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We present a method based on generalized N-dimensional principal component analysis (GND-PCA) and a 3D shape normal-
ization technique for statistical texture modeling of the liver. The 3D shape normalization technique is used for normalizing liver
shapes in order to remove the liver shape variability and capture pure texture variations. The GND-PCA is used to overcome
overfitting problems when the training samples are too much fewer than the dimension of the data. The preliminary results of
leave-one-out experiments show that the statistical texture model of the liver built by our method can represent an untrained liver
volume well, even though the mode is trained by fewer samples. We also demonstrate its potential application to classification of
normal and abnormal (with tumors) livers.

1. Introduction

In the recent years, digital atlases of human anatomy have
become popular and important topics in medical image
analysis research [1, 2]. For interpretation of images of
structures and variations in the organs of the human body,
it is important to have a model of the way organ volumes can
be represented.

The digital atlas can be categorized as a statistical shape
atlas (statistical shape model) and a statistical appearance
(volume) atlas (statistical appearance (volume) model). The
statistical shape model focuses on the shape information,
such as feature points and volume surface [3]. It is a useful
tool for study of variations in anatomic shape and has
been widely used in medical image analysis, for example,
medical image segmentation [4–6] and shape registration
[7]. The statistical appearance model is focused on both
shape and texture (voxel intensity) information. Inspired
from the works of active shape models (ASMs) [3], the
authors of [5, 8] proposed 3D ASMs for construction of
3D statistical models for segmentation of the left ventricle
of the heart. In [9], the authors extended the work on
active appearance models (AAMs) [10], and propose the

use of 3D AAMs for the segmentation of cardiac MR and
ultrasound images. Also, work [11] was done to build
the 3D statistical deformation models (SDMs) for 3D
MR brain images. Radiologists are mainly depending on
the intensity variations (texture information) in livers on
medical images to identify modules or tumors and make a
diagnostic decision. However, there has been little research
on applications of digital atlas to computer-assisted diagnosis
(CAD). We have shown the potential application of statistical
shape models to the classification of normal and cirrhotic
livers [12]. Because many diseases will change the texture
(voxel value) of the organ significantly, we need to capture
not only shape variations, but also texture (voxel value)
variations. Compared to statistical shape modeling, statistical
texture modeling usually faces overfitting problems, and
the statistical texture modeling for medical volumes is a
challenging task because the dimensions of the medical
volume are very high, while the training samples are much
fewer than the dimensions of the data.

In our previous work, we have proposed a tensor-based
subspace learning method named generalized N-dimension-
al principal component analysis (GND-PCA) for statistical
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appearance modeling of medical volumes [13]. The high-
dimensional volume is treated as a 3rd-order tensor, and the
optimal subspace on each mode is calculated simultaneously
by minimizing of the square error between the original tensor
(volume) and the reconstructed tensor (volume), based on
the subspace with an iteration algorithm. As an improvement
on our previous work [13], we propose a framework for
capturing texture variations of the liver by using GND-
PCA together with a 3D shape normalization technique (a
nonrigid registration technique). The GND-PCA is used
to overcome the overfitting problem, and the 3D shape
normalization technique is used for normalizing liver shapes
to remove the liver shape variability and capture pure texture
variations. The leave-one-out experiments show that the
statistical texture model of the liver built by our method can
represent an untrained liver volume well, even though the
model is trained by fewer samples. The preliminary results
also show that the features extracted by the statistical texture
model have the capability of discrimination for different
types of volume data, such as normal and abnormal (with
tumors).

The rest of the paper is organized as follows. In Section 2,
we introduce our methodology. In Section 3, we present the
experimental evaluation of our approach after introducing
the datasets we used. Section 4 concludes the paper by
summarizing the main points of our contribution.

2. Methodology

Our proposed method for statistical texture modeling con-
sists of two steps: (1) employing a nonrigid transformation
for 3D shape normalization and (2) applying the GND-PCA
method for feature extraction. The basic scheme is presented
in Figure 1.

2.1. 3D Shape Normalization. In order to remove shape
variations, we apply a nonrigid transformation based on
mathematical forms for normalizing all of the datasets to the
same shape. This is because the mathematical nonrigid trans-
formations are simpler, and they can make the registration
faster. Additionally, we do not need to assume the physical
parameters, which are difficult to guess in practice. Hence, we
adopted the mathematical nonrigid transformation in our
research.

Here, we applied rigid transformation for global trans-
formation and B-spline transformation for local transforma-
tion. The combination of global and local transformations
can be represented by

T(x) = TGlobal(x) + TLocal(x), (1)

where x = [x, y, z]T is the coordinate of a 3D point.
A rigid transformation is expressed by

TGlobal(x) = Rx + t, (2)

where R is the rotation matrix which can be calculated from
the rotation angles θ = [θx, θy , θz]

T around each axis. t is the

translation vector t = [tx, ty , tz]
T along each axis. There are 6

parameters that should be estimated.
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Figure 1: Basic scheme of statistical texture modeling.

The local motion is described by cubic B-spline-based
free-form deformation (FFD) modeling [14, 15]. FFD is
based on locally controlled functions such as the B spline
and has been applied successfully to image registration. The
basic idea of FFD is to deform an object by manipulating an
underlying mesh of control points. B spline transformation
is defined on a regular mesh of control points with uniform
spacing. Let ρ = [ρx, ρy , ρz]

T be the spacing of the control
points along each axis. The coordinate of a control point can
be expressed by

ϕi j =
[
ϕijk,x,ϕijk,y ,ϕijk,z

]T =
[
iρx, jρy , kρz

]T
, (3)

where i, j, k are the sequence number of the control
points. Given the coefficients (translations) of the control
points denoted as λi j = [λi jk,x, λi jk,y , λi jk,z]

T , the B-spline
transformation of a point x can be expressed by

TLocal(x) =
∑

i jk

λi jkβ
(3)

(
x − ϕijk,x

ρx

)
β(3)

(
y − ϕijk,y

ρy

)

× β(3)

(
y − ϕijk,z

ρz

)
,

(4)

where β(3)(a) is the third order cubic B-spline kernel. The
coefficients of the control points, λi jk, are the parameters of
the B-spline transformation.

The parameters of global and local transformation are
optimized separately [16]. We applied software in matlab
named nonrigid B-spline grid image registration toolbox
[17], which is based on FFD.

2.2. GND-PCA Method. Modeling for medical images is an
important task in medical image analysis. The principal
component analysis (PCA) method [18] is an efficient
method for building statistical appearance models. In the
PCA-based face representation and recognition methods, the
2D face image matrices must be previously transformed into
1D image vectors column by column [19]. Such an unfolding
process causes two problems; one is the huge calculation cost
and another is the poor performance to be generalized.
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To overcome these problems, a new technique called 2-
dimensional principal component analysis (2D-PCA) [20]
has been proposed, which directly computes eigenvectors of
the covariance matrix of the image without matrix-to-vector
conversion. It was reported that the recognition accuracy
with 2D-PCA on several face databases was higher than that
with conventional 1D-PCA. However, the main disadvantage
of 2D-PCA is that it needs many more coefficients than that
with 1D-PCA for image representation. A method called
generalized 2-dimensional principal component analysis
(G2D-PCA) [21] has been proposed for finding the optimal
basis for both row- and column-mode subspaces.

Recently, a method called N-dimensional PCA (ND-
PCA) was proposed for high-dimensional data analysis [22].
In this method, the high-dimensional data are treated as a
higher-order tensor which is directly trained to obtain the
bases on one mode subspace by higher-order singular value
decomposition (HOSVD) [23, 24]. This method was applied
to 3D scanning data. Because ND-PCA only compresses the
data on one mode subspace, it also suffered from the problem
that the data cannot be represented efficiently, similar to the
problem of 2D-PCA.

Inspired by the framework of generalized 2-dimensional
principal component analysis [21] and N-dimensional prin-
cipal component analysis [22], in our previous work, we
proposed a method called generalized N-dimensional princi-
pal component analysis (GND-PCA). The high-dimensional
data are treated as a series of higher-order tensors, and the
optimal subspace on each mode is simultaneously calculated
by minimizing the square error between the original tensor
and the reconstructed tensor based on the subspace with an
iteration algorithm.

Algorithm 1. GND-PCA is formalized as follows. Given a
series of the N-order tensors with zero means, Ai ∈
RI1×I2×···×IN , i = 1, 2, . . . ,M, M is the number of samples. We
hope to get another series of low-rank (J1, J2, . . . , JN ) tensors
A∗

i which accurately approximate the original tensors, where
Jn ≤ In. The new series is decomposed by the matrices
U (n) ∈ RIn×Jn with orthogonal columns according to Tucker’s
model [24], which is shown by

A∗
i = Bi×1U(1)×2U(2) × · · ·×nU(n) × · · ·×NU(N), (5)

where Bi ∈ RJ1×J2×···×JN are core tensors. An illustration of
reconstructing a third-order tensor by three orthogonal bases
is shown in Figure 2.

The orthogonal matrices U(n) can be determined by
minimizing the cost function as

C=
M∑

i=1

∥∥∥Ai −Bi×1U(1)×2U(2)×· · ·×nU(n)×· · ·×NU(N)
∥∥∥2
.

(6)

Supposing that the rank of the N matrices U(n) is known, we
use an iteration algorithm to obtain the N optimal matrices,

U(1)
Opt, U(2)

Opt, . . . , U(N)
Opt, which are able to minimize the cost

function C.
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Figure 2: Reconstruction of a three-order tensor by the three
orthogonal bases of mode subspace.
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Figure 3: Slices of abnormal datasets.

Here, each matrix U(n) contains a set of basis vectors.
An input sample can be calculated as a core tensor with the
benefit of U(n). This core tensor is the feature of the input
sample.

Details about GND-PCA can be found in [13].

3. Experimental Results

3.1. Datasets and Preprocessing Step. The dataset we used to
test the proposed method contains 23 abdominal CT scans
collected from 23 patients, taken under similar conditions of
illuminations and scanner setting. Each dataset obeys these
conditions: slice thickness 2.5 mm, pitch 1.25 mm, 256× 256
matrix, and 79 slices. This dataset contains 19 cases with
no radiologic finding (noted as normal) and 4 cases with
radiologic finding (noted as abnormal). Figure 3 illustrates
slices of abnormal datasets with tumors (red circles label the
tumor positions).



4 International Journal of Biomedical Imaging

(a)

(b)

Sample 1 Sample 4 Sample 19

Figure 4: Example of datasets (some slices). (a) Original datasets. (b) 3D shape normalized datasets.

(a) (b)

(c) (d)

Figure 5: 3D shape normalization processing (one slice from volume data). (a) Moved image. (b) Fixed image. (c) Shape normalized moved
image. (d) Inverse of 3D shape normalization.

The dimension of each sample is 256 × 256 × 79.
Initially livers are segmented manually from the datasets.
Then we apply a rigid registration [9] for position nor-
malization. Such pretreated datasets are noted as original
datasets. As we mentioned in the previous section, we also
apply a nonrigid registration to the dataset for both posi-
tion and shape normalization to remove shape variations.
The shape-normalized volumes are noted as 3D shape-
normalized datasets. Some original datasets and their 3D
shape-normalized data are shown in Figure 4.

3.2. 3D Shape Normalization Step. We show the effectiveness
of shape normalization in Figure 5. Here, Figure 5(a) is
one slice of moved-volume dataset, and Figure 5(b) is the

corresponding slice of fixed-volume dataset. Figure 5(c) is
the normalized slice of the moved volume dataset. In order
to show that 3D shape-normalization processing causes little
loss of texture information while interpolate the pixel values
for shape deformation, we apply 3D shape normalization to
the normalized moved-volume dataset again to transform
it back to the original shape. Comparison of the inverse
slice (Figure 5(d)) with the original slice (Figure 5(a)) shows
that 3D shape normalization processing keeps almost all
texture information. Thus, it is reasonable to apply 3D
shape normalization as a preprocessing step to remove shape
variations.

In our experiment, we chose the B-spline grid dimen-
sions as (26 26 8), and we randomly chose one dataset as
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(a) (b) (c) (d)

Figure 6: Reconstructed results for two slices of one test sample without shape normalization. (a) Original images. (b) Images reconstructed
with 10× 10× 4 basis by GND-PCA. (c) Images reconstructed with 100× 100× 40 basis by GND-PCA. (d) Images reconstructed by PCA
(eigenface method); all 15 available bases are used in the reconstruction.

(a) (b) (c) (d)

Figure 7: Reconstructed results for two slices of one test sample after shape normalization. (a) 3D shape-normalized images. (b) Images
reconstructed with 10×10×4 basis by GND-PCA. (c) Images reconstructed with 100×100×40 basis by GND-PCA. (d) Images reconstructed
by PCA (eigenface method); all 15 available bases are used in the reconstruction.
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Figure 8: Normalized correlations while basis increasing.

the fixed volume and normalized the other dataset to the
same shape.

3.3. Modeling for Generalization. The proposed GND-PCA is
applied to both original and shape-normalized datasets. The

leave-one-out experiment is done to test the generalization
ability of GND-PCA. As a small number of abnormal
datasets of the liver, we randomly used 15 datasets to
learn the optimal subspaces, and of the others the one left
untrained was used as an input. Typical results are shown
in Figures 6 and 7. The test volume was reconstructed
from 10 × 10 × 4 and 100 × 100 × 40 mode-subspace
bases by GND-PCA, respectively. Figure 8 illustrated that the
reconstructed images were improved by an increase in the
subspace basis. In spite of having very few samples, we still
could obtain an almost perfect reconstruction with 100 ×
100× 40 basis. In order to make a comparison, we also show
the reconstructed results by the conversional PCA (eigenface)
method in Figures 6(d) and 7(d), which show that the quality
of the reconstructed results are not satisfied even though the
entire 15 available bases are used for reconstruction because
of overfitting.

The normalized correlations between the original vol-
ume and the reconstructed volume are shown in Figure 8.
Compared with in the case of the original dataset, the
datasets can be represented by a small number of bases in
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Table 1: Euclidean distances of features.

Original data 3D shape-normalized data

ED ED-LDT ED ED-LDT

LDT 26984 0 13817 0

Normal dataSet 1 29101 2117.5 13339 −477.55

Normal dataSet 2 20394 −6589.4 8474.4 −5342.3

Normal dataSet 3 16811 −10173 11872 −1944.7

Normal dataSet 4 21584 −5399.6 9432.6 −4384

Abnormal dataSet 1 25896 −1087.8 18400 4583.8

Abnormal dataSet 2 29633 2649.2 17314 3497.1

Abnormal dataSet 3 23303 −3680.3 16502 2685.6

Abnormal dataSet 4 30405 3421.6 19241 5424

LDT

LDT LDT

LDTLDT

Bcenter

Bcenter

Bcenter

BcenterBcenter

Training Testing

Input a testing

normal data,

Input a testing

abnormal data,

True

True

False

False

Figure 9: The rule for judging a test sample as normal or abnormal (2D case as example).

the case of shape-normalized dataset because the subspace
contains only texture variations.

3.4. Modeling for Discrimination. Next, we introduce a sim-
ple experiment to show that the features extracted by our
methods have the capability for discrimination. We used
only 15 normal datasets for training and left the other 8
datasets for testing. The testing samples included 4 normal
datasets and 4 abnormal datasets. After we obtained the
optimal subspace by the GND-PCA method, each sample
was represented by a core tensor. The core tensor is a feature
of the sample and is noted as Bi. We also calculate the mean
feature of all of the training datasets and noted it as BCenter.
Here, the dimension of the core tensor is 100× 100× 40.

The Euclidean distance (ED) is applied to the calculation
of the distance between Bi and BCenter. Table 1 shows the
ED for all the testing samples. Compared with those in
the original datasets, the distances decreased in the shape-
normalized dataset’s experiments. We demonstrated that
shape variations are removed by 3D shape normalization.

Next, we showed how to identify the normal datasets
and abnormal datasets. The features captured by our method

are tensor formed; they can be flatten as high-dimensional
vectors. In order to separate the features into two classes:
normal and abnormal, we need to find a high-dimensional
hyperplane. It is difficult to describe the hyperplane in high-
dimensional space; we use Figure 9 as a 2D case to show how
to find a hyperplane. Compared with the normal datasets,
abnormal datasets have some significant parts in texture.
If we do not consider the effect of shape, the significant
parts caused a higher value of ED for abnormal datasets
because we only used normal samples for training. We used
the largest ED of the training sample (LDT), which is also
shown in Table 1, as a boundary of normal and abnormal for
classification. Table 2 gives the classified results for two kinds
of dataset experiments. It demonstrates that the features
extracted by our method have better performance for
discriminations between the normal and abnormal classes.

4. Conclusion

In this paper, we developed a statistical texture model-
ing method for medical volumetric images based on 3D
shape normalization and GND-PCA. We first propose to
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Table 2: Classification result.

Class Test sample number Correct classified number Accuracy

Original data experiment
Normal 4 3 75%

Abnormal 4 2 50%

3D shape normalized data experiment
Normal 4 4 100%

Abnormal 4 4 100%

use a 3D shape normalization technique to normalize all
volume datasets to the same shape to obtain the 3D shape-
normalized datasets, which can be considered to contain only
the texture variations. Then we trained them to construct the
statistical model only for texture by GND-PCA method for
application to liver volumes. Reconstruction results show a
good performance on generalization by using our proposed
method. We also designed a simple experiment to identify
different types of data with corresponding features, such
as normal and abnormal, which proved that the proposed
model can be used for computer-assisted diagnostics of liver
disease. In the future, we will test our method with more
datasets for classification and use our method in practical
applications.
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