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Abstract 
Coronavirus disease 2019 (COVID-19) is caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). 
Its main protease, 3C-like protease (3CLpro), is an attractive target for drug design, due to its importance in virus replica-
tion. The analysis of the radial distribution function of 159 3CLpro structures reveals a high similarity index. A study of the 
catalytic pocket of 3CLpro with bound inhibitors reveals that the influence of the inhibitors is local, perturbing dominantly 
only residues in the active pocket. A machine learning based model with high predictive ability against SARS-CoV-2 3CLpro 
is designed and validated. The model is used to perform a drug-repurposing study, with the main aim to identify existing 
drugs with the highest 3CLpro inhibition power. Among antiviral agents, lopinavir, idoxuridine, paritaprevir, and favipiravir 
showed the highest inhibition potential.
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Graphical abstract
Enzyme – ligand interactions as a key ingredient for successful drug design
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Introduction

Since the outbreak of severe acute respiratory syndrome in 
2003 and Middle East respiratory syndrome in 2012 caused 
by SARS-CoV and MERS-CoV, respectively, viruses from 
the genus Coronavirus came into the focus of the scien-
tific community [1–6]. Unfortunately, the appearance of a 
new member of the Coronaviridae family, SARS-CoV-2, in 
December 2019 in Wuhan, Hubei province, China, caused 
a global pandemic with significant effects on the health, 
social, economic, and environmental domains [7–10]. 
Recently, the first efficient vaccines against COVID-19, a 
disease caused by the SARS-CoV-2 virus, have become 
available [11–13]. Nevertheless, FDA has approved only 
one medicine, the antiviral drug remdesivir, for treatment 
of COVID-19 requiring hospitalization [14]. Design and 

development of SARS-CoV-2 drugs is ‘a hot potato’ in 
nowadays science and pharmaceutical industry. 3C-like pro-
tease (3CLpro), papain-like protease (PLpro), nonstructural 
protein 12 (nsp12) and RNA-dependent RNA polymerase 
(RdRp) have been selected as the main potential drug targets 
[15, 16].

The sequence of 3CLpro enzyme of SARS-CoV-2 and 
SARS-CoV has a high level of similarity (96%) [17]. 3CLpro 
is a homodimeric enzyme with an essential role in viral rep-
lication and transcription [18]. In a dimer, only one protomer 
demonstrates catalytic activity [19, 20]. With 306 residues, 
the protomer’s three-dimensional structure is usually divided 
into three domains (Fig. 1) [21, 22]. An antiparallel β-barrel 
is the main secondary structure motif of domains I (resi-
dues 8–101) and II (residues 102–184). On the other hand, 
five α-helices form compact antiparallel globular domain III 
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(residues 201–303), connected to domain II by long linker 
group (residues 185–200). The first seven residues from the 
N-terminus side are forming the N-finger, which is believed 
to have a significant role both in dimerization and in estab-
lishing proteolytic activity [23, 24]. In the heart of the bind-
ing site, located in a cleft between domains I and II, is a con-
served histidine-cysteine catalytic dyad. Here, Cys145 has a 
role of a nucleophile in the first step of the proteolysis, while 
His41 is the base catalyst [25]. The existence of allosteric 
binding sites in the groove between domains II and III has 
been proposed, with the possibility to stop the dimerization 
and prevent enzyme maturation [26, 27].

The beginning of the global COVID-19 pandemic 
required immediate response—initial idea was to repurpose 
already approved drugs and use them to fight SARS-CoV-2. 
Chiou et al. [28] performed screening of 774 FDA-approved 
drugs against 3CLpro activity. Ethacrynic acid, naproxen, 
and allopurinol were shown as the most potent SARS-CoV-2 
3CLpro inhibitors, with  IC50 values below 5 μM. Combined 
docking and MM-PBSA study [29] of six available anti-
HIV drugs, which act as HIV-1 protease inhibitors, iden-
tified indinavir and darunavir as potential anti-COVID-19 
drugs. At the same time, clinical trials for lopinavir–ritona-
vir cocktail have shown the combination to be ineffective 
for the treatment of severe COVID-19 cases [30]. Alamri 
et al. [31] combined pharmacoinformatics with molecular 
dynamics studies to reveal potential covalent inhibitors capa-
ble of binding to the thiol group of Cys145. Additionally, 
they proposed paritaprevir and simeprevir, anti-hepatitis C 
virus drugs acting as NS3/4A serine protease inhibitors, as 

best hits from FDA-approved drugs list for clinical trials to 
fight COVID-19. Khan et al. [32] performed docking and 
molecular dynamics simulations to propose paritaprevir and 
raltegravir as lead candidates for inhibition of SARS-CoV-2 
3CLpro, and dolutegravir and bictegravir for inhibition of 
2′-O-ribose mathylotransferase. Alternative approach seeks 
inspiration from nature, from microbial natural products [26] 
to phytocompounds [33–36], to pinpoint active compounds 
useful for treatment of COVID-19 patients.

Structural and evolutionary analysis of SARS-CoV and 
SARS-CoV-2 main proteases indicated that the design of 
novel inhibitors or repurposing existing ones might be chal-
lenging [37]. Detailed molecular dynamics simulations of 
3CLpro reveal several difficulties one has to be aware of 
in designing 3CLpro inhibitors. Although SARS-CoV and 
SARS-CoV-2 main proteases differ by 12 residues located 
mostly on the enzymes’ surface, both shape and size of the 
binding site experience significant changes, due to its flex-
ibility and plasticity. The encouraging result of this study is 
the identification of a small number of residues with signifi-
cant contribution to the protein stability—a potential target 
for a new class of inhibitors. Recently, Chen et al. [38] gave 
an overview of potential inhibitors of SARS-CoV, MERS-
CoV, and SARS-CoV-2 main proteases in lower μM and 
sub-μM regimes. Because of the lack of antivirus activity 
of peptide-like 3CLpro inhibitors in animals due to inter-
actions with host proteins, they suggested small molecular 
inhibitors, with higher solubility and lower cytotoxicity. In 
the same line is work by Zhang et al. [39] who reported a 
series of noncovalent 3CLpro inhibitors with 20 nM potency.

Fig. 1  The structure of SARS-CoV-2 3CLpro in homodimeric form 
(left) and two perspectives of the monomer (right). The N-finger 
(residues 1–7) is depicted in dark blue, domain I (residues 8–101) 

in cornflower blue, domain II (residues 102–184) in orange, the loop 
region (residues 185–200) in green, domain III (residues 201–306) in 
red
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Great variety of artificial intelligence and machine 
learning methods were exploited with the aim to repurpose 
existing or to design new and effective anti-COVID-19 
drugs [40–45]. Nand et al. [40] trained a decision stump 
machine learning predictive model to reduce a dataset of 
1528 anti-HIV compounds to 356 compounds with strong 
bioactivity against 3CLpro. Then, in a series of steps, 
which included Lipinski’s rule of five filter, molecular 
docking, application of deep learning model, structural 
activity relationship analysis, and molecular dynam-
ics simulations, two molecules—CID-230119 and CID-
948801 were identified as hit compounds. Mohapatra 
et al. [45] designed a machine learning model based on 
the Naïve Bayes algorithm with 73% accuracy, and among 
FDA approved drugs found antiviral drug amprenavir as 
the most effective for the treatment of COVID-19. Except 
repurposing anti-HIV drugs against 3CLpro, Khan et al. 
[46] performed virtual screening of Traditional Chinese 
medicines database. For top hits compounds based on 
docking scores, they performed 100 ns molecular dynam-
ics simulations. Based on RMSD, RMSF, and bind-
ing free energy (estimated using MM/GBSA approach) 
analysis, saquinavir and TCM5280805 emerged as com-
pounds with the highest potential inhibitory role within 
the screened database. Kumar and Roy developed multiple 
linear regression (MLR) model and identified structural 
descriptors contributing to the increase and decrease of 
inhibitory potential [47]. Janairo et al. [48] build MLR, 
support vector regression (SVR), classification and regres-
sion trees (CART), random forest, and artificial neural net-
works (ANN) models predicting binding free energies and 
compared their performances. Exploiting five topological 
descriptors, the MLR model achieved the best score with 
R2 being 0.81. Among several developed machine learning 
models, Kumari and Subbarao pointed to the convolutional 
neural network (CNN) one, as being the most potent one 
in the binary classification of anti-SARS molecules [49].

In this paper, we calculated the recently introduced 
radial distribution function (RDF) weighted by the num-
ber of valence shell electrons [50–52] for 159 experimen-
tally determined structures of SARS-CoV-2 3CLpro com-
plexed with different ligands. The structural advantages 
of RDF, like it unambiguously describes 3D structures, 
its independence of the size of a molecule, and being 
invariant against translation and rotation of a molecule, are 
upgraded with electronic properties characteristic for each 
atom in a molecule. After design and careful validation of 
a model capable of predicting bioactivity against SARS-
CoV-2 3CLpro, the activity was predicted for 6407 FDA 
approved and experimental compounds, revealing poten-
tial inhibitors of the main protease within the DrugBank 
database [53, 54].

Methods

Radial distribution function

The Protein Data Bank [55, 56] was queried for SARS-
CoV-2 3CLpro (the main protease) structures with small 
molecules (ligands) bound in the active site. Our in-house 
software was used to manipulate downloaded pdb files. All 
water molecules, ions, additives, and small molecules out-
side the active site were removed. Since we are interested 
in estimating the similarity of the enzyme itself, we also 
deleted ligands. If the experimental structure was resolved 
for a homodimeric complex, only chain ‘A’ was retained. In 
the case when there were several structures with the same 
ligand, the structure with better resolution entered our data-
set. Structures with two or more missing residues were not 
considered. For all main proteases from our dataset radial 
distribution function (RDF) weighted by the number of 
valence shell electrons (g[r]) were calculated.

Briefly, the RDF vector, whose size is defined by the dis-
tance of its two most distant atoms (rMAX), represents each 
structure [50, 57]. The elements of the vector are g(r) values, 
calculated in 0.1 Å intervals:

aij is the sum of atomic polarizabilities of atoms i and j, 
rij the distance between atoms i and j, N is the number of 
atoms in a molecule and the preexponential factors pi and pj 
account for the number of outer electrons of the i-th and j-th 
atoms, correspondingly. If we define average RDF, gavg(r) , as

where n is the number of structures in dataset, then the simi-
larity index, σA, can be estimated

In that case, the similarity between RDFs of structure A and 
the averaged RDF is the overlapped area divided by the area 
under averaged RDF.

To test the hypothesis that perturbations induced by 
ligand bound into the catalytic pocket are local in nature, 
109 structures with ligand in the proximity of Cys145 were 
selected. For each complex, all residues having at least one 
atom within 5.12 Å from the ligand were listed. 25 residues, 
referred from now on as catalytic pocket residues, fulfilled 
distance-based criteria for 7K40, complexed with ligand 
boceprevir. To treat all active sites on the same footing, from 
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original pdb files catalytic pocket residues were extracted, 
followed by calculation and analysis of g(r). Ligands were 
excluded from calculations, to preserve consistency and for 
easier similarity index comparison. For more details see Ref-
erences [50, 52].

As an additional measure of similarity, the root mean 
square deviations of Cα atomic positions for all structures 
were evaluated. To do so, structures were superimposed by 
creating pairwise sequence alignments first, followed by fit-
ting the aligned residues using the MatchMaker module of 
Chimera [58], and default parameters. Then, the pairwise 
root mean square deviations (RMSD) of CA atoms in the 
protein backbone for all structures were calculated.

QSAR model design and validation

A list of SARS-CoV 3CLpro inhibitors with experimen-
tally determined  IC50 values constituting our training set 
(see Table SI1 in the Supporting Information) is obtained 
from the ChEMBL database [59, 60]. The  IC50 values were 
converted to  pIC50, while 3D structures were generated 
using the GP_global module available at the chemosophia.
com site [61]. Geometries were optimized by the MultiGen 
algorithm for global minimization with conserving initial 
stereochemistry [62, 63]. Those molecules were used to 
reconstruct the molecular field of the model receptor using 
3D-QSAR Cinderella’s Shoe (CiS) algorithm introduced in 
References [64–66]. The molecular field in the CiS method 
is represented by Coulomb and van der Waals potential on 
the molecular surface of each m-th atom of the ligand mol-
ecule with j-th pseudo-atom of the modeled receptor [67, 
68]. Those contributions are calculated using the MERA 
force field [67, 69]. The performance of the CiS algorithm 
was thoroughly tested using various small molecules data-
sets and for different kinds of bioactivities and proved as 
a high quality classification scheme, with cross-validation 
quality usually above 0.9 [62, 65, 70–72]. The neural net-
work approach was used to model the relationship between 
bioactivity  (pIC50) and CiS descriptors. The computed bio-
activity was transformed to the desirability function. The 
desirability function [65], offers an alternative approach in 
the drug classification problem, defining the probability of 
the activity as a value between 0 (minimum probability of 
bioactivity) and 1 (maximum probability of bioactivity). As 
an external validation of the model, the desirability func-
tion for 38 molecules experimentally verified against the 
SARS-CoV-2 3CLpro target was predicted (see Table SI2 
in Supporting Information for the list of the molecules and 
their desirability function). Based on the analysis of the con-
fusion matrix, the desirability function’s threshold value was 
determined, discriminating active from inactive compounds. 
Technical details about QSAR model design and validation 

are summarized in Table 1. For specific implementation 
details see References [67, 68].

Bioactivity prediction

A database of FDA approved and experimental drugs was 
obtained from DrugBank (version 5.1.7) [53, 54]. All mix-
tures, charged species, and compounds containing metals 
were excluded, and 6407 molecules remained in the final 
database, constituting the prediction set. In case the 3D 
structure of the drug was not part of the sdf file downloaded 
from DrugBank, the 3D molecular structure was generated 
by RDKit [74]. MM3 molecular mechanics force field was 
used for geometry optimization and global minimum search 
[75], with special attention paid to avoid inversion of chiral 
centers. For optimized structures, activity against SARS-
CoV-2 3CLpro was predicted and transformed to desirability 
function using our newly developed model.

Molecular docking

The structure of the SARS-CoV-2 3CLpro was taken from 
Reference [26]. It was extracted from 900 ns molecular 
dynamics simulation, as a representative structure of the 
dominant conformation, with a population above 86%. 
Standard protocol for target preparation was followed—
Gasteiger charges were added to each atom and nonpolar 
hydrogens were merged. After atom type determination, 
the structure was saved as pdbqt file using Chimera [76]. 
AutoDockTools 4 [77] were used to prepare fifteen FDA-
approved drugs with the highest predicted activity against 
SARS-CoV-2 3CLpro for docking. The center of the grid 
box was at the position of Cys145 CA atom, with Carte-
sian coordinates 13.3, 58.2, and 45.4, and the size of the 
box 20 × 25 × 25 Å3. Exhaustiveness and the number of 
modes were set to 100. All ligand poses within 4 kcal  mol−1 
relative to the pose with the highest score were saved, and 
after visual inspection of the plausibility, the conformation 
with the lowest binding energy bound was kept. Docking 
experiments were performed using the AutoDock Vina [78] 

Table 1  Parameters and validation of QSAR models for a prognosis 
of anti-SARS-CoV bioactivity

QSAR model SARS-CoV 3CLpro

Method Neural network
Algorithm CiS
Potential Coulomb, van der Waals
Internal validation Tenfold cross-validation with 80:20 set split
Cross-R2 0.91
External validation 38 molecules set from Mody et al. [73]
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software. The appropriateness of our approach was validated 
in our previous study [27].

Results and discussion

Structural analysis

All SARS-CoV-2 3CLpro from our dataset share the same 
primary structure. 130 out of 159 structures have two resi-
dues whose positions have not been resolved. Those missing 
residues are Ser1 and Gln306, in two cases, and Phe305 
and Gln306 in the rest of the cases. The role of a hydrogen 
atom and hydrogen bonds in the chemistry of life should 
not be underestimated [79–81]. However, since a hydrogen 
atom has only one electron, it is extremely hard to obtain its 
position accurately using an X-ray crystallography. To avoid 
introducing additional errors into the experimental structure 
by modelling protonation states and the site of protonation 
for residues’ side chains, g(r) was calculated only for non-
hydrogen atoms [51]. Properties of g(r), like that it unam-
biguously describes a 3D arrangement of the atoms, and it 
is invariant against translation and rotation of a molecule, 
enable us to draw some conclusions about the proteases’ 
structures, just by comparing its g(r). As can be seen from 
Fig. 2, displaying g(r) of all 3CLpros from our dataset, RDF 
curves are very similar, sharing the same features. For exam-
ple, two sharp spikes at 1.4 Å and 2.4 Å are followed by two 
less pronounced spikes at 3.8 Å and 4.9 Å. The fine structure 
is lost for distances above 5 Å. The global maximum of the 
function is in the 20.4 Å to 22.4 Å range, and the difference 
in the g(r) maximum value is below 4%. The analysis of 
standard deviations showed that the g(r) of proteases differs 
the most at 20.5 Å (Fig. 2, right). The standard deviation at 

that distance is 4386.5, being only 0.71% of the maximal 
value at that point.

The maximum of the first spike, 1.4 Å, could be inter-
preted as the mean interatomic distance between two neigh-
boring atoms, while a spike at 2.4 Å is a mean distance 
between two atoms separated by two bonds. Since only 
non-hydrogen atoms are considered, only carbon–carbon, 
carbon–oxygen, carbon–nitrogen, and carbon–sulphur inter-
actions contribute to the total g(r). The similarity index, σ, 
varies between 0.9808 and 0.9998. Having in mind that there 
are no mutant proteases in our dataset, the differences in the 
structure can be explained by different experimental condi-
tions or as a structural rearrangement due to perturbation 
introduced by bound ligands. In addition, in our dataset, 
both covalent and non-covalent inhibitors are present. High 
similarity between g(r) indicates that the structural changes 
experience the tertiary structure of the enzyme, most prob-
ably by reorientation of flexible loops and/or side chains.

Based on the analysis of the residues having at least 
one atom closer to a ligand then 5.12  Å, 25 catalytic 
pocket residues were identified (Thr25, Thr26, Leu27, 
His41, Met49, Tyr54, Phe140, Leu141, Asn142, Gln143, 
Ser144, Cys145, His163, His164, Met165, Glu166, 
Leu167, Pro168, Val186, Asp187, Arg188, Gln189, 
Thr190, Ala191, Gln192) (Fig. 3). As a template, a 7K40 
structure was used, with boceprevir being the inhibitor 
having the most close contacts. On the other side, com-
plexes 5RHB and 5RHC, having small methanimine 
derivatives, have only nine residues fulfilling the 5.12 Å 
criterion. To treat all structures on the same footing, in our 
analysis of the active pocket, we include all 25 catalytic 
pocket residues for all structures, and to reduce ‘noise’, 
inhibitors were excluded. g(r) of catalytic pocket share 
similar features for small distances with g(r) of all pro-
teases, with resolved maxima at 1.4 Å, 2.4 Å, 3.7, Å and 

Fig. 2  Radial distribution function weighted by the number of valence shell electrons, g(r), for a series of SARS-CoV-2 3CLpro (left), and its 
standard deviations (right)



2637Molecular Diversity (2022) 26:2631–2645 

1 3

4.8 Å. The similarity index, σ, is more spread, being in 
the range between 0.9485 and 0.9919. While the mean 
σ for the catalytic pocket is 0.9860 ± 0.0060, σ equals 
0.9971 ± 0.0025 for the whole enzyme for the same data 
set. Two-sided Student’s t test showed that the difference 
is statistically significant (t = −17.9, p = 1 ×  10–44). This 
finding corroborates our assumption that although large 
amplitude motions of domain III influence the geometry of 
the active site, perturbations introduced by bound ligands 
(even covalently bound) are local. One can see from the 
inset on Fig. 3 that g(r) of the active pocket has the biggest 
standard deviation at 8.8 Å. At this distance, we identify 
atoms with dominant contributions to the g(r = 8.8 Å). The 
dominant contribution is defined as a g(r) value larger than 
the mean g(r) contribution plus two standard deviations 
for a specific distance r [50]. Nitrogen atoms forming pep-
tide bond from Glu166 and Met165, and peptide’s bond 
oxygen atom from Val186 are three atoms with a domi-
nant contribution to 101, 99 and 94 complexes out of 109, 
respectively. While Met165 and Glu166 are part of the 
β sheet in domain II, Val186 is part of a nonstructured 
loop connecting domains II and III. In the 7K40 com-
plex of 3CLpro with boceprevir, Glu166’s nitrogen forms 
a hydrogen bond with boceprevir’s carbonyl oxygen and 
the distance between the two atoms is 2.95 Å. Met165’s 
nitrogen and Val186’s oxygen are not in direct contact with 
the ligand, but those residues are neighbors through space 
and influence the depth of the active site. It is interesting 
to note a big difference in the occurrence of the atoms of 
two catalytic dyad residues as atoms with a dominant con-
tribution. While the NE2 atom of His41 is dominant for 89 
structures, the S atom of Cys145 is having the dominant 
contribution in only 11 complexes. Covalent inhibitors are 
binding to the S atom of Cys145, restricting its flexibility. 
At the same time, His41 has to adapt to bound ligands, and 

reorientation of the imidazole ring is the way to optimize 
interaction patterns.

Well-established procedures for getting insight into the 
structural differences include widely accepted protein over-
lay and root mean square deviation calculations. Pairwise 
RMSD of carbon atoms in the backbone was calculated. The 
resulting heat map of RMSD values is presented in Fig. 4. 
Although here side chains are neglected, and the analysis 
was performed only for the enzyme’s backbone, some valu-
able conclusions could be drawn. Only five structures have 
RMSD values above 1.0 Å—6LZE, 6M0K, 6W79, 7BUY, 
and 7JU7. 6M0K and 5RF9 differ the most, with the RMSD 
value being 1.78 Å. When those two structures are over-
laid, one can see that the most significant difference is in 
the C-terminus. The last few residues, starting from Cys300, 
showed the greatest flexibility. In 5RF9, they are oriented 
toward domain II, while in 6M0K (and 6LZE, 6W79, 7BUY, 
and 7JU7) are pointing to the side of the domain III. Addi-
tionally, this position enables interaction between C- and 
N-terminus, with interatomic distance between CA atoms 
of Ser1 and Val303 being below 6.4 Å. The reason for the 
higher flexibility might lie in the fact that they do not par-
ticipate in secondary structure formation and as terminal 
residues, their motion is restricted only from one side. Both 
N-finger and residues around the C-terminus’ last helix are 
known to have an important role in the enzyme dimeriza-
tion [82, 83].

Bioactivity prediction and docking

Reliable models with high predictive power are ‘must have’ 
tools for successful drug repurposing. Tenfold cross-valida-
tion of our model was performed as an internal validation 
method. The cross-Q2 equals to 0.91, indicating the model’s 
robustness and high predictive ability. Recently, Mody et al. 

Fig. 3  The catalytic pocket of 7K40, with inhibitor boceprevir (left). Radial distribution function weighted by the number of valence shell elec-
trons, g(r), for a series of SARS-CoV-2 3CLpro catalytic pocket (right), and its standard deviations (inset)



2638 Molecular Diversity (2022) 26:2631–2645

1 3

[73] performed an in vitro enzymatic inhibitory assay study, 
testing enzymatic activity of 3CLpro against selected drugs 
(including viral protease inhibitors, viral non-protease inhib-
itors, and off-target drugs). We used those results as an 
external set to validate our model. The desirability function 
value of 0.82 is identified as the threshold for binary clas-
sification of compounds. Compounds are classified as being 
inactive when the desirability function predicted value is 
lower than 0.82, or active if equal or higher. The threshold 
is obtained by analyzing the confusion matrix, and statistical 
parameters derived from it, like accuracy and Matthews cor-
relation coefficient (MCC). The elements of the confusion 
matrix, true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN), were used to calculate both 
the MCC 

�

TP⋅TN−FP⋅FN
√

(TP+FP)⋅(TP+FN)⋅(TN+FP)⋅(TN+FN)

�

 and the accuracy 
(

TP+TN

TP+FP+TN+FN

)

 . For the desirability function being 0.82, the 
accuracy and the MCC are 0.84 and 0.41, respectively. Here 
is important to point out that according to Mody et al. [73] 
lopinavir is classified as non-active. But if lopinavir is clas-
sified as active, according to Zhang et al. [84], desirability 
function threshold is 0.87, with improved accuracy and 
MCC values of 0.89 and 0.62, respectively. Ivermectin, 
tipranavir and paritaprevir, with experimental  IC50 values 
equal to 21.5 μM, 27.7 μM, and 73.4 μM [73], are also pre-
dicted to be active against 3CLpro enzyme by the model.

Since our model demonstrated predictive potential dur-
ing validation, we predicted the activity of 6400 molecules 
from the DrugBank database against SARS-CoV-2 3CLpro. 
All results are compiled in Table SI3 in Supporting Infor-
mation. 17 molecules with the highest activity are listed 
in Table 2. The highest predicted activity against 3CLpro 
has toremifene, a nonsteroidal selective estrogen receptor 
modulator, used in the treatment of advanced breast cancer. 

According to ClinicalTrials.gov (identifier NCT04531748), 
a randomized, double-blind, controlled clinical trial is try-
ing to evaluate the effects of toremifene in adults with mild 
COVID-19 [85]. Martin and Cheng suggested toremifene’s 
mechanism of action as a potential blocker of the spike gly-
coprotein and methyltransferase nonstructural protein 14 
(NSP14) inhibitor [86]. But, 500 ns long molecular dynam-
ics simulation of 3CLpro complexed by toremifene showed 
that after 284 ns toremifene leaves the binding pocket.

The mechanism of cleavage of polyproteins by 3CLpro 
has been investigated for the SARS-CoV virus [18, 87]. 
Since the initial step includes deprotonation of Cys145 thiol 
and nucleophilic attack of anionic sulfur on the carbonyl car-
bon atom, a variety of peptidomimetics and small molecule 
covalent inhibitors have been proposed [88]. Independent of 
the nature of the potential inhibitor (covalent/non-covalent 
targeting active pocket), it has to interact with the target. 
Being aware of the drawback of the docking experiments 
[89–91], we performed docking of hit molecules against 
SARS-CoV-2 3CLpro, to get a general idea about interac-
tions between potential inhibitor and target within the cata-
lytic pocket. 900 ns molecular dynamics simulation of free, 
unbound 3CLpro performed by Novak et al. identified two 
dominant enzyme’s conformations, with predicted popula-
tions of 86.7% and 13.3% [26]. Although the main structural 
difference is the large amplitude motion of domain III, it 
affects the geometry of the catalytic pocket, being wider in 
the dominant conformer. Succinamide-CoA (DB03905) is a 
quite big compound, classified as experimental, with a molar 
mass of 850.6 g  mol−1. Because of flexibility and numerous 
functional groups, it is capable to form a variety of interac-
tions with residues forming the pocket (Fig. 5). For exam-
ple, it forms hydrogen bonds with Thr26, Asn28, Asn119, 
Phe140, Asn142, Gly143, Cys145, Hie163, Hie164 residues. 

Fig. 4  Structural analysis of SARS-CoV-2 3CLpro. Pairwise RMSD presented as a heat map (left). An overlay of two structures with the highest 
RMSD value (right) highlighting the area with the biggest structural difference (yellow rectangle). 5RF9 (blue), 6M0K (red)
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Table 2  Top 17 compounds 
from DrugBank with the highest 
predicted bioactivity against 
SARS-CoV-2 3CLpro, together 
with their 2D structures and 
docking score (in kcal  mol−1)

DB ID Name 2D Desirability Docking

DB00539 Toremifene 0.999945 –5.8

DB13621

Tetragalacturonic 

acid 

hydroxymethyle

ster

0.999883 –6.1

DB04045

(R)-

methylmalonyl-

CoA

0.999873 –5.3

DB13664 Formocortal 0.99987 –7.0

DB03962

Nicotinamide 8-

bromo-adenine 

dinucleotide 

phosphate

0.999645 –7.0

DB15477 Alloin 0.999222 –7.0

DB00449 Dipivefrin 0.999035 – 5.4

DB01211 Clarithromycin 0.998722 – 6.0
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When it is bound, it completely blocks access to catalytic 
dyad residues, His41 and Cys145 (yellow in Fig. 5, left). 2D 
interaction networks between all hit molecules and 3CLpro 

are presented in Figure SI1 in Supporting Information. In 
most of the cases, hydrogen bonds, π-sulphur, π-alkylic, 
π–π, and van der Waals interactions are responsible for 

Table 2  (continued)

DB09570 Ixazomib 0.998619 –

DB00602 Ivermectin 0.998579 –6.9

DB08453

2-nonyl-4-

quinolinol 1-

oxide

0.99815 –5.0

DB03905
Succinamide-

CoA
0.99762 –7.1

DB06834

N-(2-hydroxy-

1,1-

dimethylethyl)-

1-methyl-3-(1H-

pyrrolo[2,3-

b]pyridin-2-yl)-

1H-indole-5-

carboxamide

0.997203 –7.1

DB01138 Sulfinpyrazone 0.996713 – 5.9

DB11430 Monensin 0.996266 –6.0

DB09014 Captodiame 0.996033 –5.0

DB09238 Manidipine 0.995245 –6.8
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enzyme—ligand binding. More accurate calculations, like 
molecular dynamics simulations and free energy of binding 
calculations, are needed to provide a detailed description of 
complex interaction patterns.

Several drug repurposing studies suggested well-known 
antiviral drugs as potential SARS-CoV-2 3CLpro inhibi-
tors. According to DrugBank [54], more than 70 compounds 
within our dataset are registered direct antiviral agents. 
Therefore, we were interested in the performance of our 
model and its possibility to point out promising antiviral 
drugs as 3CLpro inhibitors. Our predictive model identi-
fied eight currently used antiviral drugs as active against 
SARS-CoV-2 3CLpro (Table 3). In this section, we will put 
our results into a broader perspective, and see how the pro-
posed molecules perform in in vitro, in vivo and in in silico 
studies. Lopinavir, a well-known HIV-1 protease inhibitor 
is predicted to have the highest activity against 3CLpro. It 
has been used to treat SARS and MERS patients but without 
proven efficacy [4]. Although lopinavir and its analogues 
were subjected to many studies [92–95], in clinical trials 
lopinavir-ritonavir combination have not been proven to be 
effective for the treatment of severe cases of COVID-19 [30]. 
Zhang et al. [84] demonstrated lopinavir inhibition potential 
against SARS-CoV-2 3CLpro in vitro, and by extrapolation 
to in vivo, they concluded that due to very low concentration 
of free, unbound to plasma proteins, lopinavir is not effective 
against SARS-CoV-2 in vivo. Paritaprevir [31, 32, 73, 96], 
favipiravir [34, 92], atazanavir [97–99], ganciclovir [95, 97], 
tipranavir [73, 98, 100–102], and bictegravir [32], were part 
of computational studies trying to repurpose existing drugs 
against COVID-19. Paritaprevir is a compound containing 
an acylsulfonamide moiety and is being used in treatment 
of hepatitis C. It is inhibiting viral NS3/4A serine protease, 
with Ser139, His57 and Asp81 constituting catalytic triad 

[103, 104]. Favipiravir, a pyrazinecarboxamide derivative, 
is a broad spectrum inhibitor of RNA viral replication, cur-
rently registered for influenza treatment [105, 106]. Clinical 
trials indicate its potential use on moderately to critically 
ill COVID-19 patients [107, 108]. Although computational 
studies of atazanavir and tipranavir, a HIV-1 protease inhibi-
tors, suggested they might be good 3CLpro inhibitors, the 
careful analysis of its efficacy in cell culture and in vitro 
enzymatic assays revealed limited potential due to the 
requirement of high concentrations of the drugs to achieve 
significant inhibition [98]. Results of those studies show that 
mentioned antiviral drugs have potential to fight COVID-19 
pandemic, and at the same time are an independent valida-
tion of our model. From the pool of more than 6400 different 
molecules, our approach enriched the final list of molecules 
with the compounds that were identified as active either by 
other theoretical methods or by experiments.

Conclusions

This study had three goals. First, structural similarity analy-
sis based on radial distribution function weighted by the 
number of valence shell electrons of SARS-CoV-2 main 
protease obtained by X-ray crystallography was performed. 
Independent from different experimental conditions of crys-
tallization, different space groups and different inhibitors 
bound into the enzyme’s catalytic pocket, the RDF-based 
similarity index is within the 0.9808 and 0.9998 range. This 
suggests that perturbations of the 3CLpro introduced by the 
ligand are local, concentrated in the vicinity of the active 
pocket. This finding is corroborated by independent analysis 
of the RMSD of CA atom type from protein’s backbone and 
additional analysis of the g(r) of the catalytic pocket.

Fig. 5  Molecular docking results—insight into the catalytic pocket (left) and interaction network (right) of Succinamide-CoA (DB03905) and 
SARS-CoV-2 3CLpro. Van der Waals surface of His41 and Cys145 is depicted in yellow, all other residues’ are in blue
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The second goal was achieved by successful design and 
validation of the QSAR model capable of predicting activ-
ity against SARS-CoV-2 3CLpro. After reconstruction of 
the pseudo-receptor complementary to the external field 
of bioactive molecules using the CiS algorithm, the neural 
network was used to train the model. Internal predictive 
power was tested by tenfold cross-validation, giving the 
cross-Q2 equal to 0.91. Since a high value of cross-Q2 is 
a necessary condition for a model’s high predictive abil-
ity, but it is not a sufficient condition, additional external 
validation was performed. The value of R2 of 0.90 dem-
onstrated the model’s high predictive ability for external 
molecules.

Finally, a newly developed predictive model was exploited 
for drug repurposing. From the list of FDA approved and 
experimental drugs, we identified molecules with the highest 
probability of being SARS-CoV-2 3CLpro inhibitors. Spe-
cial attention was paid to existing antiviral drugs. Lopinavir, 
a HIV-1 protease inhibitor, is predicted to have the highest 
potential to inhibit SARS-CoV-2 3CLpro. Although it is 
confirmed by in vitro experiments that it inhibits SARS-
CoV-2 3CLpro, its effectiveness in the treatment of severe 
COVID-19 cases is questionable due to the very low concen-
tration of free lopinavir, unbound to plasma proteins. Other 
antiviral agents, like paritaprevir, identified by our model 
as prosperous are also under investigation by other groups 
or have already reached clinical trials. These independent 
results support the good performance of the model. Benefits 
of this research include short-term benefits, including fast 
drug repurposing possibilities, and on a long-term scale, 
reliable model for prediction of bioactivity against 3CLpro 
is developed and validated.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 021- 10355-8.
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