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Abstract: Basal stem rot (BSR), caused by Ganoderma spp., is one of the most important emerging
oil palm diseases in Colombia, and is restricted to two oil palm production areas in the country.
To identify the causal agent of the disease, basidiocarp of oil palms affected by BSR were used to
prepare isolates, and their pathogenicity was then assessed in pre-nursery plants. Four-month-old
oil palm seedlings were inoculated with rubber wood (Hevea brasiliensis) blocks colonized with
dikaryotic mycelia of Ganoderma. The incidence, severity, and symptoms of the pathogen were
assessed. A multiregional analysis (ITS, rpb2, and tef1-α) was carried out to identify the isolates; all
isolates were determined to be Ganoderma zonatum. Phylogenetic analyses with the three regions
yielded concordant phylogenetic information and supported the distinction of the isolates with high
bootstrap support. Seven isolates (CPBsZN-01-29, CPBsZN-02-30, CPBsZN-03-31, CPBsZN-04-34,
CPBsZN-05-35, CPBsZN-06-36, and CPBsZN-07-38) were pathogenic in oil palm, with incidences
greater than 90% and a maximum severity of 34%, and the highest severity index was found in isolates
CPBsZN-03-31, CPBsZN-04-34, and CPBsZN-06-36. The pathogen was recovered from inoculated
oil palms in all cases. This study reveals the pathogenic association of Ganoderma zonatum with BSR
in Colombia.

Keywords: Elaeis guineensis; pathogenicity; phylogenetic analysis

1. Introduction

Oil palm (Elaeis guineensis and interspecific hybrid OxG (Elaeis oleifera X Elaeis guineen-
sis)) is one of the main agro-industries in Colombia, with a planted area of more than
559,000 hectares and a palm oil production of 1,528,739 tons, ranking fourth as a producer
worldwide [1]. Crop health is one of the main limiting factors, and bud rot and lethal
wilt are the most important oil palm diseases. However, basal stem rot (BSR), which is
still restricted to two oil palm production areas of Colombia, is one of the most relevant
emerging problems that affects oil, even in other countries in the world. BSR is the most
important disease in Malaysia and Indonesia, which are the world’s leading producers of
crude palm oil. The economic losses caused by this disease in Indonesia are estimated to be
USD 256 million per year for each 1% of infections by Ganoderma boninense [2,3].

Although various studies on BSR have been carried out in Colombia, the causal agent
of the disease is still unknown. The species G. boninense, G. zonatum, and G. miniatocinctum
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have been associated with BSR of oil palm in other regions of the world where this crop is
grown [4,5]. Among the different Ganoderma species associated with oil palm production in
Southeast Asia, G. boninense has been identified as the main causal agent of the disease for
its high degree of virulence [6]. This hemibiotrophic basidiomycete causes lethal effects
in plants by degrading the lignin and cellulose of the cell walls of the stem through the
action of ligninolytic enzymes that affect the xylem, and consequently the transport of
nutrients and water, thereby affecting biochemical and physiological processes that impair
the normal development of the plant [7,8].

Several studies on plants reveal the importance of determining the plant-pathogen
relationship by assessing the pathogenicity and virulence of pathogenic microorganisms [9].
For oil palm, different artificial inoculation methods have been adopted using Ganoderma:
inoculating seedlings in vitro with mycelia produced in the medium to assess their interac-
tion with the roots [10], inoculating seedlings in vitro at the base with mycelia [11], spraying
the roots of oil palm seedlings with a mycelial suspension [12], immersing the seedling
roots in a mycelial suspension [13], inoculating the primary roots of pre-germinated seeds
with 3.3 cm3, 27 cm3, 216 cm3 rubber wood blocks colonized with dikaryotic mycelia of
Ganoderma [14], and inoculating four-month-old seedlings [15] and six- to twelve-month-old
plants [16] with rubber wood (Hevea brasiliensis) blocks colonized with dikaryotic mycelia
of Ganoderma spp. [14].

The last method has been used to assess the pathogenic capacity of different species
of Ganoderma [14], the importance of the potential importance of the inoculum within
the pathosystem [17], the manifestation of symptoms [2], the aggressiveness of differ-
ent isolates [18], the susceptibility of different oil palm varieties to the disease [19], the
effectiveness of different biological controllers as an integrated disease management strat-
egy [15,20,21], and the importance of nutrition as a defense mechanism of the plant against
the pathogen [22–24].

Studies carried out in Colombia relate the symptoms found in plants affected by BSR
with the presence of basidiocarps at their base and the extraction of isolates of Ganoderma
spp [25]. However, this study did not determine the pathogenicity of isolates of Ganoderma
spp. related to the disease. Therefore, to determine the pathogenic association of Ganoderma
with BSR in northern Colombia, it is necessary to isolate basidiocarp of the pathogen from
diseased oil palms, to test the pathogenicity of the different isolates, and to morphologically
and molecularly identify the pathogenic microorganisms in oil palm.

2. Materials and Methods
2.1. Description of Symptoms and Preparation of Isolates of Ganoderma spp.

The external and internal symptoms of diseased oil palms were detected in plantations
with reported cases of BSR in northern Colombia. Basidiocarp of Ganoderma were collected
from those diseased oil palms and then transported to the Laboratory of Phytopathology of
Cenipalma. Under laminar flow conditions, the surface of the basidiocarps was disinfected
with 70% alcohol. These were then divided into two parts. One part was cut into small
portions of approximately 5 mm in diameter and was disinfected with 70% alcohol, 1%
hypochlorite, and sterile distilled water, and then seeded in Petri dishes with selective
culture medium for Ganoderma (GSM) [26]. The other part of the basidiocarp was used to
extract the context tissue and then was directly seeded in the culture medium GSM and
Malt extract agar (MEA) [27]. The Petri dishes were incubated at 26 ◦C in the dark. The
presence of the microorganism was tested four to seven days later, and the hyphae tips
that grew out from the basidiocarp segments were sub-cultured and maintained into fresh
plates containing MEA.

2.2. Preparation of Inoculum

The rubber wood (Hevea brasiliensis) blocks methodology described by [19,27,28] was
used with some modifications to prepare the inoculum. Briefly, rubber wood blocks
(6 cm × 6 cm × 6 cm) were oven dried at 70 ◦C for 24 h. Next, they were sterilized in
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an autoclave for 2 h at 121 ◦C and 15 psi. Once sterilized, they were immersed in a
solution with 3% Malt extract for 24 h. They were then separated into individual blocks
and sterilized again. Finally, each block was inoculated with ten discs taken from actively
growing Ganoderma cultures and incubated at 27 ◦C in the dark for five months.

2.3. Assessment of the Pathogenicity of the Isolates

The test was established in the municipality of Aracataca-Magdalena (10◦34′11.7′′ N
74◦11′7.33′′ W) in the shade under a 50% shade cloth and in the local environmental condi-
tions (mean temperature of 27 ◦C, relative humidity of 86%, and mean annual rainfall of
1545 mm). The plant material used in the study consisted of four-month-old Elaeis guineensis
(Dura x Pisífera) oil palm nursery seedlings, which were transplanted into new bags with
a sterilized substrate composed of soil and organic matter in a 4:1 ratio. At planting, a
colonized rubber wood block was placed in direct contact with the root system.

A total of seven isolates were assessed via this test using a completely randomized
design. The number of treatments corresponded to the number of isolates plus two controls
(control with rubber wood block without pathogen and an absolute control without any
rubber wood block). There were five replicates and the experimental unit corresponded to
a total of ten plants. This test was carried out twice, once in 2018 and once in 2019.

The internal and external symptoms of the inoculated plants were registered. The
pathogenicity of the isolates was assessed based on the external symptoms observed weekly
till 29 weeks post-inoculation (wpi) using the disease severity scale designed by [29], the
disease severity index (DSI) with values between 0 and 100 according to the formula
proposed by [29], and the severity of foliar symptoms (SFS) of [30].

For seedlings showing both external and internal symptoms, fresh tissues with visible
lesions were collected from the advance zone in the bulb and root, and then the surface was
sterilized following the methodology described above. Thereafter, fragments of approxi-
mately 5 mm were seeded in an MEA culture medium. The isolate was purified seven days
after seeding, and the morphology of the mycelia of Ganoderma spp. was observed under
an optical light microscope (magnification 40×) and we observed the clamp connection
structure of Ganoderma.

2.4. Assessment of Somatic Compatibility of the Isolates of Ganoderma spp.

To assess genetic similarity using the somatic compatibility test, seven isolates of
Ganoderma spp. prepared from oil palms affected by BSR were tested on 2% MEA medium,
placing a 0.5 mm plug for each isolate and pairing them in all combinations, using self-
crosses as controls, as reported by [31]. Two plugs were placed per 9-mm Petri dish with
culture medium at 2 cm. They were incubated in the dark at 25 ◦C for 14 days. Three Petri
dishes were used per interaction and assessed at the end of the test using the antagonism
scale [32].

2.5. Molecular Identification of Isolates Associated with BSR

Seven isolates were grown in a Malt extract liquid culture medium containing 15%
Malt extract and 5% yeast extract, and then filtered. The mycelia were macerated with liquid
nitrogen and stored at −70 ◦C until use. DNA was extracted following the standardized
protocol of the Laboratory of Molecular Biology of Cenipalma, modified from [33]. Briefly,
100–200 mg of macerated tissue was mixed with 700 µL of extraction buffer (0.5 M NaCl,
0.2 M Tris pH 8.0, 10 mM EDTA pH 8.0, 1% SDS) preheated to 65 ◦C. After 2 h of incubation
at 65 ◦C, the supernatant was collected from a centrifugation at 8000 rpm for 15 min and
previously purified with an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1),
the supernatant was purified with chloroform: isoamyl alcohol (24:1) and centrifugated at
8000 rpm for 15 min, and the aqueous phase was collected. DNA was precipitated with cold
isopropanol for at least 16 h at−20 ◦C. After centrifugation, the pellet was washed with 70%
ethanol, dried and resuspended in an appropriate volume of 1× TE pH 8.0 according to
the size of the pellet. The DNA was visualized on 1.0% agarose gels (1× TAE, 4 µL of DNA
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per well plus 2 µL of EZ-Vision (Amresco, Framingham, MA, USA) via electrophoresis for
30 min at 100 volts and was quantified via spectrophotometry using a Synergy MX (BioTek,
Santa Clara, CA, USA).

Partial regions of ITS, rpb2, and tef1-α were amplified using the primers forward/reverse
ITS1F/ITS4b [34], fRPB2-5F/bRPB2-7R2 [35,36], and EF1-983F/EF1-2218R [37], respectively.
PCR was carried out in a 15 µL solution composed of 13 µL of master mix and 2 µL of DNA.
The 13 µL of master mix consisted of 7.4 µL H2O, 1× of 10× PCR-buffer, 1.5 mM of MgCl2,
0.5 µM of each primer of three regions, 0.2 mM of dNTPMix, and 0.3 U Taq-polymerase.
The amplification parameters for the ITS, rpb2, and tef1-α regions were as follows: initial
denaturation at 95 ◦C for 3 min, 40 cycles of amplification with denaturation at 95 ◦C
for 35 s, annealing for 35 s at 60 ◦C for ITS and at 55 ◦C for tef1-α or for 1 min at 52 ◦C
for rpb2, and extension at 72 ◦C for 1 min, with a final extension of 10 min at 72 ◦C. The
PCR products were visualized in 1.5% agarose gels (1× TAE, 4 µL of PCR product per
well plus 2 µL of EZ-Vision (Amresco, Framingham, MA, USA) using electrophoresis for
45 min at 100 volts. The PCR products were purified and sequenced using Macrogen Inc.
(Seoul, South Korea) with an automated ABI3700 DNA sequencer with the primers used in
each PCR.

The sequencing results were edited, and the consensus sequences were constructed us-
ing Sequencher™ 5.3 (Gene Codes Corporation, Ann Arbor, MI, USA). Once the sequences
had been edited, identity was confirmed against the GenBank database with the BLASTn
algorithm (Basic Local Alignment Search Tool, http://www.ncbi.nlm.nih.gov/BLAST ac-
cessed on 20 October 2021). The sequences of this study along with 14 reference sequences
(accession numbers in Table 1) were then aligned and edited using the MUSCLE algorithm
in MEGA X [38]. The alignments of each region were concatenated in MEGA X, and the
resulting gaps were inspected manually. With the final matrix of the three concatenated
regions, the nucleotide substitution model based on the Bayesian information criterion (BIC)
was determined using MEGA X for subsequent phylogenetic analysis. The phylogenetic
analysis was carried out using the maximum likelihood (ML) method based on the T92+G
model (Tamura 3 parameters using the gamma distribution) [33]. The support for nodes
was carried out using the bootstrapping method with 1000 pseudoreplicates. The species
Tomophagus colossus was included as a related external group (Table 1).

Table 1. Information on the species used in the phylogenetic analyses.

Species Voucher Origin
GenBank Accession Number

ITS rpb2 tef1-α

Ganoderma boninense WD 2028 Japan KJ143905 KJ143964 KJ143924
Ganoderma boninense WD 2085 Japan KJ143906 KJ143965 KJ143925
Ganoderma zonatum FL 02 FL-USA KJ143921 KJ143979 KJ143941
Ganoderma zonatum FL 03 FL-USA KJ143922 KJ143980 KJ143942
Ganoderma lucidum Cui 9207 Yunnan, China KJ143910 KJ143970 KJ143928
Ganoderma lucidum K 175217 UK KJ143911 KJ143971 KJ143929
Tomophagus colossus TC 02 Vietnam KJ143923 - KJ143943
Tomophagus colossus CGMCC5 763 Philippines - JQ081070 -

3. Results
3.1. Description of Symptoms and Preparation of Isolates

The oil palms affected in the field by BSR presented foliar symptoms, such as bending
of the lower leaves, which can break at some point along the rachis forming a raceme,
followed by drying and necrosis of the leaves. The newer leaves showed abnormal growth
(shortening), and their leaflets were thinner and more fragile (leaflet bending) compared
to those of healthy oil palms. There was also an accumulation of multiple spears that
remained unopened, and the palms had a vase-like appearance in the middle-third of the
leaves upwards as they were more erect than normal.

http://www.ncbi.nlm.nih.gov/BLAST
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In general, the affected oil palms showed thickening and accumulation of adventitious
roots, which are friable, dry, and have a corky appearance. There were also fructifications
of the pathogen in the form of small primordia (initially) or basidiocarps with a lacquered
surface and whitish border at the base of the stem and in those roots (Figure 1). At the level
of the stem, craters can occur in very advanced cases of the disease.

Figure 1. External symptoms observed in oil palms affected by BSR in the field in Colombia. (A) Oil
palm with symptoms of wilting and chlorosis. (B) Unopened spears. (C) Snapping/flattening of the
crown. (D) Formation of adventitious roots. (E) Typical basidiocarps of Ganoderma zonatum on a BSR
affected palm.

An internal stem rot was observed, characterized by the appearance of areas with
different colors or brown shades (from dark to light). These areas are furrowed by bands or
lines of darker colors that give them the appearance of lesions on a map. Cross-sections of
the stem showed bright yellow transitional areas between the affected and healthy tissues
corresponding to disease progression areas (Figure 2). In adult oil palms, this rot develops
more frequently laterally around the stem, that is, the rot goes from the outside to the
inside, compared to the rot in young oil palms, which develops from the innermost part
(center of the stem) to the outside.
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Figure 2. Internal development of lesions of Ganoderma in oil palms in Colombia. (A,B) Presence of
lesions with irregular border (C) Delimitation of light and dark areas. (D) Presence of mycelium in
debris stem.

3.2. Isolates and Pathogenicity Tests

Seven isolates of Ganoderma were obtained from oil palm plantations in northern
Colombia, with the following Cenipalma isolate bank codes: CPBsZN-01-29, CPBsZN-02-
30, CPBsZN-03-31, CPBsZN-04-34, CPBsZN-05-35, CPBsZN-06-36, and CPBsZN-07-38.

All isolates were pathogenic to oil palm when inoculated in seedlings.
The appearance of symptoms was observed from wpi 6. The external symptoms

included a slight initial chlorosis, which quickly turned into a necrosis from the apex of the
leaves and progressed to affect the entire leaf blade. Some plants showed the development
of a mycelial mass at the base, which progressively advanced to a small white button that
gave rise to a well-developed Ganoderma basidiocarp. At advanced stages of symptom
development, the plants became completely necrotic and died, with or without the presence
of the signs (Figure 3). The internal symptoms were characterized by necrosis of the primary
roots and stem bulb, symptoms not observed in the non-inoculated controls (Figure 4).

Of the seven isolates of Ganoderma, only four (CPBsZN-01-29, CPBsZN-03-31, CPBsZN-
04-34, and CPBsZN-06-36) showed signs of the pathogen, along with root and bulb necrosis.
The presence of Ganoderma was confirmed after growth in GSM medium and is character-
ized by white mycelial growth and the presence of brown halos around the colony. The
non-inoculated plants (negative control) showed no signs (Figure 5).

The appearance of signs occurred from wpi 12 in seedlings inoculated with isolate
CPBsZN-03-31, with the development of a white mycelial mass; however, such mycelial
development started at wpi 16, 18, and 21 for isolates CPBsZN-06-36, CPBsZN-01-29, and
CPBsZN-04-34, respectively.

The incidence of BSR in inoculated seedlings in the first weeks (wpi 12 to 16) was 9%
for isolate CPBsZN-05-35, 10% for isolates CPBsZN-04-34 and CPBsZN-06-36, and 12% for
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isolate CPBsZN-03-31. From wpi 17 to 20, the incidence ranged from 52 to 82%, with isolate
CPBsZN-07-38 reaching the highest percentage. The severity index during this period
ranged from 11 to 19.33% for isolates CPBsZN-01-29 and CPBsZN-06-36, with significant
differences only for the latter. At the end of the assessments at wpi 27 to 29, the highest
incidence of 100% was found for seedlings inoculated with isolate CPBsZN-06-36, with a
severity index of 34%, and the lowest incidence was 94% for isolate CPBsZN-02-30, with a
severity index of 23.5% (Table 2).

Figure 3. Progression of the symptom of basal stem rot in four-month-old oil palm seedlings inocu-
lated with Ganoderma zonatum. (A) Asymptomatic infected seedlings at 15 weeks post inoculation
(wpi). (B) Seedling infected at 18 (wpi) with necrosis on lower leaves. (C) Seedling at 21 wpi with
generalized necrosis and mycelium formation at the base of the stem. (D–F) Infected seedling >23 wpi
with visible basidiocarp. (G–J) seedling infected at >26 wpi shows complete basidiocarp formation.

Figure 4. Oil palm seedlings exhibit external and internal symptoms. (A–D) Foliar symptoms
in plants inoculated. (F–I) Bulb of the infected seedlings show brown coloration and necrosis.
(E,J) Control (uninoculated) without signs of necrosis and healthy bulb.
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Figure 5. Seedlings inoculated with isolates of Ganoderma zonatum that presented the formation of
basidiocarp. (A) CPBsZN-01-29. (B) CPBsZN-03-31. (C) CPBsZN-04-34. (D) CPBsZN-06-36.

The SFS at wpi 12 was 71.98 and 70.80% for isolates CPBsZN-05-35 and CPBsZN-07-38,
respectively, followed by isolate CPBsZN-03-31 with a SFS of 70.26%. At wpi 29, isolates
CPBsZN-03-31 and CPBsZN-05-35 reached a SFS of 73.22 and 73.25%, respectively, while
isolate CPBsZN-04-34, which showed the highest number of basidiocarps (6 seedlings),
reached a SFS of 64.7%. Isolates CPBsZN-01-29, CPBsZN-03-31, and CPBsZN-06-36 each
had four seedlings with basidiocarps, with a SFS of 56.54, 59.96, and 69.34%, respectively.
As for the bulb severity index (BSI), all isolates of Ganoderma had some degree of necrosis
compared to controls, with isolates CPBsZN-03-31, CPBsZN-05-35, and CPBsZN-07-38
showing the highest severity with percentages of 49, 45, and 37%, respectively. Although
there were no basidiocarp in some treatments, the bulbs were affected by the pathogen.
Likewise, these isolates showed the highest mortality rate, with values of 46, 40, and 36%,
respectively (Figure 6). The pathogenicity was confirmed by the re-isolation of Ganoderma
from the bulbs of inoculated seedlings.

Figure 6. Mortality rate in nursery oil palms inoculated with isolates of Ganoderma obtained from oil
palms affected by BSR in northern Colombia after 29 weeks.



J. Fungi 2022, 8, 230 9 of 14

Table 2. Severity index in plants inoculated with Ganoderma zonatum.

Isolate

Disease Incidence (Weeks
Post Inoculation) (%)

Mean Disease Severity Index (DSI) (Weeks Post Inoculation)
(%)

20 23 26 29 20 23 26 29

T1 CPBsZN-01-29 52 88 90 96 11.00 (2.8) c 20.67 (3.54) b 26.50 (1.73) bc 28.83 (0.57) c
T2 CPBsZN-02-30 68 88 88 94 15.16 (1.6) b 21.17 (1.60) b 22.50 (0.50) d 23.50 (0.50) e
T3 CPBsZN-03-31 66 90 98 98 15.00 (1.3) b 23.00 (1.32) b 28.00 (2.00) b 30.67 (0.28) b
T4 CPBsZN-04-34 68 86 92 96 15.33 (2.5) b 22.33 (1.89) b 26.67 (1.52) bc 31.16 (1.60) b
T5 CPBsZN-05-35 70 96 98 98 16.50 (2.2) ab 22.33 (2.25) b 25.00 (0.00) c 24.67 (0.28) d
T6 CPBsZN-06-36 74 92 98 100 19.33 (2.3) a 27.50 (1.00) a 30.67 (1.60) a 34.00 (0.50) a
T7 CPBsZN-07-38 82 92 98 98 18.33 (2.0) ab 23.17 (0.28) b 24.67 (0.28) c 24.50 (0.00) de
T8 Control 1 0 0 0 0 0.00 d 0.00 c 0.00 e 0.00 f
T9 Control 2 0 0 0 0 0.00 d 0.00 c 0.00 e 0.00 f

DSI means followed by the same letter are not significantly different with a p = 0.05 according to Duncan’s multiple
range test. Values within parentheses correspond to the standard deviation.

3.3. Assessment of Somatic Compatibility of Isolates of Ganoderma

All possible pairings of the assessed strains presented incompatibility since an inhi-
bition zone or barrier line was formed and presented different levels of incompatibility
(weak, moderate, and strong), except for the self-crosses (control) in which the colonies
merged into one (Figure 7). These results indicate that the isolates are genetically different
and originate from a different inoculum.

Figure 7. Somatic compatibility of seven isolates of Ganoderma using in this study, showing formation
of inhibition zone or barrage in incompatible reactions. (A) compatible reaction of self-pairing
(control) between CPBsZN-01-29; (B) incompatible reaction between isolates CPBsZN-03-31 and
CPBsZN-07-38 (weak interaction); (C) incompatible reaction between isolates CPBsZN-04-34 and
CPBsZN-05-35 (moderate interaction); and (D) incompatible reaction between isolates CPBsZN-02-30
and CPBsZN-03-31 (strong interaction).

3.4. Molecular Identification of Isolates Associated with BSR

Twenty-one sequences were generated in this study and deposited in GenBank: seven
from ITS (MZ170061–MZ170068), seven from tef1-α (MZ197864–MZ197870), and seven
from rpb2 (MZ229332–MZ229338). The partial sequencing of the ITS, rpb2 and tef1-α
regions led to the identification, with a sequence identity greater than 97%, 98%, and
97%, of Ganoderma zonatum Murrill, 1902, respectively, compared with the references
sequences of GenBank. Additionally, identities of 92.3–99.9% for ITS, 98–100% for rpb2,
and 97–100% for tef1-α were found among the sequences in this study. The alignment
based on the combination of the three regions comprised a set of 14 taxa with a total
consensus of 2116 characters, including gaps (722 from ITS, 914 from rpb2, and 453 from
tef1-α), corresponding to 1310 conserved sites, 719 variable sites, 579 parsimoniously
informative sites, and 212 singletons. Phylogenetic analysis grouped all isolates associated
with BSR, identified with the name of G. zonatum, in a subclade of the reference sequences of
G. zonatum with a support of 94%. Likewise, within the major clade, the species Ganoderma
boninense was grouped with them, with a support of 100% (Figure 8).
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Figure 8. Phylogenetic tree of isolates associated with BSR based on data provided by a combination
of the ITS, rpb2, and tef1α regions. The numbers above the nodes represent bootstrap values. The
topology and values are derived from maximum likelihood analysis.

4. Discussion

Our study established the pathogenic association and identification of isolates with
BSR of oil palm in Colombia by assessing the incidence and severity index in semi-
controlled conditions of infection, progression, and development of the disease, and the
molecular proximity with the species G. zonatum. Moreover, the in vitro somatic incompat-
ibility between isolates revealed genetic heterogeneity, thereby indicating, as suggested
by [39], the importance of basidiospores in the infection cycle of this disease.

The symptoms associated with BSR caused by G. boninense in oil palm are deterioration
in water absorption and nutrient deficiency in the foliage of the affected palms, chlorosis,
the accumulation of spears, the bending of the leaves until flattening of the crown at
advanced stages, and the presence of basidiocarps at the base of the plants [28,40–42],
corroborating the symptoms observed in plantations affected by BSR in Colombia.

All the isolates obtained in our study corresponded to G. zonatum and were pathogenic
in oil palm with different degrees of severity. Therefore, the presence of G. boninense, a
species recognized as the main causal agent of BSR in producing countries such as Malaysia
and Indonesia, has not yet been confirmed in Colombia [23,43–45]. This is supported by the
findings of [4], who indicated that the dominance of Ganoderma species associated with BSR
could vary depending on the location. Although G. zonatum showed a higher severity than
G. boninense in artificial inoculations, the disease has continued to be restricted to two palm
areas in Colombia with a relatively low incidence since its first records in 1994 [25,46,47].

Pathogenicity results showed that the isolates obtained in this study varied and
were statistically different, corroborating the different aggressiveness among Ganoderma
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strains reported in numerous studies [5,14,48,49]. This is mainly due to genetic variations,
inoculum potential, aggressiveness of the isolates and their interaction with external factors,
such as temperature, humidity and solar radiation. [19]. The appearance of symptoms in
the most aggressive isolate of our study was from wpi 12, corroborating the reports of [29]
for inoculations with G. boninense. With regard to incidence, authors such as [17,50] report
for G. boninense and [48] for G. boninense and G. zonatum, infection rates ranging from 60 to
100% at six and eight months post inoculation, agreeing with the results of this study, in
which all isolates showed values above 90% at the end of the experiment.

Severity indices in the last assessment of the experiment ranged from 23 to 34%, and
was lower than those reported by [29] and [51] who used the same disease severity scale in
seedlings artificially inoculated with G. boninense, with values of 87 and 90.4%, respectively.
However, our severity values are closer to those reported by [48] for G. zonatum, with
values of 34.08 and 43.78% for two isolates analyzed in the study. Lastly, the mortality rates
found in our study were higher than those reported for G. zonatum by [48].

Some authors, such as [17,28,52], reported that the initial post-inoculation symptoms
by Ganoderma were foliar chlorosis followed by necrosis and drying; however, the first
symptom observed in this study was necrosis from the apex to the base of the leaf. This
initial symptom was similar to that reported by [53].

The genetic heterogeneity of the isolates agrees with numerous studies on Gano-
derma [31,39,49,54–56], which indicated that intra- and interspecific somatic compatibility
is not frequent in this genus. Therefore, it is suggested that the mode of dispersal between
oil palms in northern Colombia is possibly based on basidiospores.

This study assessed three genomic regions for the genetic identification of the seven
isolates which were associated with the species G. zonatum. One of these regions was the in-
ternal transcribed spacer that has been particularly useful in the identification of fungi [57],
and is considered a rapidly evolving region [58,59]. In this study, the ITS region had a
particular behavior and was observed, in data not shown, which the alignment based only
of ITS region which comprised a set of nine taxa, seven sequences obtained in this study and
two G. zonatum sequences from GenBank, with a total consensus of 722 characters, includ-
ing gaps, corresponded to 623/722 conserved sites and 86/722 variable sites, additionally
the results obtained of identities (92–98%), were made necessary to confirm the identity
using other markers. The other two regions: second largest subunit of RNA polymerase II
(rpb2) and translation elongation factor 1-α (tef1α) have been instrumental to resolve the
ambiguous evolutionary relationships that exist among species of Ganoderma [35,36]. The
rpb2 region tends to resolve the main clades at high and low taxonomic levels compared to
the tef1α region, which is strongly conserved [36]. Therefore, the combination of these three
regions was able to discern conserved and variable regions among species of Ganoderma,
thereby supporting the approximation of the species extracted in the isolates associated
with BSR to G. zonatum in this study.

The phylogenetic approximation based on the ITS, rpb2, and tef1-α regions resulted
in the close relation identification of G. zonatum with the isolates associated with oil palm
BSR in this study, and this is the first report of the species in Colombia. All isolates from
this region of Colombia were grouped in a single subclade belonging to clade C of the
isolates of G. zonatum from Florida and G. boninense from Japan reported by [60], with the
entire phylogenetic topology agreeing with that of the aforementioned study. However,
the findings indicate the need for further studies to compare more molecular markers and
more isolates of G. zonatum, including those from this study and those from other studies
reported in Africa, Asia, the US, Argentina, and Brazil [60–65] to determine if the species
has a different genetic diversity behavior and spatial distribution in different continents.

Finally, to our knowledge, this is the first report on the extraction, identification, and
characterization of G. zonatum as a causal agent of BSR in Colombia. These results contribute
to the knowledge of the biology of this pathogen in Colombia, and with the identification
of the causal agent of BSR in Colombia, could lead to studies of genetic improvement,
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epidemiology, and management strategies of BSR that will allow for the minimizing of the
incidence and spread of this disease in oil palm plantations in our country.
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