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Abstract

Paclitaxel as a microtubule-stabilizing agent is widely used for the treatment of a vast range

of cancers. Corylus avellana cell suspension culture (CSC) is a promising strategy for pacli-

taxel production. Elicitation of paclitaxel biosynthesis pathway is a key approach for improv-

ing its production in cell culture. However, optimization of this process is time-consuming

and costly. Modeling of paclitaxel elicitation process can be helpful to predict the optimal

condition for its high production in cell culture. The objective of this study was modeling and

forecasting paclitaxel biosynthesis in C. avellana cell culture responding cell extract (CE),

culture filtrate (CF) and cell wall (CW) derived from endophytic fungus, either individually or

combined treatment with methyl-β-cyclodextrin (MBCD), based on four input variables

including concentration levels of fungal elicitors and MBCD, elicitor adding day and CSC

harvesting time, using adaptive neuro-fuzzy inference system (ANFIS) and multiple regres-

sion methods. The results displayed a higher accuracy of ANFIS models (0.94–0.97) as

compared to regression models (0.16–0.54). The great accordance between the predicted

and observed values of paclitaxel biosynthesis for both training and testing subsets support

excellent performance of developed ANFIS models. Optimization process of developed

ANFIS models with genetic algorithm (GA) showed that optimal MBCD (47.65 mM) and CW

(2.77% (v/v)) concentration levels, elicitor adding day (16) and CSC harvesting time (139 h

and 41 min after elicitation) can lead to highest paclitaxel biosynthesis (427.92 μg l-1). The

validation experiment showed that ANFIS-GA method can be a promising tool for selecting

the optimal conditions for maximum paclitaxel biosynthesis, as a case study.

Introduction

Plants are a rich source of active pharmaceutical components used in treatment of many dis-

eases [1–7]. Some plant derived natural products (NP) such as aspirin have simple structure
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which could produce by chemosynthesis. However, chemical synthesis of some valuable plant

NPs e.g. paclitaxel is difficult because of their complex structure [8]. On the other hand, the

extraction of NPs from intact plant limit the commercial production of these compounds

owing to low yield, environmental restrictions and extinction risk of these valuable pharma-

ceutical sources [9, 10]. Therefore, using biotechnological approaches particularly plant cell

culture named “green cell factories” is a promising bioproduction platform to overcome these

limitations and produce plant NPs on a large scale [1, 9, 11].

Paclitaxel as the most well-known anticancer drug is widely used for the treatment of a vast

range of cancers [12]. Taxus species are the main source of this fantastic diterpene alkaloid,

paclitaxel. Nevertheless, Taxus recalcitrant behavior under in vitro culture is a drawback for

fast-growing in vitro culture establishment of these valuable species [13]. Corylus avellana is a

promising alternative for paclitaxel production because of its advantages including easy in
vitro cultivation and fast-growing cells, and also extensive availability [13–19]. Large scale pro-

duction of secondary metabolite (SM) through plant cell culture needs to apply several strate-

gies including high-yielding cell line, growth medium optimization, precursor feeding,

elicitation, etc. [10, 20]. Amongst the available strategies for boosting the biosynthesis of SMs

in plant in vitro cultures, the elicitation is considered as the most effective one [21, 22].

The combined treatment of abiotic and biotic elicitors in Corylus avellana [23] and Taxus
[24] cell cultures highly boosted paclitaxel biosynthesis. Methyl-β-cyclodextrin (MBCD) has

lately absorbed striking attention as an agent eliciting paclitaxel in vitro biosynthesis [25, 26].

On the other hand, our previous researches [9, 15, 27] indicated the positive influences of dif-

ferent elicitors derived from endophytic fungi, cell extract (CE), culture filtrate (CF) and cell

wall (CW), on paclitaxel biosynthesis in C. avellana cell culture.

Several factors including elicitor concentration level, cell culture age and elicitor exposure

time affect the process of paclitaxel biosynthesis elicitation in C. avellana cell culture [5, 11,

21], and optimal selection of these factors is a determinative issue for maximum biosynthesis

of this valuable SM. Nevertheless, optimization of elicitation process is time-consuming and

costly. Modeling of paclitaxel biosynthesis elicitation using mathematical methods can effec-

tively identify the non-explicit relationships among mentioned factors and predict optimal

conditions for maximum paclitaxel biosynthesis.

Multivariate statistical methods including multiple liner regression (MLR), stepwise regres-

sion (SR), ordinary least squares regression (OLSR), principal component regression (PCR)

and partial least squares regression (PLSR) have been used to model biological process [28–

31]. MLR studies the relationship between two or more independent variables and one depen-

dent variable [32]. SR is a well-known data-mining method selecting the explanatory variables

for regression model from a group of input variables [33]. OLSR, PCR, and PLSR are three

methods to model dependent variable when there is a large number of independent variables

which are highly correlated. OLSR is a statistical method estimating the relationship amongst

independent variable(s) and dependent variable by minimizing sum of square differences

among the predicted and observed values of dependent variable [34]. PCR is a regression

method established on principal component analysis (PCA) [35]. PLSR, combining PCA and

multiple regression, is a powerful modeling technique especially when the factors (input vari-

ables) are highly collinear [36].

Different predictive and fitting abilities of MLR (R2 = 0.32–0.91) [37] and SR (R2 = 0.17–

0.89) [38] were demonstrated in pear rootstocks tissue culture. Also, SR was used to model

phenolic profile of grapevine foliar wastes, and displayed different ability (R2 = 0.05–0.78) for

predicting various phenolic compounds [28]. Additionally, great performance of OLSR was

reported for predicting rainfed soybean and maize yields [39]. PCR (R2 = 0.30–0.49) was
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likewise applied to model grain yields based on soil properties [40]. Moreover, PLSR model

was successfully used to predict important management goals in land application [41].

Poor non-linear predictive and fitting abilities of traditional modeling methods [18, 19, 38,

42–44] have shifted the studies to the use of data mining techniques such as artificial neural

network (ANN) and neuro-fuzzy models. These models are able to identify and learn corre-

lated patterns between input variables and corresponding target values in a complex and non-

linear process.

ANN is a brain-inspired method that imitates the way that the human brain works [45]. It

processes information and makes decision in systems involving vagueness and uncertainty

[44, 46].

Adaptive neuro-fuzzy inference system (ANFIS), hybrid of fuzzy logic and neural network,

incorporates the advantages of both methods including learning capabilities, interpretability,

quick convergence, adaptability and high accuracy, having no disadvantages of them [47].

ANFIS displays excellent performance in approximation and prediction of nonlinear relation-

ships in various fields [47–50]. The successful application of ANFIS as an effective modeling

method in various fields explains why it has been a popular modeling approach for years. It is

highly regretful that ANFIS has not been used to model SM biosynthesis in plant in vitro
culture.

Mathematical optimization has been successfully used in plant science [19, 49, 51–53].

Genetic algorithm (GA) as a robust optimizing tool has been successfully used to optimize cul-

ture medium composition for pear rootstock proliferation [37, 38], in vitro rooting of Prunus
rootstock [54] and melon differentiation [55]. GA is the search algorithms inspired by natural

selection and genetics concepts [56]. The fundamental principles of GA are the creation of an

initial population of search solutions and then elite search solutions were selected for crossover

using a roulette wheel selection method, which will ultimately be the best solution among

them (Fig 1).

The objectives of this research were (a) to develop MLR, SR, OLSR, PCR, PLSR and ANFIS

models to predict output variable “paclitaxel biosynthesis” based on input variables “concen-

tration levels of MBCD and fungal elicitor, fungal elicitor adding day and harvesting time of

cell suspension culture (CSC)” in C. avellana cell culture responding to fungal elicitors (CE,

CF and CW), either individually or combined treatment with MBCD, (b) to compare perfor-

mance of various mentioned models in term of prediction accuracy of paclitaxel biosynthesis,

and (c) to optimize the mentioned factors for maximum paclitaxel biosynthesis by GA (Fig 2).

Materials and methods

Elicitation of cell suspension culture

C. avellana CSC was established as described by Salehi et al. [9, 14, 15]. Three fungal elicitors,

CE, CF and CW, were used for paclitaxel biosynthesis elicitation in C. avellana CSC. Endo-

phytic fungus applied in this research was a strain of Coniothyrium palmarum isolated from

inner bark of Taxus baccata. CE, CF and CW were prepared as described previously [9, 27].

For elicitation, 1.5 ± 0.1 g of C. avellana cells (fresh mass) was cultured in 100 ml flasks con-

taining 30 ml MS medium supplemented with 2 mg l−1 2,4-D and 0.2 mg l−1 BAP, then treated

with fungal elicitors, either individually or a combined treatment with 50 mM MBCD.

Four concentrations (1, 2.5, 5 and 10% (v/v)) of fungal elicitors including CE, CF and CW,

and also mid (day 13) and late (day 17) log phase of C. avellana cell cultures were selected for

adding fungal elicitors. Control received an equal volume of water (for CE)/ potato dextrose

broth (PDB) (for CF)/ water containing 1% (v/v) acetic acid (for CW).
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Quantification of paclitaxel

The extraction of intracellular and extracellular paclitaxel, and also HPLC analysis were per-

formed with a procedure described by Salehi et al. [9, 14, 15].

Fig 1. Schematic diagram of genetic algorithm.

https://doi.org/10.1371/journal.pone.0237478.g001

Fig 2. Graphical abstract of the study.

https://doi.org/10.1371/journal.pone.0237478.g002
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Experimental design

The experiments were planned based on a randomized complete block design (RCBD) with

factorial arrangement, four factors containing MBCD, fungal elicitor type, fungal elicitor con-

centration, fungal elicitor adding day, and three replicates. The cultures were harvested in

two-day intervals after elicitation until 23rd day.

Model development

Regression and ANFIS models were individually developed for each of fungal elicitors. It is

noteworthy that the models developed for each of fungal elicitors “CE, CF and CW” were des-

ignated as FCE-MOD, FCF-MOD and FCW-MOD, respectively. The data (S1 Table–S3

Table) were randomly divided into a training subset (75%) and testing one (25%), respectively.

Training subset was applied to develop regression and ANFIS models, and testing subset was

applied to test the predictability of developed models [57].

Adoptive neuro-fuzzy inference system (ANFIS) model

ANFIS models were developed for each of fungal elicitors (CE, CF and CW), either individu-

ally or in a combined treatment with MBCD, to define the influences of MBCD and fungal

elicitor concentration levels, fungal elicitor adding day and CSC harvesting day on paclitaxel

biosynthesis.

ANFIS is made up of “if–then” rules with suitable membership functions to obtain prelimi-

nary stipulated input–output pairs (Fig 3).

Basic rule structure of ANFIS with two inputs x, y, and one output “f” can be defined as fol-

lows:

Rule 1 : if x is A1 and y is B1 then f 1 ¼ p
1
xþ q

1
y þ r1 ð1Þ

Rule 2 : if x is A2 and y is B2 then f 2 ¼ p
2
xþ q

2
y þ r2 ð2Þ

Fig 3. Architecture of adaptive neuro-fuzzy inference system (ANFIS) model with two input variables and one output

variable.

https://doi.org/10.1371/journal.pone.0237478.g003
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where x and y denote input variables, f is output specified by the fuzzy rules, Ai and Bi are the

parameters of fuzzy sets, and pi, qi, and ri are the linear parameters determined during the

training process.

As shown in Fig 3, ANFIS is made up of five layers and two types of nodes, indicated by

square and circle. The adaptive node (square node) accepts parameters. The fixed nodes (circle

node) accept no parameter.

Layer 1 (fuzzification layer): it calculates membership values or membership degrees (μAi

and μBi) for each of input variables by membership functions. In this research, Gaussian mem-

bership function (Eq (3)) was used as membership functions. The outputs of first layer are

defined by Eqs (4) and (5). {a, b, c} is called premise parameter set, and determine membership

function form.

mAiðxÞ ¼
1

1þ j
x� ci
ai
j
2bi

ð3Þ

O1;i ¼ mAiðxÞ i ¼ 1; 2 ð4Þ

O1;i ¼ mBi� 2
ðxÞ i ¼ 3; 4 ð5Þ

Layer 2 (rule layer): each node (P) computes firing strengths (wi) (Eq (6)) for fuzzy rules

via the multiplication of input signals of corresponding fuzzification nodes.

O2;i ¼ wi ¼ mAiðxÞ:mBiðyÞ; i ¼ 1; 2 ð6Þ

Layer 3 (normalisation layer): each node (N) computes the ratio of its own rule firing

strength to sum of all rules’s firing strengths, normalized firing strengths, as given in Eq (7).

O3;i ¼ �wi ¼
wi

w1 þ w2

i ¼ 1; 2 ð7Þ

Layer 4 (defuzzification layer): each node computes weighted values of rules by the multipli-

cation of normalized firing strength (�wi) and consequent function as given in Eq (8). Conse-

quent function is first order polynomial of consequence parameters {pi, qi, ri}.

O4;i ¼ �wizi ¼ �wiðpx þ qiyþ riÞ i ¼ 1; 2 ð8Þ

Layer 5 (summation layer): This single-node layer (S) computes final output by the summa-

tion of all incoming signals from all defuzzification layer nodes as follows:

O5;i ¼
X

i

�wifi ¼
P

iwifiP
iwi

i ¼ 1; 2 ð9Þ

Hybrid learning rules, back-propagation algorithm and least-squares estimate [49, 58] were

used to tune premise parameter set and consequent parameters.

The performance of ANFIS models is determined by three statistical criteria including root

mean square error (RMSE) (Eq (10)), mean absolute error (MAE) (Eq (11)) and coefficient of
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determination (R2) (Eq (12)).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Xn

i¼1

ðyest � yactÞ
2
Þ=n

s

ð10Þ

MAE ¼ 1=n
Xn

i¼1

jyest � yactj ð11Þ

R2 ¼ 1 � ð
Xn

i¼1

ðyest � yactÞ
2
=
Xn

i¼1

ðyact � �yÞ2Þ ð12Þ

Where “yact” are the actual values, “yest” are the predicted values, and “n” is the number of

data.

Optimization process by genetic algorithm (GA)

GA was applied to optimize the value of input variables (MBCD and fungal elicitor concentra-

tion levels, fungal elicitor adding day and CSC harvesting time) in developed ANFIS models

for maximum paclitaxel biosynthesis. An initial population of 200, crossover rate of 0.7, gener-

ation number of 1000, mutation rate of 0.03 and uniform function as a mutation function,

two-point crossover function, and a roulette wheel selection function were set to select the

optimal levels of input variables (Fig 1).

Sensitivity analysis of the models

The sensitivity of paclitaxel biosynthesis against input variables (MBCD and fungal elicitor

concentration levels, fungal elicitor adding day and CSC harvesting time) was determined by

the criteria including variable sensitivity error (VSE) value displaying the performance

(RMSE) of ANFIS model when that particular input variable is unavailable in the model. Vari-

able sensitivity ratio (VSR) value was calculated as ratio of VSE and ANFIS model error

(RMSE value) when all input variables are available. The input variable with higher VSR was

considered as higher important variable in model.

The mathematical codes for the development and evaluation of ANFIS and regression mod-

els were written using MATLAB software [59] and XLSTAT [60], respectively, and the graphs

were made by GraphPad Prism 5 [61] software.

Validation experiment

CE, CF, CW and MBCD concentration levels, fungal elicitor adding day, and CSC harvesting

time optimized by ANFIS-GA were examined to evaluate the efficiency of ANFIS-GA model

for forecasting and optimizing paclitaxel biosynthesis in C. avellana cell culture responding to

used elicitors. The culture conditions for C. avellana cell growth remained the same as men-

tioned above.

Results and discussion

Modelling of paclitaxel biosynthesis using regression and ANFIS models

Elicitation is the most important and promising approach for increasing SMs biosynthesis in

plant cell culture platform. However optimization of elicitation process is a key step for achiev-

ing this goal. The type, concentration level and adding day of elicitors, and also CSC harvesting

time are effective factors in paclitaxel biosynthesis in C. avellana CSC elicited by different
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elicitors [9, 15, 27]. Predicting the optimal amount of these mentioned factors is highly prom-

ising and essential for paclitaxel biosynthesis increment and cost decrement.

To model paclitaxel biosynthesis in C. avellana cell culture responding to fungal elicitor

and MBCD by regression and ANFIS methods, fungal elicitor and MBCD concentration lev-

els, fungal elicitor adding day and CSC harvesting time were used as input variables, and pacli-

taxel biosynthesis as output variable. Here, various regression methods (MLR, SR, OLSR, PCR

and PLSR) were tested to find the best regression model to predict paclitaxel biosynthesis in C.

avellana responding to fungal elicitors and MBCD. All developed regression models for three

elicitors “CE, CF and CW” showed statistically significant relationships between output vari-

able “paclitaxel biosynthesis” and input variables (fungal elicitor and MBCD concentration

levels, fungal elicitor adding day and CSC harvesting day),” (Table 1). MLR, SR, OLSR, PCR

and PLSR models developed for paclitaxel biosynthesis regarding fungal elicitor and MBCD

concentration levels, fungal elicitor adding day and CSC harvesting time were shown in

Table 1. Goodness-of-fit of MLR, SR, OLSR, PCR and PLSR models was performed to detect

the best model for predicting paclitaxel biosynthesis. High significant R2 value and low RMSE

and MAE values displayed the model capability.

As shown in Table 1, goodness-of-fit displayed no difference regarding the accuracy of

regression models for paclitaxel biosynthesis for training and testing subsets in FCF-, FCE-

and FCW-MOD. The performance of developed MLR, SR, OLSR, PCR and PLSR models were

evaluated by plotting the predicted values against the observed values of training subset (FCE-

MOD: R2 = 0.17, 0.17, 0.16, 0.17 and 0.17; FCE-MOD: R2 = 0.54, 0.54, 0.53, 0.54 and 0.54;

FCE-MOD: R2 = 0.37, 0.37, 0.36, 0.38 and 0.38, respectively) (Figs 4–6). R2 values for testing

Table 1. Statistics of multiple linear regression (MLR), stepwise regression (SR), ordinary least squares regression (OLSR), principal component regression (PCR),

partial least squares regression (PLSR) and adaptive neuro-fuzzy inference system (ANFIS) for paclitaxel biosynthesis modeling in Corylus avellana cell culture

exposed to different concentration of fungal cell extract (FCE-MOD), fungal culture filtrate (FCF-MOD) and fungal cell wall (FCW-MOD) elicitors, either individu-

ally or combined treatment with 50 mM methyl-β-cyclodextrin (MBCD).

Models Training subsets Testing subsets Pr > F

R2 RMSE MAE R2 RMSE MAE

FCE-MOD MLR 0.17 48.29 36.48 0.19 41.13 33.41 < 0.0001

SR 0.17 48.27 36.96 0.20 40.93 33.50 < 0.0001

PLSR 0.16 47.81 36.82 0.20 40.89 33.57 < 0.0001

PCR 0.17 48.29 36.21 0.19 41.14 33.46 < 0.0001

OLSR 0.17 48.29 36.21 0.19 41.14 33.46 < 0.0001

ANFIS 0.94 12.60 9.69 0.88 16.68 12.57 < 0.0001

FCF-MOD MLR 0.54 37.86 29.07 0.61 32.53 26.35 < 0.0001

SR 0.54 37.78 24.32 0.61 32.57 26.23 < 0.0001

PLSR 0.53 37.50 29.00 0.61 32.50 26.67 < 0.0001

PCR 0.54 37.86 28.81 0.61 32.54 26.35 < 0.0001

OLSR 0.54 37.86 28.81 0.61 32.54 26.35 < 0.0001

ANFIS 0.95 11.87 8.41 0.90 16.18 10.55 < 0.0001

FCW-MOD MLR 0.37 71.50 72.01 0.30 71.94 54.64 < 0.0001

SR 0.37 71.32 55.51 0.30 71.98 54.29 < 0.0001

PLSR 0.36 71.45 52.62 0.33 69.15 51.81 < 0.0001

PCR 0.38 71.50 52.81 0.30 71.92 54.61 < 0.0001

OLSR 0.38 71.50 52.81 0.30 71.92 54.61 < 0.0001

ANFIS 0.97 14.04 2.35 0.94 20.19 13.77 < 0.0001

R2: coefficient of determination, RMSE: root mean square error, MAE: mean absolute error.

https://doi.org/10.1371/journal.pone.0237478.t001
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subset suggested the best mentioned models can explain 17, 54 and 38% variability in paclitaxel

biosynthesis in FCE-MOD, FCF-MOD and FCW-MOD, respectively, when they face with

unseen data (Table 1).

Fig 4. Scatter plot of actual data against predicted values of paclitaxel biosynthesis in Corylus avellana cell cultures exposed with

different concentration of fungal cell extract (CE), either individually or combined treatment with 50 mM methyl-β-cyclodextrin

(MBCD), using adaptive neuro-fuzzy inference system (ANFIS), multiple liner regression (MLR) stepwise regression (SR),

ordinary least squares regression (OLSR), principal component regression (PCR) and partial least squares regression (PLSR)

models in training subset. The solid line shows fitted simple regression line on scatter points.

https://doi.org/10.1371/journal.pone.0237478.g004

Fig 5. Scatter plot of actual data against predicted values of paclitaxel biosynthesis in Corylus avellana cell cultures exposed with

different concentration of fungal culture filtrate (CF), either individually or combined treatment with 50 mM methyl-β-

cyclodextrin (MBCD), using adaptive neuro-fuzzy inference system (ANFIS), multiple liner regression (MLR) stepwise regression

(SR), ordinary least squares regression (OLSR), principal component regression (PCR) and partial least squares regression (PLSR)

models in training subset. The solid line shows fitted simple regression line on scatter points.

https://doi.org/10.1371/journal.pone.0237478.g005
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Paclitaxel biosynthesis was predicted according to developed ANFIS model. To evaluate the

performance of developed ANFIS models, the predicted values were plotted against the

observed values of training subset (FCE-MOD: R2 = 0.94; FCF-MOD: R2 = 0.95; FCW-MOD:

R2 = 0.97) (Figs 4–6). The great accordance between the predicted and observed values of pac-

litaxel was observed for both training and testing subsets (Table 1). Goodness-of-fit of devel-

oped ANFIS models showed that the developed models could accurately predict paclitaxel

biosynthesis of testing subset (0.88, 0.90 and 0.94 in FCE-MOD, FCF-MOD and FCW-MOD,

respectively), not used during training processes (Table 1). Also, developed ANFIS models dis-

played the balanced statistical values for both training and testing subsets (Table 1). The statis-

tical values for ANFIS models displayed the higher prediction accuracy as compared to

regression models, as estimated R2 for ANFIS vs. best regression models were 0.94 vs. 0.17 in

FCE-MOD; 0.95 vs. 0.54 in FCF-MOD and 0.97 vs. 0.38 in FCW-MOD (Table 1). Comparing

ANFIS and MLR, SR, PLSR, PCR and OLSR models performed regarding prediction accuracy

displayed a higher accuracy of ANFIS models as compared to regression models (Table 1). The

superiority of artificial intelligence (AI) models than regression method was demonstrated in

culture medium formulation for pear rootstock proliferation [37, 38]. Also, AI displayed a

higher accuracy as compared to regression method in predicting targeted phenolic profile of

grapevine foliar wastes [28].

Our results suggested that ANFIS models could accurately predict paclitaxel biosynthesis in

C. avellana CSC (Table 1). Very small absolute error values (Table 1) showed the high potential

of ANFIS models in predicting output variable, paclitaxel biosynthesis.

Paclitaxel biosynthesis is the complex biological processes which require the accurate tech-

niques for modeling and optimization. As observed in this study, AI technology has exhibited

high powerful potential for modeling the complex relationships in biological systems, and dis-

playing the superior prediction performances as compared to classical statistics [19, 28, 44].

Fig 6. Scatter plot of actual data against predicted values of paclitaxel biosynthesis in Corylus avellana cell cultures exposed with

different concentration of fungal cell wall (CW), either individually or combined treatment with 50 mM methyl-β-cyclodextrin

(MBCD), using adaptive neuro-fuzzy inference system (ANFIS), multiple liner regression (MLR) stepwise regression (SR), ordinary

least squares regression (OLSR), principal component regression (PCR) and partial least squares regression (PLSR) models in training

subset. The solid line shows fitted simple regression line on scatter points.

https://doi.org/10.1371/journal.pone.0237478.g006
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Sensitivity analysis of the developed models

Regardless of previous studies on the effects of CE and CF concentration levels, fungal elicitor

adding day and CSC harvesting time on paclitaxel biosynthesis, there remains the question to

be answered; which input variables are the most important in paclitaxel biosynthesis. Sensitiv-

ity analysis determines the role of input variables in ANFIS models. Indeed, sensitivity analysis

shed light on relationships between “MBCD and fungal elicitor concentration levels, fungal

elicitor adding day and CSC harvesting time” and paclitaxel biosynthesis. To rank input vari-

ables based on their relative importance in the model, VSRs were estimated. VSRs were

obtained for paclitaxel biosynthesis regarding fungal elicitor (CE, CF and CW) and MBCD

concentration levels, fungal elicitor adding day and CSC harvesting time (Table 2). Analysis of

FCE-MOD indicated that paclitaxel biosynthesis was more sensitive to CSC harvesting time

(VSR = 3.32), followed by fungal elicitor (CE) concentration level (VSR = 2.41), fungal elicitor

adding day (VSR = 2.24) and MBCD concentration level (VSR = 1.89) (Table 2). According to

analysis of FCF-MOD, paclitaxel biosynthesis displayed more sensitivity to CSC harvesting

time (VSR = 2.62), followed by fungal elicitor (CF) concentration level (VSR = 1.88), fungal

elicitor adding day (VSR = 1.28) and MBCD concentration level (VSR = 1.05). Accordingly,

paclitaxel biosynthesis in FCW-MOD exhibited more sensitivity to CSC harvesting time

(VSR = 2.43), followed by fungal elicitor (CW) concentration level (VSR = 2.04), fungal elicitor

adding day (VSR = 1.42) and MBCD concentration level (VSR = 0.98) (Table 2). Overall, sensi-

tivity analysis displayed that CSC harvesting time and fungal elicitor concentration level are

the most important variables affecting paclitaxel biosynthesis (Table 2).

Model optimization and validation experiment

GA has been efficiently used to solve problems with extremely difficult and unknown solution

in various fields [19, 38, 54, 62]. The optimization analysis on developed ANFIS models was

performed using GA to determine optimal levels of input variables for achieving maximum

paclitaxel biosynthesis in C. avellana CSCs (Table 2). The optimization results of paclitaxel bio-

synthesis in FCE-MOD showed that adding 4.30% (v/v) of C. palmarum CE on 16th day to cell

culture pre-treated with 2 mM MBCD, and harvesting CSC 98 h and 53 min after elicitation

Table 2. Importance (according to the sensitivity analysis) and optimal levels of the different factors including fungal cell extract (CE; FCE-MOD), culture filtrate

(CF; FCF-MOD) and cell wall (CW; FCW-MOD) concentration level, methyl-β-cyclodextrin (MBCD) concentration level, elicitor adding day and harvesting time

(day) for achieving maximum paclitaxel biosynthesis in Corylus avellana cell suspension culture (CSC) using adaptive neuro-fuzzy inference system-genetic algo-

rithm (ANFIS-GA).

Variable Importance value (according to VSRa) Optimal level Optimal output

FCE-MOD CE concentration level (% (v/v)) 2.41 4.30 294.35

MBCD concentration (mM) 1.89 2.00

Elicitor Adding day 2.24 16

CSC Harvest time 3.32 20.12

FCF-MOD CF concentration level (% (v/v)) 1.88 8.4 271.77

MBCD concentration (mM) 1.05 42.35

Elicitor Adding day 1.28 16.75

CSC Harvest time 2.62 22

FCW-MOD CW concentration level (% (v/v)) 2.04 2.77 427.92

MBCD concentration (mM) 0.98 47.65

Elicitor Adding day 1.42 16

CSC Harvest time 2.43 21.82

a Relative indication of the ratio between the variable sensitivity error and the error of the model when all variables are available.

https://doi.org/10.1371/journal.pone.0237478.t002
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could result in the maximum paclitaxel content (294.35 μg l-1) (Table 2). Also, optimization

results in FCF-MOD indicated that the highest content of paclitaxel (271.77 μg l-1) may pro-

duce by adding 8.4% (v/v) CF on 17th day to cell culture pre-treated with 42.35 mM MBCD

and harvesting CSC 126 h after elicitation (Table 2). Accordingly, the optimal levels of input

variables for achieving maximum paclitaxel biosynthesis (427.92 μg l-1) in FCW-MOD are

adding 2.77% (v/v) CW on 16th day to cell culture pre-treated with 47.65 mM MBCD and har-

vesting CSC 139 h and 41 min after elicitation (Table 2).

To test the efficiency of ANFIS-GA models for forecasting and optimizing paclitaxel biosyn-

thesis in C. avellana CSC responding to fungal elicitors and MBCD, C. avellana cell culture

exposed to optimized input variables in ANFIS models using GA. C. avellana cell culture pre-

treated with 2 mM MBCD exposed to 4.30% (v/v) CE on 16th day, and harvesting it 98 h and 53

min after elicitation, produced 278.12 ± 23.64 μg l-1 paclitaxel. Also, adding 8.4% (v/v) CF on

17th day to C. avellana cell culture pre-treated with 42.35 mM MBCD and harvesting CSC 126 h

after elicitation resulted in paclitaxel biosynthesis of 283.83 ± 21.39 μg l-1. Validation experiment

of FCW-MOD showed that C. avellana cell culture exposed to optimized input variables by GA

(CW concentration: 2.77% (v/v); MBCD concentration: 47.65 mM; CW adding day: 16th day;

CSC harvesting time: 139 h and 41 min after elicitation) biosynthesized 402.92 ± 34.48 μg l-1

paclitaxel (Table 3). These results show validity of developed ANFIS-GA for forecasting and

optimizing paclitaxel biosynthesis in C. avellana CSC responding fungal elicitors and MBCD.

This is the first study on predicting the optimal conditions for maximum paclitaxel biosynthesis

in C. avellana CSC exposed to fungal elicitors in combine with MBCD using ANFIS-GA.

Conclusion

This research applied regression and ANFIS-GA models for forecasting and optimizing pacli-

taxel biosynthesis in C. avellana cell culture treated with fungal elicitor and MBCD for the first

time. The great accordance between the predicted and observed values of paclitaxel biosynthe-

sis supports excellent performance of developed ANFIS models for modeling paclitaxel bio-

synthesis. Overall, AI models like ANFIS, effectively handle complex input–output patterns

and display a supreme ability for modeling and forecasting results, and present an effective

guidance for improving the biosynthesis of SMs in plant in vitro culture. Since this research

focused on ANFIS as one of AI method for modeling paclitaxel biosynthesis in C. avellana cell

culture, as a case study, it is recommended to evaluate other AI methods to model SM biosyn-

thesis in plant in vitro culture in future studies.
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