
Introduction 

Ionizing radiation is harmful to human beings when it interacts 

with biomolecules and produces reversible and irreversible damag-

es in the cell. The exposed individual’s changes or effects mainly 

depend on high and low linear energy transfer (LET). The high-LET 

radiations are mostly particle-based such as, alpha, beta and pro-

ton, which have more damaging effects on living cells [1]. Simulta-

neously, the low-LET radiation (X and γ-rays) are frequently used 

terminologies in the radiation biology area because many research-

es have been carried out to study the biological effects [2,3]. Ioniz-
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ing radiation-induced cellular response mainly depends on physical 

factors (dose rate and dose) and biological factors (type of cell and 

genotype) [4]. Radiation is a two-edged sword: it could reduce tu-

mors and induce tumors and skin irritation. Despite its possible 

hazards, the abundant use of radiation in medicine, especially in 

diagnosis and treatment, has inspired decades of studies intended 

to understand the mechanisms of response. The use of radiation in 

medical diagnostics is now drastically increased for diagnosis and 

screening, which also causes adverse effects on a human being [5]. 

Upon cellular exposure to ionizing radiation exposure involves 

registering daily counts of different cell types circulating in the pe-
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ripheral blood, the extent and duration of the decline and subse-

quent recovery have been shown to correlate well with dose [6]. 

Moreover, there are other indicators like chromosomes [7], changes 

in enzyme, gene expression [8], proteins [9], and metabolic inter-

mediates [10] are developed to date. Out of which cytogenetic in-

dicators are widely used for estimating the dose in accidental and 

suspected overexposures individuals. There are several methods as 

cytogenetic indicators to assess the absorbed dose like dicentric [7], 

micronucleus assay [11], γ-H2AX [12], premature chromosome 

condensation [13]. 

Nowadays, investigations aim to interpret the molecular events 

that underlie the initiation and development of the damages that 

are primarily directed towards the profiling of biomolecules that 

contribute to changes in cellular function and ultimately lead to ir-

reversible damages. In the last decade, a swift extension of omics 

studies related to genomics [14], transcriptomics [15], proteomics 

[16], and metabolomics [17] in radiation research. In DNA damage 

induced by ionizing radiation and ultraviolet (UV) radiation, the in-

volvement of around 10,000 genes response is reported [18]. Rieger 

et al., [19] reported radiation responses by transcriptional analysis 

in radiotherapy associated toxicity and established 20 ionizing ra-

diation and 4 UV radiation-responsive genes. Systems biology 

modeling has been used to better understand radiosensitivity by 

identifying novel radiation-specific biomarkers [20]. A gene regula-

tory network provides simplified illustrations and an easy under-

standing of biological processes in an organism under given cir-

cumstances [21]. For interpretation of gene regulatory network, 

many numbers of approaches have been proposed. However, it re-

mains a major challenging problem in systems biology [22]. 

In recent years, the interest in identifying radio-responsive genes 

across the whole genome is of great importance. There are minimal 

studies on the pathway and functional enrichment analysis on ra-

dio-responsive genes. Screening of the interacting proteins which 

dynamically contribute to radio-responsive gene pathways with 

similar or identical functions would be more significant. The ap-

proach of network-based analysis is a proper method in demon-

strating complex biological systems [23]. Here, we employed com-

putational techniques to model gene/protein interaction in human 

lymphocytes induced upon radiation exposure. The protein-protein 

interactions (PPIs) are the key factors that demonstrate complex 

interplay crucial for the cell to survive even after the external stress 

and hence considered one of the essential strategies for drug target 

identification. In the present work, we utilized a systems biology 

approach to identify the essential protein involved in regulating 

major biological pathways, which are upregulated when the cell is 

exposed to radiation. 

Materials and Methods 

1. Identification of differentially expressed genes (DEGs) 
radio-responsive genes from human 
The radio-responsive genes across the Homo sapiens were collected 

from the NCBI database (https://www.ncbi.nlm.nih.gov/). The key-

words used for the search are “Differentially expressed genes” AND 

“Ionizing radiation-induced cell damage” AND “Homo sapiens” 
AND “Lymphocytes.” The entire set of data consisting of 83 genes 

was retrieved for further analysis (Supplementary Table S1). 

2. Construction of PPI network 
The PPI network consisting of all the proteins/genes and all the 

neighbor interactions between them was generated for a given set 

of gene/proteins using STRING database (http://string-db.org/) [24]. 

First, based on the seed proteins interaction network was con-

structed associated with human proteins. These interactions were 

derived based on sources: text mining, experiments, databases, 

co-expression, neighborhood, gene fusion and co-occurrence with 

a high confidence level of 0.7. Later, the number of interactions 

was increased by customizing the maximum number of interac-

tions to 200. Cystoscope 3.3.0 [25] was used to visualize the net-

work to calculate the properties of the nodes and perform mea-

surements under default parameters. 

3. Topological analysis of PPI network 
Several topological measures like degree (k), betweenness centrali-

ty (BC), eccentricity, closeness centrality (CC), eigenvector centrality 

(EC), and clustering coefficient were adopted to evaluate nodes of 

the PPI network [23,26]. From the extensive network, the hub or 

bottleneck protein was deducted by measuring the degree (k) and 

betweenness centrality (BC), where “degree” defines the number of 

edges linked to the node. The hub protein in a network is the node 

with maximum neighbors and is determined with a high degree. 

The BC of the node is defined as the proportion of the number of 

shortest paths passing through the node to the number of all the 

shortest paths. A node with high BC has a significant influence on 

the network’s influx and has more control over the network. It can 

represent the bottleneck in the network. The node’s score in ques-

tion is contributed by the maximum connections it has, and this 

concept is used in scoring the EC of all the nodes in the network 

[27]. 

The connections to high-scoring nodes contribute more to the 

node’s score in question than parallel connections to low-scoring 

nodes, and the EC score was assigned to all nodes in the network 

based on the above concept. The distribution of edges to all possi-

ble edges with neighbors defines the clustering coefficient, which 
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quantifies the closeness among its neighbors. The centrality of the 

network is measured on the parameters, like eccentricity and CC, 

that define the maximum distance of a node to all other nodes. A 

node with lower eccentricity or higher CC is closer to the other 

nodes and more central. Each node in the network represents a 

protein and the edge denotes the dynamic interaction between the 

nodes (proteins). This molecular organization of all the differential-

ly connected nodes is visualized as a network. The input and output 

values of the node are received as mathematical functions [28]. 

4. Creation of the backbone network of the PPI 
The proteins with high BC values are usually thought to be the 

bottleneck and considered to control the information flow in the 

transportation network. The critical node in the network with a 

high BC value is set at 15% of the total nodes [29,30]. This param-

eter of BC value and links between the proteins was used to create 

a backbone network. 

5. Identification of densely connected regions (clusters) 
in the PPI network 
The biological network comprising a diverse variety of biological 

processes is contributed by several subnetworks or functional mod-

ules (cluster of proteins). These modules will influence on specific 

functionality of participating nodes, even which have no impact on 

the core network [31]. The global network was subjected to cluster 

analysis to identify densely connected regions in the network using 

the Molecular Complex Detection (MCODE) 4.1, a plug-in for Cytos-

cape. This approach detects dense and connected regions by weight-

ing nodes based on their local neighborhood density [32]. This meth-

od weights a vector by local neighborhood density, chooses a few 

seeds with high weights and isolates the dense regions according to 

given parameters. All the parameters such as degree threshold, node 

score threshold, k-core threshold, and max depth of network were 

kept regular at 2, 0.2, 4, and 100, respectively. To ensure that MCODE 

is not unduly affected by the expected high false-positive rate in 

large-scale interaction data set of whole networks. The k-core is a 

subgraph in which each vertex has a degree of at least k. The highest 

k-core of a graph is the most densely connected subgraph. 

6. Functional enrichment analysis 
A comprehensive analysis and visualization of a functionally en-

riched set of genes were performed using ClueGO [33], a Cytoscape 

plug-in that enormously improves the biological interpretation of 

large lists of genes. A functionally organized GO/pathway term 

network was created by integrating gene ontology (GO) terms and 

KEGG (Kyoto Encyclopedia of Genes and Genome)/BioCarta path-

ways. We considered the first neighbors of the hub protein S-gly-

coprotein for the functional enrichment analysis. A total of 76 

neighbors were found to interact with the S-glycoprotein. Parame-

ters specified for protein/gene list enrichment analysis, with statis-

tical test-enrichment/depletion (two-side hypergeometric test), 

correlation test-Bonferroni step down, Min GO level-3, Max GO 

level-8, Kappa score threshold-0.4, GO fusion-false, GO group-true, 

and p ≤  0.05. 

7. Pathway enrichment analysis 
ShinyGO [34] is an intuitive, graphical tool for enrichment analysis 

for investigators to understand the biological meaning behind a 

large list of genes, and the KEGG database [35] was used in this 

study. Parameters specified for protein/gene list enrichment analy-

sis such as KEGG analysis; reference set, Homo sapiens genome; 

the minimum number of genes was set to “30”; and significance 

level (p =  0.05). 

Results 

We constructed a gene network on 83 DEGs and evaluated the 

functional enrichment of functional partners using ClueGO and 

ShinyGO with the p-value of <0.05 of ionizing radiation-induced 

cell damages in humans. 

1. PPI network of DEGs 
The PPI was depicted by assembling the ionizing radiation-induced 

damage associated with a human using the STRING database, 

which returned interactions for 79 DEGs out of 83 unique genes 

(Fig. 1). The number of edges connected to a designated node is 

high degree, implying the protein’s significance in the biological in-

teractions. The PPI network’s classical character is that it is charac-

terized by a small number of highly connected nodes and the other 

nodes with only a few connections. 

2. Network topology analysis 
Network Analyzer v.3.3.1 was employed to evaluate the confidence 

of the core interactome, using Power law fit of the form y= axb. 

Power law uses the least square method to some topological pa-

rameters and considers points with positive coordinate values for 

the fit. The BC, CC, and topology correlation coefficient scores 

0.823, 0.200, and 0.25, respectively, were considered as network 

topology parameters. Additionally, the neighborhood connectivity 

(=0.546) and shortest path length distribution were also consid-

ered for analysis. These various topological parameters considered 

for the network generation by using the above cut-off values were 

graphically plotted (Supplementary Fig. S1). The extended global 

network topological measures of two PPI networks, i.e., giant or 
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core network and backbone or subnetwork, were represented in  

Table 1. Therefore, the biological process is essentially regulated by 

the bottleneck node in the interactome. 

The subnetwork was constructed from 78 nodes with high BC val-

ues, the size of which corresponds to their BC value and 710 links 

between them (Fig. 2). The TP53 was identified as the hub protein 

having the highest BC value of 0.0756 with the most significant de-

gree of 13 in the subnetwork. This hub protein has nine other neigh-

bors sharing a little less with BC, degree, and CC (Table 2). Out of 79 

nodes of the network, the top 10 nodes with high BC values are 

projected as crucial nodes, such as TP53, MAPK8, MAPK1, CASP3, 

MAPK14, ATM, NOTCH1, VEGFA, SIRT1, and PRKDC. To distinguish 

these nodes in the network and their roles, they were highlighted 

with different colors (Fig. 2). 

3. Key nodes in the PPI network 
To predict and study the key nodes or hub proteins of the giant 

network, topological parameters have been calculated with Net-

work Analyzer v3.3.1. Three topological properties are essential to 

find out the key nodes of any network. Therefore, after getting the 

giant network, according to each distinct attribute, each node’s BC 

value has to be measured and a comparison can be made to find 

out the ascending order of the BC values. The nodes with a large 

degree or high BC are considered as the key nodes in the network. 

These key nodes are based on the critical point of large degree and 

high BC, which is set as 15% of the network’s total nodes set. The 

nodes with large BC (Table 3) and large degree (Table 4) are crucial 

in the backbone network. 

After calculation, eleven proteins have been selected by their 

large BC value for a backbone network. The total number of nodes 

in the giant network is 79 (fusion); among them, 11 proteins with 

high BC value have been chosen, which are TP53, AKT1, MAPK8, 

MAPK1, VEGFA, ATM, IL6, MAPK3, STAT3, CASP3, and PTEN to form 

backbone network (Fig. 3). 

4. Crosstalk between the high BC nodes in the network 
and signaling pathway derived from the backbone 
network 
The backbone network consists of 11 high BC nodes, which corre-

sponds to their BC value and the 55 links between them (Fig. 3). 

Without calculating BC and CC values, we can find out that TP53 is 

located at the center of the backbone network with the highest BC 

value and the largest degree. TP53 has 10 first neighbors: AKT1, 

MAPK8, MAPK1, VEGFA, ATM, IL6, MAPK3, STAT3, CASP3, and 

Fig. 1. Extended interactome construction of radiation induced differentially expressed genes network from human lymphocytes showing 83 
nodes and 718 edges.

Table 1. Extended network topological measures of two protein-pro-
tein interaction networks

Network parameter Giant network  
(core network) Subnetwork

Number of nodes/edges 79/718 78/710
Clustering coefficient 0.304 0.306
Average number of neighbours 18.117 18.205
Network density 5 5
Shortest path 2,325 (37%) 2,272 (37%)
Characteristic path length 1.857 1.865
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PTEN. These proteins are also critically involved in important bio-

logical processes like histone deacetylation regulation, regulation 

of cytochrome C release from mitochondria, and regulation of telo-

mere capping and telomere activity. Further, these proteins partici-

pate in the p53 signaling pathway, FoxO signaling pathway, toxo-

plasmosis, prolactin signaling pathway. 

5. Clustering analysis 
MCODE was used for clustering the genes based on the connectivi-

ty scores and identified the three clusters (C1–C3) from the entire 

network based on the interactions between the genes. To ensure 

the efficiency of functional DEGs partners, we adopted the default 

MCODE parameters for clustering analysis. We found a total of 55 

functional partners among all the clusters. The first cluster pos-

sessed 19 nodes with a score of 11.882, while the second cluster 

contained 14 nodes with a score of 5.714 and the third cluster 

contained 22 nodes with a score of 5.524 (Fig. 4, Table 5). 

6. Functional enrichment analysis 
The functional enrichment analysis of all the DEGs was performed 

Fig. 2. Subnetwork showing top 10 proteins. The subnetwork consisted of 302 nodes and 5,025 edges. Key nodes in the network are highlighted 
in different colours. The color of the nodes corresponds to their betweenness centrality (BC) and degree (D): red denotes node as hub or node 
with high BC and D; orange showing second rank hub node; and yellow showing node with low BC and D.

Table 2. Proteins in the subnetwork showing the hub protein based on the degree and BC

Label Name Description Degree BC CC
01 TP53 Cellular tumor antigen p53 13 0.07561079 0.8125
02 MAPK8 Mitogen-activated protein kinase 8 8 0.02378814 0.74666667
03 MAPK1 Mitogen-activated protein kinase 1 7 0 0
04 CASP3 Caspase-3 4 0.01520505 0.64
05 MAPK14 Mitogen-activated protein kinase 14 3 0.0061425 0.85714286
06 ATM Serine-protein kinase ATM 3 0.01223991 0.51724138
07 NOTCH1 Neurogenic locus notch homolog protein 1 3 0.00897709 0.56862745
08 VEGFA Vascular endothelial growth factor A 2 0.0087469 0.64655172
09 SIRT1 NAD-dependent protein deacetylase sirtuin-1 2 0 0
10 PRKDC DNA-dependent protein kinase catalytic subunit 2 0.00456992 0.48051948

BC, betweenness centrality; CC, closeness centrality.
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using the ClueGO tool, which resulted from the enriched GO terms 

such as cellular process, molecular function, and biological process. 

Thus, the significant GO terms were selected based on the p-value 

(p =  0.05). There are 718 functional interactions from where the 

corresponding GO terms were extracted. It was found that 79 

genes are found to have a role in biological processes, 42 genes in 

molecular function, 25 genes for cellular process and 35 genes in 

immune system pathways from the ClueGO (Fig. 5). Subsequently, 

we analyzed the functional enrichment in ShinyGO to ensure the 

significance of functions. Although these results coincided with the 

ShinyGO, we found differences in p-value. From the annotation 

analysis, the GO terms (DEGs data) of the functional partners from 

ClueGO and ShinyGO were compared with the p-value, which is 

depicted in Supplementary Table S2 to summarize the essential 

KEGG pathways. 

Further, the functional enrichment analysis was carried out for the 

three clusters obtained from the giant network. The functional en-

richment analysis of 19 interacting genes in the C1 cluster (Fig. 6) 

with a clustering coefficient of 0.383. The pathway enrichment anal-

ysis for the C1 cluster genes was found majorly in the p53 pathway 

that proves the hypothesis availed from the earlier biological studies 

(Fig. 7). The cluster C2 comprises 14 interactors with a clustering co-

efficient value of 0.309 (Fig. 8). Similarly, Fig. 9 represents the GO/

pathway terms specific for cluster 3 (C3) genes in response to radi-

ation response upon human lymphocytes: the biological process, 

cellular component, molecular function, and pathway analysis 

(KEGG, 22 nodes). 

Discussion and Conclusion 

In our study, the genes/proteins that have been differentially ex-

pressed during radiation exposure were considered for network 

construction. The information of these DEG’s biological and molec-

ular complexes and signaling pathways responsible for the cellular 

damage upon radiation exposure is of immense importance to de-

veloping potent radioprotective therapeutics. This computational 

approach of network construction, clustering and topological anal-

ysis, and functional enrichment of the participating genes and their 

functional partners is essential to unravel the complex biological 

mechanisms initiated upon radiation induction upon the cells. The 

shortest path length and high CC genes are considered the con-

trolling point of molecular communication in the network. 

DNA damages are complex due to multiple transcription factors 

involved, resulting from cellular stresses caused by the radiation. In 

this respect, all the interactor’s functional enrichment analysis was 

carried out using the ClueGO tool. We found that genes in the net-

work play a significant role in biological processes related to the 

Table 3. The list of high BC nodes and their CC values

Sl. no. Official gene symbol BC CC
01 TP53 0.18707894 0.82105263
02 AKT1 0.07993915 0.75728155
03 MAPK8 0.05750060 0.70270270
04 MAPK1 0.04389917 0.67826087
05 VEGFA 0.04146009 0.64462810
06 ATM 0.03410668 0.58646617
07 IL6 0.03211836 0.63934426
08 MAPK3 0.03026240 0.65546218
09 STAT3 0.02602589 0.66101695
10 CASP3 0.02599990 0.61904762
11 PTEN 0.02301561 0.61417323

BC, betweenness centrality; CC, closeness centrality.

Table 4. The list of large degree nodes and their CC values

Sl. no. Official gene symbol Degree CC
01 TP53 61 0.82105263
02 AKT1 53 0.75728155
03 MAPK8 45 0.70270270
04 MAPK1 44 0.67826087
05 STAT3 40 0.66101695
06 MAPK3 39 0.65546218
07 VEGFA 37 0.64462810
08 IL6 36 0.63934426
09 CCND1 32 0.62903226
10 RELA 31 0.61904762
11 CASP3 30 0.61904762

CC, closeness centrality.

Fig. 3. The topology of the backbone network. The backbone network 
consists from 11 nodes with high betweenness centrality (BC) value. 
The size of nodes corresponds to their BC values.
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Fig. 4. Clustering analysis of radio-responsive genes. Gene clusters as viewed in Cytoscape are shown along with the unclustered genes. The 
clusters are ranked from cluster C1 to C3 according to the Molecular Complex Detection (MCODE) score. For easy distinction, genes belonging 
to cluster C1 are highlighted with blue, cluster C2 genes are highlighted with purple, and C3 cluster genes are highlighted with deep yellow. 
The clustered and unclustered genes are represented by circles and seed genes of each cluster are highlighted with brick red.

Table 5. Genes belonging to each cluster with respective MCODE scores and clustering coefficients

Cluster MCODE 
score

Clustering  
coefficient Node Edge Gene Target gene

1 11.889 0.383 19 107 STAT3, IL6, ERBB2, PTGS2, PTEN, MAPK14, KRAS, PIK3CA, 
BCL2L1, RELA, MCL1, TP53, IGF1, MTOR, VEGFA, BCL2, CCND1, 
TLR2, CASP3

MAPK1, TP53, VEGFA, CASP3

2 5.714 0.309 15 40 TGFB1, NFKB1, ICAM1, AKT1, MLH1, NOTCH1, CDK2, MAPK3, 
HSP90AA1, CDH1, IGF1R, RHOA, HIF1A, CDKN2A, TERT

NOTCH1

3 5.524 0.330 22 58 RAC1, NFKBIA, HSPA1A, HSPB1, NOS3, ERCC1, RAF1, BRCA2, 
RAD51, BRCA1, MAPK8, SP1, PRKDC, ABL1, SIRT1, ATM, 
CXCL12, MAPK1, TLR4, SOD2, CASP8, CD40

MAPK8, PRKDC, SIRT1, ATM

Clusters were ranked based on the Molecular Complex Detection (MCODE) scores which implied that C1 had the highest total density around each 
node in the cluster. More number of target genes were found in C3 cluster than the others.

regulation of DNA recombination (GO:0000018), cell-cycle check-

point (GO:0000075), DNA damage checkpoint (GO: 0000077), re-

sponse to reactive oxygen species (GO:0000302), telomere mainte-

nance (GO:0000723), double-strand break repair via homologous 

recombination (GO:0000724), DNA synthesis involved in DNA repair 

(GO:0000731), regulation of cell growth (GO:0001558), B-cell ho-

meostasis (GO:0001782), telomere capping (GO:0016233), response 

to ionizing radiation (GO:0010212), cell-cycle arrest (GO:0007050), 

response to oxidative stress (GO:0006979), DNA damage response, 

signal transduction by p53 class mediator resulting in transcription 

of p21 class mediator (GO:0006978). Molecular functions such as 

signal transducer, downstream of the receptor with serine/threonine 

kinase activity (GO:0004702), cyclic-dependent protein serine/thre-

onine kinase regulator activity (GO:00165380), phosphatase binding 

(GO:0019902), protein phosphatase binding (GO:0019903). The cel-

lular components include cyclin-dependent protein kinase holoen-

https://doi.org/10.3857/roj.2021.0004554

Tamizh Selvan Gnana Sekaran et al.



Fi
g.

 5
. T

he
 p

ie
 c

ha
rt

 f
ro

m
 C

lu
eG

O 
an

al
ys

is
 in

di
ca

te
s 

ov
er

vi
ew

 s
pe

ci
fic

 c
lu

st
er

 o
f 

di
ff

er
en

tia
lly

 e
xp

re
ss

ed
 g

en
es

 o
f 

Ge
ne

 O
nt

ol
og

y 
(G

O)
/p

at
hw

ay
 t

er
m

s 
sp

ec
ifi

c 
fo

r 
re

sp
on

se
 t

o 
ra

di
at

io
n 

up
on

 h
u-

m
an

 ly
m

ph
oc

yt
es

: 
(A

) 
th

e 
bi

ol
og

ic
al

 p
ro

ce
ss

, (
B)

 c
el

lu
la

r 
fu

nc
tio

n,
 (

C)
 m

ol
ec

ul
ar

 f
un

ct
io

n,
 a

nd
 (

D)
 p

at
hw

ay
 a

na
ly

si
s 

(K
yo

to
 E

nc
yc

lo
pe

di
a 

of
 G

en
es

 a
nd

 G
en

om
e 

[K
EG

G
], 

79
 n

od
es

). 
*p

 <
 0

.0
5,

 
**

p 
< 

0.
01

, s
ta

tis
tic

al
 s

ig
ni

fic
an

ce
 fo

r e
nr

ic
he

d 
GO

 te
rm

s.

B
D

A

C

po
sit

iv
e 

re
gu

la
tio

n 
of

es
ta

bi
lsh

m
en

t o
f 

re
gu

la
tio

n 
of

 p
ro

te
in

ap
op

to
tic

 si
gn

al
in

g
lip

op
ly

sa
cc

ha
rid

e
m

ed
ia

te
d 

sig
na

lin
g

DN
A 

bi
os

yn
th

et
ic

na
ga

tiv
e 

re
gu

la
tio

n 
of

ce
llu

la
r r

es
po

ns
e 

to
bl

oo
d 

ve
ss

el
po

sit
iv

e 
re

gu
la

tio
n 

of
re

gu
la

tio
n 

of
 re

le
as

e 
to

cy
to

ch
ro

m
e 

c 
fro

m
m

itc
 d

ev
el

op
m

en
t

ex
tr

in
sic

 a
po

pt
ot

ic
sig

na
lin

g 
pa

th
w

ay
 v

ia
de

at
h 

do
m

ai
n 

re
ce

pt
or

s
re

gu
la

tio
n 

of
 c

el
lu

la
r

pr
ot

ei
n 

re
gu

la
tio

n 
of

m
am

m
ar

y 
gl

an
d

ep
ith

el
iu

m
re

gu
la

tio
n 

of
 si

gn
al

tr
an

sd
uc

tio
n 

by
 p

53
po

sit
iv

e 
re

gu
la

tio
n 

of
va

sc
ul

at
ur

e
ce

llu
la

r r
es

po
ns

e 
to

re
gu

la
tio

n 
of

 p
ro

te
in

po
sit

iv
e 

re
gu

la
tio

n 
of

ap
op

to
tic

 m
ito

ch
on

dr
ia

l
re

gu
la

tio
n 

of
  

nu
cl

eo
cy

to
pl

as
m

ic
po

sit
iv

e 
re

gu
la

tio
n 

of
ne

ga
tiv

e 
re

gu
la

tio
n 

of
 

ex
tr

in
sic

 a
po

pt
ot

ic
po

sit
iv

e 
re

gu
la

tio
n 

of
po

sit
iv

e 
re

gu
la

tio
n 

of
 

bl
oo

d 
ve

ss
el

en
do

th
el

ia
l c

el
l

ne
ga

tiv
e 

re
gu

la
tio

n 
of

DN
A 

m
et

ab
ol

ic
 p

ro
ce

ss
re

gu
la

tio
n 

of
 st

em
 c

el
l

sig
na

l t
ra

ns
du

ct
io

n 
by

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ce
ll 

gr
ow

th
 **

po
si

tiv
e 

re
gu

la
tio

n 
of

pr
ot

ei
n 

in
se

rt
io

n 
in

to
m

ito
ch

on
dr

ia
l

m
am

br
an

e 
in

oi
ve

d 
in

re
gu

la
tio

n 
of

 p
ep

tid
yl

po
si

tiv
e 

re
gu

la
tio

n 
of

 
re

gu
la

tio
n 

of
si

gn
al

 t
ra

ns
du

ct
io

n 
in

DN
A 

da
m

ag
e 

on
po

si
tiv

e 
re

gu
la

tio
n 

of
 

po
si

ti
ve

 r
eg

ul
at

io
n 

of
 

pr
i-

re
gu

la
tio

n 
of

re
gu

la
tio

n 
of

 c
ys

te
in

e
ty

pe
 e

nd
op

ep
tid

as
e

po
si

tiv
e 

re
gu

la
tio

n 
of

 
po

si
tiv

e 
re

gu
la

tio
n 

of
N

F-
ka

pp
aB

in
tr

in
si

c 
ap

op
to

tic
si

gn
al

in
g 

pa
th

w
ay

 in
re

gu
la

tio
n 

of
 re

ac
tiv

e
re

gu
la

tio
n 

of
 e

xt
rin

si
c

ap
op

to
tic

 s
ig

na
lin

g
re

gu
la

tio
n 

of
 p

ep
tid

yl
re

gu
la

tio
n 

of
 p

ro
te

in
re

gu
la

tio
n 

of
 c

ar
di

ac
 s

e
po

si
tiv

e 
re

gu
la

tio
n 

of
re

gu
la

tio
n 

of
 s

eq
ue

nc
e

sp
ec

ifi
c 

DN
A 

bi
nd

in
g

po
si

tiv
e 

re
gu

la
tio

n 
of

 
ne

ga
tiv

e 
re

gu
la

tio
n 

of
ne

ga
tiv

e 
re

gu
la

tio
n 

of
bl

oo
d 

ve
ss

el
s

ne
ga

tiv
e 

re
gu

la
tio

n 
of

re
gu

la
tio

n 
of

 g
en

er
at

io
n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

po
si

tiv
e 

re
gu

la
tio

n 
of

ne
ga

tiv
e 

re
gu

la
tio

n 
of

ne
ga

tiv
e 

re
gu

la
tio

n 
of

re
gu

la
tio

n 
of

 t
ot

ic
po

si
tiv

e 
re

gu
la

tio
n 

of
po

si
tiv

e 
re

gu
la

tio
n 

of
se

qu
en

ce
-s

pe
ci

fic
 D

N
A

po
si

tiv
e 

re
gu

la
tio

n 
of

re
gu

la
tio

n 
of

 in
tr

in
si

c
po

si
tiv

e 
re

gu
la

tio
n 

of
re

gu
la

tio
n 

of
 c

el
lu

la
r

po
si

tiv
e 

re
gu

la
tio

n 
of

 ic
re

gu
la

tio
n 

of
 v

as
cu

la
r

en
do

th
el

ia
l g

ro
w

th
fa

ct
or

 p
ro

du
ct

io
n*

*

ch
ro

m
os

om
e 

te
lo

m
er

ic
 

re
gi

on
**

pl
at

el
et

 a
lp

ha
 g

ra
nu

le
 

lu
m

en
**

cy
cl

in
-d

ep
en

de
nt

 
pr

ot
ei

n 
se

rin
e/

th
re

oe
in

e 
ki

na
se

 re
gu

la
tio

n 
ac

tiv
ity

**

ph
os

ph
at

as
e 

bi
nd

in
g*

*

en
do

de
ox

yr
ib

on
uc

le
as

e 
ac

tiv
ity

**

si
gn

al
 t

ra
ns

du
ce

r, 
do

w
ns

tr
ea

m
 o

f r
ec

ep
to

r, 
w

ith
 s

er
in

e/
th

re
ce

in
e 

 
ac

tiv
ity

**

ph
os

ph
at

id
yl

in
os

ito
l 

3-
ki

na
se

 a
ct

iv
ity

**

Pa
nc

re
at

ic
 c

an
ce

r*
*

VE
G

F 
si

gn
al

in
g 

pa
th

w
ay

**

Sp
hi

ng
ol

ip
id

 s
ig

na
lin

g 
pa

th
w

ay
**

Er
bB

 s
ig

na
lin

g 
pa

th
w

ay
**

Vi
ra

l m
yo

ca
rd

iti
s*

*

Tr
an

sc
rip

tio
na

l 
m

is
re

gu
la

tio
n 

in
 

ca
nc

er
**

Re
gu

la
tio

n 
of

 li
po

ly
si

s 
in

 a
di

po
cy

te
s*

*

N
F-

ka
pp

a 
B 

si
gn

al
in

g 
pa

th
w

ay
**

H
om

ol
og

us
 

re
co

m
bi

na
tio

n*
*

Am
yo

tr
op

hi
c 

la
te

ra
l 

sc
le

ro
si

s 
(A

LS
)*

*

W
nt

 s
ig

na
lin

g 
pa

th
w

ay
**

Ch
ro

ni
c 

m
ye

lo
id

 
le

uk
em

ia
**

Ra
p1

 s
ig

na
lin

g 
pa

th
w

ay
**

Pr
og

es
te

ro
ne

-m
ed

ia
te

d 
oo

cy
te

 m
at

ur
at

io
n*

*

AG
E-

PA
G

E 
si

gn
al

in
g 

pa
th

w
ay

 in
 d

ia
be

tic
 

co
m

pl
ic

at
io

ns
**

Ch
ag

as
 d

is
ea

se
 (A

m
er

ic
an

 
tr

yp
an

os
om

ia
si

s)
**

Th
yr

oi
d 

ho
rm

on
e 

si
gn

al
in

g 
pa

th
w

ay
**

Ac
ut

e 
m

ye
lo

id
 le

ul
ic

em
ia

**

M
ic

ro
RN

As
 in

 c
an

ce
r*

*

Vi
ra

l c
ar

ci
no

ge
ne

si
s*

*

Fo
ca

l a
dh

es
io

n*
*

Pa
th

w
ay

s 
in

 c
an

ce
r*

*

M
al

ar
ia

**

Am
oe

bi
as

is
**

G
lio

m
a*

*

Ad
he

re
ns

 ju
nc

tio
n*

*

H
ep

at
its

 B
**

Ao
xo

pi
as

m
os

is
**

To
xo

pl
as

m
os

is
**

Pr
ot

eg
ly

ic
an

s 
in

 c
an

ce
r*

*

M
ea

si
es

**

Pr
os

ta
te

 c
an

ce
r*

*

ph
os

ph
op

ro
te

in
 

bi
nd

in
g*

*

BH
3 

do
m

ai
n 

tx
in

di
ng

**

pr
ot

ei
n 

ki
na

se
 C

 
bi

nd
in

g*
*

pr
ot

ei
n 

ki
na

se
 b

in
di

ng
**

nu
cl

ea
r h

oc
m

on
e 

re
ce

pt
or

 b
in

di
ng

**

cy
cl

in
-d

ep
en

de
nt

 p
ro

te
in

 
ki

na
se

 h
ol

oe
nz

ym
e 

co
m

pl
ex

**

sy
na

pt
on

am
al

 
co

m
pl

ex
**

ca
ve

pi
a*

*

55https://doi.org/10.3857/roj.2021.00045

Network biology approach in human lymphocytes



Fig. 6. Gene Ontology/pathway terms specific for cluster 1 (C1) 
genes in response to radiation response upon human lymphocytes: 
(A) the biological process, (B) molecular function, and (C) pathway 
analysis (Kyoto Encyclopedia of Genes and Genome [KEGG], 19 
nodes). **p < 0.01, statistical significance for enriched GO terms.

(KEGG:04210), Wnt signaling pathway (KEGG:04810), T-cell receptor 

signaling pathway (KEGG:04660), B-cell receptor signaling pathway 

(KEGG:04662), and glioma (KEGG:05214). These enriched GO terms 

provide information of the genes responsible for cell cycle check-

point, DNA damage checkpoint, telomere maintenance and DNA 

damage response, signal transduction of p53 class mediator resulting 

in transcription of p21 class mediator (Supplementary Table S2). 

The clustering analysis between 79 interactors with 718 unique 

functional interactions using MCODE has given the dense local 

graph of the gene complexes. Based on the connectivity score ob-

tained from MCODE, three clusters (C1–C3) were obtained. Each 

cluster was further enriched with GO terms related to the ionizing 

radiation response in cells. The functional enrichment analysis of 

19 interacting genes in the C1 cluster (BCL2, BCL2L1, ERBB2, IGF1, 

IL6, KRAS, MAPK14, MTOR, PTGS2, RELA, STAT3, TLR2, TP53, and 

VEGFA) are responsible for cell aging, which is one of the radia-

tion-induced effects. A report reveals that p53 can initiate different 

cellular effector processes, like cell cycle arrest, cellular senescence, 

coordinating with numerous DNA damage repair pathways, meta-

bolic adaptation and apoptotic cell death [36]. It is observed that 

the response depends on cell types to the activation of p53 by DNA 

damage. The T-lymphocytes frequently suffer extensive apoptosis, 

whereas fibroblasts undergo growth arrest. It reflects in differential 

induction of relevant target genes. Ionizing radiation induces Bax 

and rapid apoptosis in lymphoid and myeloid cells. Triggered p53 

stimulates cellular responses that eventually lead to growth arrest 

and apoptosis (programmed cell death) [37]. It has been demon-

strated that the role of p53 was important for radiation-induced 

death in thymocytes and chemotherapy-induced apoptosis in fi-

broblasts expressing deregulated oncogenes in p53 knockout mice 

[38,39]. It is also evident that pathways with p53–Bcl-2 signaling 

promote cell death [40]—the p53 acts as a molecular target for in-

sulin-like growth factor 1 receptor (IGF-1R). Though IGF-1R has a 

role in controlling cell proliferation, differentiation and apoptosis, 

IGF-1R overexpression was found to enhance invasion, malignant 

cell proliferation, survival, and metastasis [41]. 

The enriched molecular functions like phosphatidylinosi-

tol-4,6-bisphosphate 3-kinase activity (ERBB1, IL6, PIK3CA) and 

BH3 domain binding (BCL2, BCL2L1, MCL1) are induced after expo-

sure to ionizing radiation that leads to the triggering of adaptive 

cellular responses [42]. The genes from cluster C2 like AKT1, 

HSP90AA1, ICAM1, and TGFB1, are involved in the biological pro-

cess like positive regulation of reactive oxygen species metabolic 

process. Manning and Toker [43] reported that AKT1 influences nu-

merous cellular processes, e.g., protein synthesis, cell metabolism, 

cell proliferation, apoptosis, and cell survival. The KEGG pathways 

like the p13k-Akt signaling pathway (CDK2, AKT1, HSP30AA1, IG-

B

A

C

cell aging**

positive regulation of 
neuron death**
nitric oxide 

metabolic process**

anoikis**

negative regulation 
of extrinsic apoptotic 
signaling pathway**

Jak-STAT signaling 
pathway**

Pathways in cancer**

MicroRNAs in cancer**

Small cell lung cancer**

Hepatitis B**

Apoptosis**

HIF-1 pathway**

P13K-Akt signaling 
pathway**

Proteoglycans in 
cancer**

BH3 domain binding**

Prostate cancer**

phosphatidylinositol-
4.5-bisphosphate 
3-kinase activity**

zyme complex (GO:0000307), chromosome and telomeric region 

(GO:000078) and nuclear chromosome/telomeric region 

(GO:0000784). Additionally, the immune system process in which 

these genes are differentially expressed is also identified, such as 

lymphocyte activation involved in immune response (GO:0002285), 

lymphocyte proliferation (GO:0046651), and regulation of lympho-

cyte proliferation (GO: 0050670). Further, the enriched KEGG path-

ways include homologous recombination (KEGG:03440), cell cycle 

(KEGG:04110), p53 signaling pathway (GO:04115), apoptosis 
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Fig. 7. Schematic illustration of the differentially expressed genes mapped in p53 signalling pathway, which are upregulated after radiation ex-
posure (highlighted in red).

Fig. 8. Gene Ontology/pathway terms specific for cluster 2 (C2) genes in response to radiation response upon human lymphocytes: (A) the bio-
logical process and (B) pathway analysis (Kyoto Encyclopedia of Genes and Genome [KEGG], 15 nodes). The bars represent the number of genes 
associated with the terms. The percentage of genes per term is shown as a bar label. Terms with up- and down-regulated genes are shown in 
red and green, respectively. The colour gradient shows the gene proportion of each cluster associated with the term. Equal proportions of the 
two clusters are represented in white.
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Fig. 9. GO/pathway terms specific for cluster 3 (C3) genes in response to radiation response upon human lymphocytes: (A) the biological pro-
cess, (B) cellular component, (C) molecular function, and (D) pathway analysis (Kyoto Encyclopedia of Genes and Genome [KEGG], 22 nodes). 
The bars represent the number of genes associated with the terms. The percentage of genes per term is shown as a bar label. Terms with up- 
and down-regulated genes are shown in red and green, respectively. The color gradient shows the gene proportion of each cluster associated 
with the term. Equal proportions of the two clusters are represented in white.
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F1R, NFKB1, and MAPK3) and glioma (CDKN2A, AKT1, IGF1R, and 

MAPK3). It was reported that Cdk/cyclin complexes have a major 

role in the regulation of the cell cycle and are thus found to be 

prime targets of inhibition during cellular stress, DNA damage, and 

telomere dysfunction [44]. In comparison with the other two clus-

ters, the C3 cluster (clustering coefficient =  0.330) claimed to be 

very important since many of the genes here are enriched after the 

radiation exposure, like telomere maintenance via recombination 

(BRCA2, ERCC1, RAD51), double-stranded break repair via non-ho-

mologous end-joining (ATM, CD40, ERCC1, PEKDC), response to 

ionizing radiation (ATM, BRCA1, BRCA2, ERCC1, PRKDC, RADS1, 

SIRT1, and SOD2), telomere capping (ATM, ERCC1, MAPK1, PRKDC). 

We also found that the enriched pathways in the C3 cluster like 

homologous recombination (KEGG: 03440). ATM regulates the cel-

lular response to radiation-induced DNA damage and it is a key 

determinant of radiosensitivity. The ATM-p53 pathway mediates 

radiation-induced DNA repair and, thus, ATM inhibitors' clinical use 

as radiosensitizers in cancer therapy [45]. We established that the 

integrated network biology approach facilitated pathway analysis, 

hypothesis generation and identification of the critical genes (hub) 

involved in response towards ionizing radiation. 

In conclusion, we have demonstrated an integrated bioinformat-

ics approach that includes an expert-guided examination of data 

to define a radiation-induced cellular response. In this approach, 

the network was constructed and analyzed using DEGs and identi-

fied the top 10 genes/proteins that participate in cellular mecha-

nisms crucial during cellular stress. The TP53 is the hub protein in 

the entire network with a high degree and BC score. The functional 

enrichment analysis and pathway analysis have revealed that TP53, 

CDK2, BCL, ATM, and AKT are also vital proteins that are upregulat-

ed in almost all the molecular processes during radiation-induced 

damages. Further, substantial research is required to define the 

molecules and processes mediating radiation-induced translational 

control. However, understanding the impact of DEGs upon radia-

tion would provide innovative vision into the cellular radioresponse, 

ensuring an opportunity to improve therapeutic efficacy. 
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