.0164(5)$	0.000
I1	$0.0484(10)$	$0.0655(10)$	$0.0793(11)$	$0.0199(5)$	$0.0241(7)$	$0.0154(5)$

Geometric parameters (A, ${ }^{\circ}$)

C1-N1	1.363 (19)	N1-Hg1	2.497 (11)
$\mathrm{C} 1-\mathrm{C} 2^{\text {i }}$	1.38 (2)	N2-H2A	0.8600
C1-H1	0.9300	N2-H2B	0.8600
C2-N1	1.33 (2)	$\mathrm{Hg} 1-\mathrm{I} 1^{\text {ii }}$	2.6372 (13)
C2-H2C	0.9300	Hg1-I1	2.6373 (13)
$\mathrm{C} 2-\mathrm{C} 1^{\text {i }}$	1.38 (2)	$\mathrm{Hg} 1-\mathrm{N} 1^{\text {ii }}$	2.497 (11)
C2-N2	1.38 (4)		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2^{\text {i }}$	119.6 (14)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Hg} 1$	117.9 (10)
N1-C1-H1	120.2	C2-N2-H2A	120.0
C2- ${ }^{\text {- }} 1-\mathrm{H} 1$	120.2	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{C} 1{ }^{\text {i }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	119.0	H2A-N2-H2B	120.0
$\mathrm{N} 1{ }^{\text {i }}$ - $2-\mathrm{H} 2 \mathrm{C}$	149.0	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Hg} 1-\mathrm{N} 1$	80.4 (5)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}^{\text {i }}$	121.6 (15)	$\mathrm{N} 1^{\text {ii }}-\mathrm{Hg} 1-\mathrm{I} 1^{\text {ii }}$	100.6 (3)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	120.0 (17)	$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{Il}^{\text {ii }}$	110.8 (3)
$\mathrm{C} 1{ }^{\text {i }}$ - $2-\mathrm{N} 2$	118.2 (18)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{Hg} 1-\mathrm{I} 1$	110.8 (3)
C2-N1-C1	118.6 (13)	N1-Hg1-I1	100.6 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Hg} 1$	122.9 (10)	$\mathrm{I} 1^{\mathrm{ii}}-\mathrm{Hg} 1-\mathrm{I} 1$	138.71 (7)
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	3 (3)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\text {ii }}$	-68.8 (12)
N2-C2-N1-C1	179 (2)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\text {ii }}$	102.6 (12)
$\mathrm{Cl}^{\text {i }}-\mathrm{C} 2-\mathrm{N} 1-\mathrm{Hg} 1$	174.4 (13)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{I}^{\text {ii }}$	29.0 (13)
N2-C2-N1-Hg1	-10 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{I} 1^{\text {ii }}$	-159.7 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	-3 (3)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{I} 1$	-178.4 (12)
C2i-C1-N1-Hg1	-174.8 (12)	C1-N1-Hg1-I1	-7.0 (11)

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x, y,-z+3 / 2$.
Hydrogen-bond geometry (A, ${ }^{9}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.86	2.83	$3.67(3)$	169

Symmetry code: (ii) $-x, y,-z+3 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5467).

