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Resolution limit of image analysis algorithms
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The resolution of an imaging system is a key property that, despite many advances in optical

imaging methods, remains difficult to define and apply. Rayleigh’s and Abbe’s resolution

criteria were developed for observations with the human eye. However, modern imaging data

is typically acquired on highly sensitive cameras and often requires complex image proces-

sing algorithms to analyze. Currently, no approaches are available for evaluating the resolving

capability of such image processing algorithms that are now central to the analysis of imaging

data, particularly location-based imaging data. Using methods of spatial statistics, we develop

a novel algorithmic resolution limit to evaluate the resolving capabilities of location-based

image processing algorithms. We show how insufficient algorithmic resolution can impact

the outcome of location-based image analysis and present an approach to account for

algorithmic resolution in the analysis of spatial location patterns.
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Resolution is one of the most important properties of an
imaging system, yet it remains difficult to define and apply.
Rayleigh’s and Abbe’s resolution criteria1 were developed

for observations with the human eye and had a major influence
on the development of optical instruments. However, no sys-
tematic approach is yet available for the evaluation of the often
complex image processing algorithms that have become central to
the analysis of the imaging data that today is acquired by highly
sensitive cameras. This is particularly relevant for the many
modern imaging experiments and corresponding image proces-
sing algorithms for which the detection of objects (e.g., molecules,
molecular complexes, subcellular organelles) form an integral
aspect. Examples are localization-based superresolution experi-
ments (PALM, STORM, etc.2–4), experiments to investigate the
arrangement of molecular complexes on the cellular membrane
such as clathrin-coated pits5,6, experiments tracking single
particles7,8 or subcellular organelles9, etc.

Common to the analysis of experimental data produced by
such “object-based” imaging experiments is the central role that
image analysis algorithms play in the identification and locali-
zation of the underlying objects, be they single molecules,
clathrin-coated pits, etc. The success of such imaging experiments
is, therefore, to a large extent dependent on how well these
algorithms can resolve the imaged objects10. The assessment of
such algorithms in terms of their resolution capabilities is, how-
ever, largely unexplored.

Here, we use methods of spatial statistics to quantitatively
evaluate the resolution capabilities of location-based image ana-
lysis algorithms and to demonstrate the impact of resolution
limitations on the analysis of object-based imaging data. A spe-
cific example that we will consider in detail relates to the question
of whether the distribution of clathrin-coated pits is purely ran-
dom or exhibits other spatial characteristics such as clustering.
Methods of spatial statistics, which have been extensively used in
different scientific disciplines11, form the theoretical background
for the development of this manuscript and underpin the pre-
sented methods for evaluating location-based image analysis
algorithms. This theoretical background is introduced in Sup-
plementary Note 1 and rigorously developed in Supplementary
Notes 2–7. Central to this analysis is the notion of algorithmic
resolution which we introduce to characterize an algorithm’s
ability to resolve objects.

Results
Detecting the effect of algorithmic resolution. First, we show
that insufficient “algorithmic resolution” of an image analysis
algorithm can have a significant impact on the outcome of the
analysis of spatial patterns which is typically carried out using the
pair-correlation function or Ripley’s K-function11 (see Supple-
mentary Note 2). For a spatial pattern that is uniformly dis-
tributed (in the probabilistic sense), also termed completely
spatially random, the pair-correlation function g, which describes
the relationship between pairs of objects that are a distance r
apart, is given by the identity function g(r)= 1, r > 0. Ripley’s K-
function, which describes the expected number of objects within a
distance r of an arbitrary object, is given by K(r):= πr2, r > 0, for a
completely spatially random pattern. This implies that the related
L(r)− r function, where LðrÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKðrÞ=πÞ

p
for r > 0, is constant

and equal to zero. The L(r)− r function is non-zero if the point
pattern is not completely spatially random. Clustering, in which
objects are typically closer to each other than one would expect
under complete spatial randomness, is characterized through
positive values of this function, whereas deviations from 0 to
negative values indicates inhibition or regularity, meaning that
the spacing of points is somewhat larger than that in completely

spatially random data. Here, it is also instructive to recall that
completely spatially random data are those in which the events
occur completely at random and independently of each other. So
at first sight some spatial configurations of events might be seen
that resemble clusters, whereas in other areas large “empty”
patches might be seen (see Supplementary Figure 1). These occur
purely by chance and are not due to some underlying correlation
structure within the data. However, importantly for our con-
siderations, all possible spatial configurations of events are
sampled.

An important question in cell biology is whether or not
structures are organized in a regular way or do not have particular
relations among them. Clathrin-coated pits play a major role in
endocytosis. Whether clathrin-coated pits are positioned in an
ordered fashion is of major interest in cell biology. Translated
into the language of spatial statistics, we are therefore interested
in whether or not clathrin-coated pits are distributed in a
completely spatially random fashion5,6. This question itself can be
addressed by investigating the L(r)− r function of the locations of
the pits.

The clathrin-coated pit imaging data of Fig. 1a was processed
using several established algorithms (see the list of image analysis
approaches in Methods) to determine the locations of the pits
(Fig. 1b, c), which were then further analyzed by plotting the
estimated L̂ðrÞ � r function (Fig. 1d). The analysis appears to
show that the pits are not distributed in a completely spatially
random fashion as the L̂ðrÞ � r plot is not equal to zero for all the
processing schemes, thereby suggesting a nonuniform arrange-
ment of the pits on the plasma membrane. To understand this
behavior, we simulated clathrin-coated pits that are located
according to a completely spatially random distribution (Fig. 1e).
Estimating and analyzing the locations of these simulated pits
(Fig. 1f, g) in the same fashion as done for the experimentally
acquired data reveals that the resulting L̂ðrÞ � r plots show
remarkable similarity with those obtained from the experimen-
tally acquired data (Fig. 1h). Importantly, these plots do not show
a constant value of 0 as would be expected for completely spatially
random data. This suggests that the deviations from the expected
constant appearance of the L̂ðrÞ � r function are due to effects of
the data analysis rather than being a property of the distribution
of the clathrin-coated pits.

To further understand this phenomenon, we investigated
whether the observed effects might be due to the different
capabilities of the image processing algorithms to resolve
clathrin-coated pits. To do this, in Supplementary Notes 3–5
we theoretically analyzed the impact of limited “algorithmic
resolution” of an image analysis algorithm on the pair-correlation
and the L(r)− r functions. We modeled the effect of an algorithm
not being able to distinguish objects that are spaced closer than a
certain cut-off distance. If the objects are located in a completely
spatially random fashion, the resulting L(r)− r function has an
appearance similar to that observed in the analysis of the clathrin-
coated pit data. These observations indicate that the resolving
capabilities of image analysis algorithms need to be taken into
consideration when analyzing object-based imaging data.

Importantly, this analysis also suggests that the resolving
capabilities of an image processing approach can be characterized
by the deviation from the expected spatial analysis results for
objects that are simulated with a completely spatially random
location pattern. We therefore determine the algorithmic
resolution limit, α, of a particular object-based image analysis
algorithm by using this algorithm to estimate the locations of
objects that are simulated with completely spatially random
positions. It is shown in Supplementary Note 5 (with further
discussion in Supplementary Note 12) that resolution effects up
to a distance of α impact the pair-correlation function of
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completely spatially random data for distances up to 2α.
Therefore, the algorithmic resolution limit α is then defined as
half the distance in the pair-correlation function of the estimated
object locations beyond which the graph exhibits a constant plot
with value 1.

Algorithmic resolution limit. We analyzed several well-
established image analysis algorithms. The purpose of this
manuscript is not the evaluation of specific algorithms but to
illustrate the methodology surrounding algorithmic resolution.
We have largely used the algorithms with the default settings as
they are available when downloaded. It is very well possible that
an expert user of a particular algorithm could obtain significantly
better results than those presented here.

We found that across the algorithms used, the algorithmic
resolution limits can vary significantly (Fig. 2d). In fact, some of
these algorithms are affected by algorithmic resolution well
beyond the resolution limit that is predicted by Rayleigh’s
criterion, which is around 250–300 nm for the imaging conditions
in Fig. 1. Algorithm 2 has the smallest algorithmic resolution limit

of 360 nm, whereas Algorithm 3 has an algorithmic resolution
limit of 620 nm, almost twice that of Algorithm 2. Using
completely spatially random data as a basis to analyze the
resolution capability and to define the algorithmic resolution limit
of object-based image analysis algorithms allows us to probe
random configurations of object locations. Therefore, the concept
of the algorithmic resolution limit also has applicability to object
arrangements that are nonstochastic. As illustrated in Fig. 3a (see
also Supplementary Figure 12), the deterministically arranged
object locations that could be reliably identified coincide with
those locations that are spaced at a distance larger than the
algorithmic resolution limit.

Our analysis has also revealed shortcomings in some
established algorithms beyond the impact of algorithmic resolu-
tion. Two of the algorithms, Algorithms 4 and 5, exhibit
oscillatory behavior in the pair-correlation function even for
very large distances. Upon further investigation, we found that
these algorithms preferentially identify objects located towards
the center of the pixels (see Supplementary Figure 11). As a result,
the algorithmic resolution limit of these algorithms is taken as
infinite or not defined. We also analyzed a multiemitter
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Fig. 1 Detecting the effect of algorithmic resolution. a Fluorescence microscopy image of clathrin-coated pits on the membrane of an HMEC-1 cell. Scale
bar= 1 μm. b Magnified view of the region marked in (c). Scale bar= 1 μm. c Location estimates obtained by applying three image analysis approaches to
(a): Algorithm 1 (diamonds), Algorithm 2 (crosses), and Algorithm 3 (circles). Scale bar= 1 μm. d L̂ðrÞ � r plots calculated based on the localizations shown
in (c) appear to indicate that clathrin-coated pits are not distributed in a completely spatially random manner since the L̂ðrÞ � r plots deviate significantly
from 0 for each of the analysis approaches shown in (c). e Simulated image of clathrin-coated pits located at completely spatially random locations.
Experimental and imaging parameters similar to (a) were used for the simulation: pixel size= 6.45 μm× 6.45 μm, magnification= 63, and background=
100 photons per pixel. Each clathrin-coated pit was simulated using a Gaussian profile with σ= 120 nm and total photon count uniformly distributed
between 500 to 2000 photons. A total of 419 clathrin-coated pits were simulated in a 200 × 200 pixel image. Scale bar= 1 μm. f Magnified view of the
marked region in (g). Scale bar= 1 μm. g Location estimates obtained using the image analysis approaches shown in (c) applied to (e). Scale bar= 1 μm.
h L̂ðrÞ � r plots calculated based on the localizations shown in (g) also results in significant deviations from 0 for a completely spatially random distribution
of locations
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algorithm, Algorithm 6. Multiemitter algorithms have been
introduced to deal with the location estimation of very closely
spaced emitters. The corresponding pair-correlation function
shows a very interesting profile that has a significantly more
complex appearance than the pair-correlation functions for the
other algorithms. For example, for low distances large values are
obtained suggesting a clustering type behavior. Only for very large
distance values does the pair-correlation function approach 1 (see
Supplementary Figure 13a) which is also reflected in a very large
algorithmic resolution limit of 577.5 nm which is significantly
larger than the algorithmic resolution limit for the single emitter
version. This emphasizes the difficulty in devising algorithms that
can successfully resolve multiemitters and not introduce pro-
blems, although other multiemitter algorithms would need
analyzing individually to check whether they exhibited similar
behavior. The ring figures (see Supplementary Figure 13c-d) also
reveal somewhat surprising behavior by overestimating the
number of emitters for several isolated spots. This suggests that
the algorithm, for the default settings we used, does not
necessarily faithfully determine the multiplicity of the point
sources.

We note at this point that the procedure used for estimating
the algorithmic resolution limit from a pair-correlation function,

as described in Supplementary Note 9, is just one of many
potential approaches. We have developed this automated method
for consistency in our results, although some users may find that
a visual inspection of the pair-correlation will suffice in under-
standing an algorithm’s performance and behavior. As with any
statistical procedure, the estimate is data dependent and will not
be exact. To characterize this uncertainty, we have also proposed
a bootstrapping procedure, as outlined in Supplementary Note 9.
This uses a resampling-with-replacement strategy for creating
several versions of the pair-correlation function and estimating
the algorithmic resolution limit on each one. It is then possible to
reason about the uncertainty of the estimator through analyzing
the distribution of these bootstrapped estimates and computing
approximate confidence intervals.

Ram et al.12 analyzed the resolution of objects as it depends on
the statistics of the acquired data, in particular the number of
acquired photons from the objects and the various noise sources.
It was shown that how well the distance between two objects can
be measured, in terms of standard deviation, depends strongly on
both the distance and the detected photons from the two objects.
It is therefore expected that algorithmic resolution also depends
on the specifics of the signal levels that are being used. This is
indeed the case as illustrated in Supplementary Figure 9 where we
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Fig. 2 Determining the algorithmic resolution limit. a A sample simulated image of the dataset analyzed to obtain the results shown in (b) and (c). Each
image consists of 2500 molecules positioned at completely spatially random locations over a 50 μm× 50 μm region. The following numerical parameters
were used to generate each image: pixel size= 13 μm× 13 μm, magnification= 100, numerical aperture= 1.3, wavelength= 525 nm. Each molecule was
simulated using an Airy profile with a total of 1000 photons. Scale bar= 5 μm. b L̂ðrÞ � r plots calculated based on localizations obtained from various
image analysis approaches applied to (a) exhibit different behaviors indicating different resolving capabilities. c Pair-correlations calculated based on the
localizations obtained using the image analysis approaches shown in (b) applied to a dataset containing 2000 images generated similar to (a). These
results are used to estimate the algorithm resolution limit α̂ (see Supplementary Note 9). The estimated algorithm resolution limits are as follows:
α̂ ¼ 362 nm for Algorithm 1, α̂ ¼ 360 nm for Algorithm 2, and α̂ ¼ 620 nm for Algorithm 3. d Magnified view of the results shown in (c) with the values
corresponding to 2α̂marked by dashed vertical lines. e Resolution-corrected L̂2αðrÞ � r plots calculated based on the results for L̂ðrÞ � r shown in Fig. 1d and
corrected using the 2α̂ values shown in (d). f Resolution-corrected L̂2αðrÞ � r plots calculated based on the results for L̂ðrÞ � r shown in Fig. 1h and corrected
using the 2α̂ values shown in (d) no longer show significant deviations from 0 for a completely spatially random distribution of locations
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see that for simulations with extremely low signal levels the pair-
correlation functions for the different algorithms take on different
forms and as a result also worsen the algorithmic resolution limit.
Importantly, however, for all other higher signal levels such as
those for which single-molecule experiments are usually con-
ducted, there are no appreciable differences in the regions of the
curves that determine the algorithmic resolution limit and as a
result in the estimate of the limit itself. This independence is
further consistent with the results of Ram et al.12,13 as for the
distances around Rayleigh’s resolution criterion very good
estimates can be obtained even for relatively low signal levels.

Quantifying the effect of algorithmic resolution. The question
immediately arises, how the algorithmic resolution limit of an
image analysis algorithm impacts the analysis of experimental
data. For example, it is important to quantitate how many objects
remain unaffected by resolution effects when the imaging data are
analyzed using an algorithm with algorithmic resolution limit α.
As predicted by the theory and verified empirically, the algo-
rithmic resolution limit of an algorithm is independent of the
density of objects within the density ranges of general interest (see
Supplementary Note 10 and Supplementary Figure 8). However,
understanding how the algorithmic resolution limit, object
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Fig. 3 Application of algorithmic resolution limit to localization microscopy. a Application of the algorithmic resolution limit to the analysis of nonstochastic
data illustrated using images of deterministic structures. Each structure consists of single molecules positioned evenly around the edge of a ring (crosses).
Localizations were obtained by analyzing the image corresponding to each structure using Algorithm 2 (diamonds). Localizations corresponding to
structures where all constituent molecules were accurately identified and localized to within 10 nm of the true location are shown in blue. Localizations
corresponding to structures where one or more molecules were either not identified or where the localization deviated by more than 10 nm from the true
location are shown in red. Magnified views of some structures are shown with the radius of the corresponding ring (r) and the distance between adjacent
molecules on the edge of the ring (d) indicated above each magnified view. All molecules of structures where the spacing between adjacent molecules is
greater than the algorithmic resolution limit of Algorithm 2 are accurately identified and localized to within 10 nm of the true location. The solid line
corresponding to α̂ ¼ 360 nm indicates the algorithmic resolution limit for Algorithm 2. The dashed lines on either side of the solid line indicate the
bootstrapped 80% confidence interval for the estimate of α (see Supplementary Note 9). Results obtained by analyzing the same images using other
approaches are provided in Supplementary Figure 12. b Sample images from three datasets that were analyzed to obtain the results shown in (c). The three
datasets were generated with the following spatial distribution of molecules (see Methods): completely spatially random (CSR) distribution, random
distribution with a preferred spacing ranging from 2990 to 3010 nm between molecules (clustering), and random distribution with molecules avoiding
spacings between 2990 to 3010 nm of each other (inhibition). Scale bar= 10 μm. c L̂ðrÞ � r plot compared to the corresponding resolution-corrected
L̂2αðrÞ � r plot calculated based on localizations obtained by analyzing the three datasets illustrated in (b). For each analysis approach, the value
corresponding to 2α̂ indicated in Fig. 2d is used to calculate L̂2αðrÞ. Results show that deviations from 0 in the L̂ðrÞ � r plot are corrected for completely
spatially random distributions of locations when the algorithmic resolution limit is taken into account. Results for distributions with clustering or inhibition
spacings between molecules still show corresponding deviations from 0 in the corrected L̂2αðrÞ � r results

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08689-x ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:793 | https://doi.org/10.1038/s41467-019-08689-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


density, and spatial structure of the objects interplay with one
another is of vital importance. The effect of object density in
fluorescence microscopy is of course well studied14–17 and here
we provide further insight into its role.

As shown in Supplementary Note 6, the probability that an
object is unaffected by resolution effects, what we here call the
probabilistic resolution, is given by 1−GO(α). Here, GO is the

nearest-neighbor probability distribution function for the objects,
describing the probability that an arbitrary object is at a distance
less than α from its nearest neighboring object (see Supplemen-
tary Note 2 for its formal definition). If the objects are located
according to a completely spatially random distribution, GO(α)=
1− exp(−λOπα2), where λO is the density of the object locations.
Therefore, in a highly dense object pattern, not surprisingly, the
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probability that an object is not affected by algorithmic resolution
is severely reduced.

For example, consider cellular membrane receptor clusters
distributed in a completely spatially random fashion with a
density of 1 cluster per square micrometer (as in Fig. 1e). When
analyzing the location of such protein clusters using an algorithm
with algorithmic resolution limit α= 360 nm (e.g., Algorithm 2),
the probability a cluster is not affected by resolution (the
probabilistic resolution) is 66.5%. However, when analyzing the
cluster locations using an algorithm with α= 620 nm (e.g.,
Algorithm 3), the probabilistic resolution is 29.9%. Thus, the
difference in algorithmic resolution between the two algorithms
can have drastic effects on the analysis of the data. Further, it is
only for cluster densities of 0.1 clusters per square micrometer
that the probabilistic resolution will be above 95% (with 96.0%)
for an algorithm with α= 360 nm. However, this probability
decreases significantly to 88.6% for the algorithm with α= 620
nm. Other spatial distributions can be assessed through similar
analysis of their nearest-neighbor distribution function. This will
be demonstrated by applying this probabilistic approach to
localization microscopy.

Application to localization microscopy. Localization-based
superresolution methods use repeat stochastic excitation of
small subsets of the fluorophores in a sample4. The question
therefore arises how small these subsets need to be in order for a
large fraction of the single molecules/objects to be spatially iso-
lated and not affected by the algorithmic resolution limit of the
analysis step.

To quantify this, let us denote q to be the probability of an
object appearing in any given frame of the dataset. For example,
in an ideal PALM experiment where molecules are evenly
distributed across nF frames, we have q ¼ n�1

F , and in the
classical microscopy setting, when all objects appear in a single
frame, we have q= 1. It is shown in Supplementary Note 7 that
the probabilistic resolution becomes 1−Gq(α). Here, Gq is the
nearest-neighbor distribution function for the subset of objects
that appear in an arbitrary frame. We recall that Gq(α) is the
probability an arbitrary object within the frame is within a
distance α of its nearest neighbor. Therefore, for 0 < q < 1, we
have Gq(α) <GO(α), where GO is the nearest-neighbor distribu-
tion function for the full dataset of objects (i.e. if all objects appear
in a single frame). This shows how the probabilistic resolution
increases by separating the objects among frames. Furthermore, if
we increase the number of frames from nF to n0F, and hence
decrease the probability an object appears in an arbitrary frame
from q to q′, we have Gq′(α) <Gq(α) and the probabilistic

resolution further increases. Importantly, it is shown in
Supplementary Note 7 that probabilistic resolution becomes 1
(i.e. all objects are perfectly resolved) as q ¼ n�1

F tends to zero.
More so, if one wishes to insist the probabilistic resolution must
be greater than some value p, it is required that q is chosen such
that p < 1−Gq(α). We will illustrate these concepts with two
examples: clustered objects and tubulin data.

Clustered objects. Suppose the single molecules to be localized
exist in clusters. A simple model one may apply in this setting is
that the cluster centers are completely spatially random and single
molecules are distributed about the cluster centers according to a
2D spherically symmetric Gaussian distribution. In this setting,
the nearest-neighbor distribution function can be derived18 and is
presented in Supplementary Note 8. For example, consider ima-
ging a clustered process of this type in which there is an average
of ten clusters per 30 μm2, an expected 100 single molecules per
cluster, each distributed around the cluster center with a standard
deviation of 0.05 μm in both x and y directions. An example
realization of this process is shown in Fig. 4a. For an algorithmic
resolution limit of α= 500 nm, if all the single molecules were to
be imaged in a single frame the probability of an arbitrary object
being unaffected by resolution is 0 (to machine precision).
However, if the single molecules were imaged using sparse subsets
across multiple frames with a probability of q= 1/1000, the
probabilistic resolution rises to 88.2%. For q= 1/10,000 it rises
further to 96.8%. Suppose we wish to achieve a probabilistic
resolution of at least 99% we require q ≤ 7.97×10−5, which would
require a minimum of 12,548 frames to achieve. Completely
spatially random molecules of the same average intensity would
require only 3907 frames (q= 2.56×10−4) to attain the same level
of probabilistic resolution. This demonstrates the extra demands
that clustered data present.

Interestingly, it is shown in Supplementary Note 7 that in order
to achieve the same level of probabilistic resolution in a classical
single-molecule experiment where all single molecules are
activated and imaged in a single acquisition, an algorithmic
resolution of G�1

O ðGqðαÞÞ is required. When q= 1/1000 and α=
500 nm, this would require an algorithmic resolution limit of 3.56
nm, which is well beyond what is currently achievable, thus
illustrating the power of using stochastic excitation for
localization-based single-molecule superresolution experiments.
A demonstration of this calculation is shown in Fig. 4c.

Tubulin data. We consider a tubulin dataset10 consisting of
1×105 emitters imaged over 2401 frames (see Fig. 4d). This gives

Fig. 4 Probabilistic resolution. a Realization of a clustered spatial point pattern, with an expected 10 clusters per 30 μm2, an expected 100 objects per
cluster, each distributed around the cluster center with a standard deviation of 0.05 μm in both x and y directions. b The probabilistic resolution as a
function of q, the probability of an object appearing in any given frame, for the clustered spatial point pattern shown in (a). c GO(r), the nearest-neighbor
distribution function for the clustered spatial point pattern shown in (a), and Gq(r), the nearest-neighbor distribution function for a random subset of points
(replicating a single frame in a localization microscopy experiment) where the probability of an object appearing is q= 1/1000. The value of Gq at an
example algorithmic resolution limit of α= 500 nm is shown to be 0.118, which gives a probabilistic resolution (the probability an object is unaffected by
resolution) of 88.2%. The algorithmic resolution that would give the same probabilistic resolution when all objects are imaged in a single frame, given as
G�1
O ðGqðαÞÞ, is shown to be 3.56 nm. d Tubulin spatial point pattern10. e The estimated probabilistic resolution of the tubulin data shown in (d) as a function

of q, the probability of an object appearing in any given frame. f GO(r), the estimated nearest-neighbor distribution function for the clustered spatial point
pattern shown in (d), and Gq(r), the estimated nearest-neighbor distribution function for a random subset of points (replicating a single frame in a
localization microscopy experiment) where the probability of an object appearing is q= 1/2401. The value of Gq at an example algorithmic resolution limit
of α= 360 nm is shown to be 0.136, which gives a probabilistic resolution (the probability an object is unaffected by resolution) of 86.4%. The algorithmic
resolution that would give the same probabilistic resolution when all objects are imaged in a single frame, given as G�1

O ðGqðαÞÞ, is shown to be 1.38 nm.
g The theoretical probabilistic resolution of the tubulin data for Algorithms 1, 2, and 3 at different values of q is shown with red circles. The blue crosses
show the observed proportion of correctly localized molecules. This was determined to be ground truth coordinates that have a localization within 12 nm.
h The number of localizations estimated by Algorithms 1, 2, and 3 on experimental tubulin data as a function of (relative) data density (see text for details)
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q= 1/2401 and an average of 41.6 emitters per frame. Supple-
mentary Note 8 gives details on computing the nearest-neighbor
distribution function for this dataset. For this value of q and an
algorithmic resolution limit of α= 360 nm (e.g., Algorithm 2), the
probabilistic resolution equal to 1−Gq(α) is found to be 86.4%.
To achieve the same level of probabilistic resolution in a classical
single-molecule experiment where all single molecules are acti-
vated and imaged in a single acquisition, an algorithmic resolu-
tion of 1.38 nm is required, again illustrating the power of using
stochastic excitation for localization-based single-molecule
superresolution experiments. A demonstration of this calculation
is shown in Fig. 4f. Changing q to 1/10,000 increases the prob-
abilistic resolution to 96.8% whereas for q= 1/1000 the prob-
abilistic resolution is decreased to 71.2%. Verification of this
analysis is provided in Fig. 4g. The proportion of correct locali-
zations (within 12 nm of a ground truth coordinate) is plotted for
different values of q. This is compared to the theoretical prob-
abilistic resolution as presented in Supplementary Note 7 and
estimated using the scheme in Supplementary Note 8.

An experimental tubulin dataset is also considered to further
verify the results presented. The original dataset, Dataset 1, is
comprised of 50,000 frames and contains approximately 3.2×106

localizations for Algorithm 1, 2.5×106 localizations for Algorithm
2 and 0.7×106 localizations for Algorithm 3. Averaging pairs of
images, we are able to create Dataset 2 that consists of 25,000
frames, each with double the object density. Dataset 3, formed by
averaging triplets of frames, consists of 16,666 frames with triple
the object density. This is repeated up to Dataset 10, which
consists of 5000 frames with ten times the object density. The
number of localizations generated by each algorithm for each
dataset is shown in Fig. 4h (and Supplementary Figure 14 shows
examples of the reconstructed images from these datasets). These
results demonstrate two key points. The first is it can be seen that
Algorithm 2, the algorithm with the smallest resolution limit, has
the largest number of localizations. Furthermore, Algorithm 1,
which has a similar algorithmic resolution limit, has a very similar
number of localizations. However, Algorithm 3, which has an
algorithmic resolution limit almost twice as large as Algorithms 1
and 2, produces far fewer localizations. This is consistent with the
presented theory; a larger algorithmic resolution results in a
smaller probabilistic resolution under the same molecule density,
and as such we would expect fewer localizations. The second
point is that the number of localizations decreases as the density
increases. Again, this is predicted under our theoretical frame-
work since we show probabilistic resolution decreases with
density. This demonstrates that experimental observations on the
performance of different algorithms are consistent with the
findings of the paper, which have been reached from simulation
methods.

Adjusting for algorithmic resolution. We have seen that algo-
rithmic resolution can significantly distort Ripley’s K-function.
However, knowing the algorithmic resolution limit α of an
algorithm allows us to define a resolution-corrected Ripley’s K2α-
function and resolution-corrected L2α(r)− r for r ≥ 2α (see Sup-
plementary Note 11). Figure 3c shows that inhibition and clus-
tering can be correctly identified with the resolution-corrected
L2α(r)− r function if they occur at distances above 2α for object-
based imaging data analyzed with an algorithm of resolution limit
α.

If the clathrin-coated pit data of Fig. 1a is analyzed using an
algorithm with algorithmic resolution limit α= 360 nm (e.g.,
Algorithm 2) and the estimated locations processed with the
resolution-corrected L2α(r)− r function, the data show that there
is no significant deviation from complete spatial randomness

beyond the distance of 2α= 720 nm (Fig. 2e, f). This indicates
that at distances above twice the algorithmic resolution limit for
the individual algorithms, the clathrin-coated pit locations do not
show any deviation from complete spatial randomness.

Discussion
Resolution has been analyzed in microscopy going back to the
classical criteria by Rayleigh and Abbe. Those criteria address the
performance of the imaging optics. Using an information-
theoretic approach, Rayleigh’s resolution criterion was general-
ized and put in the context of modern imaging where data consist
of noise-corrupted photon count measurements acquired through
quantum-limited detectors12. A resolution measure based on the
Fourier ring coefficient was introduced that can be computed
directly from an acquired image and takes into account the
standard deviation with which a single molecule can be loca-
lized19. Common to these recent approaches is they do not take
into account that different object-based image analysis algorithms
can have very different algorithmic resolution limits.

The evaluation of algorithms for single-molecule image ana-
lysis is complex and a number of approaches have been used in
the past, many of those comparing the estimated locations with
the ground truth of simulated data10. The introduction of the
concept of algorithmic resolution in this paper provides an
additional tool by determining the minimum distance beyond
which the algorithm can reliably distinguish different objects. The
analysis presented here also provides important insights into why
algorithms perform differently on more classical evaluation
approaches (see e.g. Fig. 3a).

Object density has been well recognized as causing significant
problems for the object-based image analysis algorithms14–17.
Here, we have derived analytical approaches that investigate how
algorithmic resolution and object density impact the probability
of an object being affected by resolution when the data are ana-
lyzed with an image analysis algorithm with specific algorithmic
resolution limit. Understanding this probabilistic resolution is key
to determining if post-processing methods, for example clustering
algorithms20 that estimate cluster sizes and the number of objects
per cluster, can be used with confidence.

The approach to defining algorithmic resolution that is pre-
sented here depends on the availability of test data with objects
that are distributed in a completely spatially random fashion.
Such data are completely uncorrelated and consequently gives rise
to a pair-correlation function that is identically equal to 1. The
estimation algorithm that is investigated is then used to estimate
locations of these objects based on simulated data with the given
object locations. Subsequently, an estimated pair-correlation
function is computed based on the estimated locations. The
algorithmic resolution limit is defined through the distance below
which the estimated pair-correlation function deviates from that
based on the true locations, i.e. 1. This approach could be mod-
ified to use test data that gives rise to a different pair-correlation
function. The point at which the estimated pair-correlation
function deviates from the theoretical one could be used as a
method of comparing two or more different algorithms. However,
with the theoretical results of Supplementary Note 5 pertaining to
completely spatially random data, caution should be taken in
using these points to estimate algorithm resolution limits.

For the approach to be relevant to experimental settings, it is
important that the simulated data used to determine the algo-
rithmic resolution limit reflects the data that will be acquired
when the algorithm is applied in an experimental setting. As we
have seen, the determination of the algorithmic resolution limit
does depend on the photon count of the simulated single-
molecule data in certain circumstances, such as extremely low
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photon counts. We have also seen a dependence on the density of
the sampled objects, again in extreme cases. It is equally clear that
other model parameters that determine the appearance of the
images of the objects under study need to be matched to the
experimental settings to be able to expect reliable results. If
experimental data were available that can be guaranteed to be
made up of objects that are located in a completely spatial ran-
dom manner, then such data could also be used. However,
guaranteeing that objects are located in a completely spatially
random fashion would be very difficult to achieve. Unless such a
guarantee is available, simulated data are to be preferred as
complete spatial randomness of these test data is critical for the
approach.

We have introduced a methodology to systematically assess the
algorithmic resolution limit of object-based image analysis algo-
rithms and to evaluate the impact of the limitations on the
analysis of microscopy data. We hope that the approaches pre-
sented will contribute to a systematic evaluation of such algo-
rithms that are of relevance not only to microscopy applications
but to other object-based imaging scenarios such as those arising,
for example, in astronomy.

Spatial statistics has played an important role in many areas of
cell biology. We hope that the results presented here will con-
tribute to an improved understanding of the methodology and
lead to the avoidance of misinterpretation of the acquired data. In
particular the use of the resolution-corrected Ripley’s K-function
is expected to be a powerful tool for cell biological studies that
rely on spatial statistics.

Methods
Preparing HMEC-1 cells for fluorescence imaging. HMEC-1 cells were fixed
using 1.7% (w/v) paraformaldehyde (Electron Microscopy Sciences) at room
temperature and permeabilized by incubation with 0.02% (w/v) saponin in
phosphate-buffered saline (PBS) for 10 min at room temperature. Cells were then
preblocked with 3% bovine serum albumin (BSA) in PBS, incubated with anti-
Clathrin primary antibody (mouse monoclonal X22, Catalog # ab2731, Abcam,
diluted 1000-fold in 1% BSA/PBS) for 25 min at room temperature, and treated
with goat serum diluted 50-fold. Bound primary antibody was detected by treat-
ment with Alexa 555-labeled anti-mouse IgG (Catalog # A-21424, Thermo Fisher
Scientific, diluted 750-fold in 1% BSA/PBS) for 25 min at room temperature. Cells
were washed twice with PBS between each incubation and finally immersed in 1.5
ml of 1% BSA/PBS prior to imaging.

Fluorescence microscopy imaging. Fixed HMEC-1 cells were imaged with a Zeiss
(Axiovert 200M) inverted epifluorescence microscope fitted with a 63× (1.4 NA)
Plan Apo objective (Carl Zeiss) using a CCD camera (Orca ER, Hamamatsu). The
sample was illuminated using a broadband LED illumination (X-Cite 110LED,
Excelitas Technologies) filtered through a standard Cy3 filterset (Cy3-4040C-ZHE
M327122 Brightline, Semrock). Signal from the sample was also filtered through
this filterset before being acquired by the camera.

Preparing BS-C-1 cells for superresolution imaging. BS-C-1 cells (CCL-26,
American Type Culture Collection) were plated on custom, glass-bottom dishes
(Catalog # PG35G-10C-NON, MatTek Corporation) fitted with high-performance
Zeiss coverglasses (Catalog # 474030-9000-00, Thickness 1.5) at a density of 20,000
cells and incubated for 16–24 h. The coverglasses were cleaned by sonicating them
sequentially in 50% HPLC grade ethanol, 1 mM HCL in 50% HPLC grade ethanol,
and 1M KOH in 50% HPLC grade ethanol for 20 min each with extensive washing
using MilliQ water after every sonication. The cells were fixed using 3.4% paraf-
ormaldehyde (Electron Microscopy Sciences) in PBS for 10 min at 37 °C. The fixed
cells were then permeabilized using 0.1% Triton X-100 in PBS for 10 min at room
temperature. Cells were then preblocked with 5% BSA (Catalog # BP1600, Fisher
Scientific), incubated with mouse α-tubulin antibody (Catalog # A11126, Thermo
Fisher Scientific, diluted 200-fold in 1% BSA/PBS) for 30 min at room temperature,
and treated with goat serum (Catalog # G6767, Sigma, diluted 50-fold in 1% BSA/
PBS). Bound primary antibody was counter-stained with Alexa 647-labeled goat
anti-mouse IgG (Catalog # A-21236, Thermo Fisher Scientific, diluted 750-fold in
1% BSA/PBS) for 30 min at room temperature.

Optical setup for superresolution imaging. Images of BS-C-1 cells were acquired
using a standard inverted epifluorescence microscope (Observer A1, Zeiss) fitted
with a 63× (1.4 NA) Plan-Apochromat oil-immersion objective (Carl Zeiss). The

sample was illuminated using 635 nm and 450 nm diode lasers (OptoEngine) for
the excitation of Alexa 647 and for photoswitching respectively. The illumination
light was directed towards the microscope using custom laser excitation optics,
reflected into the sample using a dichroic filter (Di01-R405/488/561/635-25x36,
Semrock), and focused onto the back focal plane of the objective lens. Signal from
the sample was filtered using a bandpass filter (FF01-676/29-25, Semrock) and
acquired by an electron multiplying charge coupled device (EMCCD) camera
(iXon DU897-BV, Andor) set to conventional readout mode. Axial drift during the
course of the acquisition was corrected in real time using a custom focus stabili-
zation system comprising an 850 nm diode laser (PI, USA), a quadrant position
detector (Thorlabs), and an XYZ piezo positioner (PI, USA). All devices including
lasers, shutters, and cameras were controlled and synchronized using custom-
written software in the C programming language.

Superresolution image acquisition. Buffer solutions in which the BS-C-1 cell
samples were prepared were replaced with an imaging buffer immediately prior to
the imaging of each sample. This imaging buffer consisted of 50 mM cysteamine,
0.5 mg ml−1 glucose oxidase, 40 μg ml−1 catalase, and 10% glucose (w/v) in PBS,
pH 7.4. (All buffer ingredients were purchased from Thermo Fisher Scientific.) The
imaging buffer was freshly prepared for each acquisition. A coverslip was placed
over the sample and sealed using vacuum grease. For each acquisition, the sample
was briefly illuminated (approximately 5–10 min) using the maximum-power
setting of the 635 nm laser to switch off most of the Alexa 647 fluorophores and
achieve sparse single-molecule activation conditions. Acquisition was initiated once
steady-state, single-molecule blinking was observed with periodic illumination
using the 405 nm laser to reactivate fluorophores and maintain sufficient activation
density. The activation laser power was kept low throughout the acquisition. For
each dataset, typically 50,000 images of stochastically activated fluorophores were
acquired with 50 ms exposure time for each image and without EM gain resulting
in an acquisition rate of 20 frames per second.

Generating completely spatially random locations. For a completely spatially
random distribution of locations in an S μm× S μm region, the (x, y) coordinate for
each location was obtained by drawing realizations of independent random vari-
ables X and Y, each uniformly distributed with probability density functions pX(x)
= pY(y)= 1/S, 0 ≤ x, y ≤ S. For the simulated image in Fig. 2, S= 50 resulting in a
50 μm× 50 μm region.

Generating locations for deterministic structures. Deterministic structures
consist of D molecules located at evenly spaced points on the circumference of a
circle of radius r. The location of the dth point ðxd0 ; yd0 Þ is given by xd0 ¼
r cos 2πd=Dð Þ and yd0 ¼ r sin 2πd=Dð Þ, where d= 1,…,D.

Generating locations with a preferred spacing (clustering). A set of N random
locations, denoted by Δ, such that Nc pairs of those locations are spaced at distances
between rmin and rmax is generated by combining three subsets of locations so that
Δ= Δc ∪ Δc' ∪ Δu. The subset Δc :¼ fdc1; ¼ ; dcNc

g consists of completely spatially
random locations dci :¼ ðxci ; yci Þ. The subset Δc0 :¼ fdc01 ; ¼ ; dc

0
Nc
g consists of loca-

tions corresponding to Δc, where each location dc
0
i :¼ ðxc0i ; yc

0
i Þ, is calculated as

xc
0
i ¼ xci þ ri cos θi;

yc
0
i ¼ yci þ ri sin θi:

The distance ri between dci and dc
0
i is uniformly distributed between rmin and

rmax, and θi is uniformly distributed between 0 and 2π. The subset Δu is an
additional completely spatially random distribution of Nu=N− 2Nc locations. For
the simulated images analyzed to obtain the results in Fig. 3, the following values
were used: N= 2500, Nc= 250, rmin= 2990 nm, and rmax= 3010 nm.

Generating locations avoiding specific spacings (inhibition). A set of locations,
Δ≔ {d1,…,dN}, in which no two locations are spaced between rmin and rmax of each
other is generated as follows. For i= 1,…,N, the ith location di is drawn from a
completely spatially random distribution. The ith point is not added as a location if
rmin ≤ dij ≤ rmax for some 1 ≤ j ≤ i, where dij denotes the distance between the ith
and jth locations. For the simulated images analyzed to obtain the results in Fig. 3,
the following values were used: N= 2500, rmin= 2990 nm and rmax= 3010 nm.

Simulating an image of clathrin-coated pits. When simulating an image of
clathrin-coated pits, the detector is modeled as a set of pixels {C1,…,CK}. The
photon count detected in the kth pixel is modeled as T k :¼ Sk þ Bk , where Sk and
Bk are both Poisson random variables21. The total photons detected at the kth pixel
from all clathrin-coated pits within the region represented by the image is denoted
by Sk. The background photon count Bk has a mean of B= 100 photons per pixel.

The mean of Sk is given by

μk :¼
XD
d¼1

Nd

Z
Ck

fdðrÞdr
 !

;
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where D is the total number of clathrin-coated pits in the image, Nd denotes the
total number of photons detected from the dth clathrin-coated pit, Ck denotes the
area of the kth pixel, and fd denotes the photon distribution profile for the dth
clathrin-coated pit. For the simulated image of clathrin-coated pits in Fig. 1, D=
419 and Nd had values uniformly distributed between 500 to 2000 photons.

For each clathrin-coated pit, fd is modeled as a Gaussian profile given by

fdðrÞ :¼
1

2πM2σ2
� exp �

x �Mxd0
� �2
2ðMσÞ2

�
y �Myd0
� �2
2ðMσÞ2

 !
;

where M denotes magnification, σ denotes the width of the Gaussian profile, and
ðxd0 ; yd0 Þ denotes the center of the dth clathrin-coated pit. The coordinate ðxd0 ; yd0 Þ is
drawn from a completely spatially randomly distributed set of D locations
generated as described above. For the simulated image in Fig. 1, M= 63 and σ=
120 nm.

Simulating images of single molecules. When simulating an image of single
molecules, the detector is again modeled as a set of pixels {C1,…,Ck}. The photon
count detected at the kth pixel is modeled as a Poisson random variable with mean
given by,

μk :¼
XD
d¼ 1

N
Z

Ck

fdðrÞdr þ B;

where N denotes the total number of photons detected from the molecule, Ck

denotes the area of the kth pixel, fd denotes the photon distribution profile for the
dth molecule, and B denotes the uniform number of background photons detected
in each pixel. For each molecule, fd is modeled as an Airy profile given by

fdðrÞ :¼
J1

κ
M jjr � rd0 jj
� �� �2
πjjr � rd0 jj

2 ;

where J1 denotes the first-order Bessel function of the first kind,
jjr � rd0 jj ¼ ðx �Mxd0 Þ

2 þ ðy �Myd0 Þ
2� �1=2

, ðxd0 ; yd0 Þ denotes the location of the dth
molecule, and M denotes the magnification of the optical system. κ is calculated as
κ= 2πNa/λ, where Na denotes the numerical aperture, and λ denotes the wave-
length of the photons emitted by the molecule. The following values were used for
simulating all images of single molecules: Na= 1.3, λ= 525 nm,M= 100, and N=
1000 photons. Images that were analyzed for all figures were simulated using a
background of B= 0 photons per pixel.

Simulating PALM images of tubulin. When simulating images of fluorescently
labeled tubulin molecules that are stochastically photoactivated and detected, each
image is taken as an image of single molecules and is simulated as described above.
The positions of molecules within each image are obtained by taking a spatial point
pattern consisting of N points and uniformly distributing them among nF= ⌈q−1⌉
images, where q is the probability that a molecule is visible in any particular frame.
For all simulated tubulin datasets, the spatial point pattern provided by Sage et al.10

was used.

List of image analysis approaches. The following is a list of the image analysis
approaches that were used:

● Algorithm 1 (Wavelet): Detects molecules or clathrin-coated pits using
wavelet-filtering22 and estimates their locations by fitting Airy profiles to the
detected molecules or Gaussian profiles to the detected pits. Further details are
provided below.

● Algorithm 2 Detects and localizes molecules using the default settings of the
software package taken from ref. 23.

● Algorithm 3 Detects and localizes molecules using the default settings of the
software package taken from ref. 24.

● Algorithm 4 (Global-Thresholding): Detects molecules or clathrin-coated
pits by identifying pixels above a threshold value and estimates their locations
by fitting Airy profiles to the detected molecules or Gaussian profiles to the
detected pits. Further details are provided below.

● Algorithm 5 Detects and localizes molecules using the default settings of the
software package taken from ref. 25.

● Algorithm 6 Detects and localizes molecules using the default settings of the
multiemitter version of the software package taken from ref. 23.

For Algorithms 2, 3, 5, and 6, the software packages provided by the authors of
the algorithms were used. We used the default settings of those software packages
and did not attempt to optimize them for use here. The purpose of this paper is not
to investigate the different algorithms. We used several algorithms solely to
illustrate that different algorithms can have different algorithmic resolutions limits.
It is quite likely that an expert could obtain very different results from those shown
here. We would therefore like to emphasize that we are not interested in an
evaluation of these algorithms per se. To arrive at such an evaluation in a rigorous
manner would require a very different approach. For example, the involvement of
the authors of the software packages, as is routinely done in software evaluation

challenges, is the preferred approach. It is under these provisos that we somewhat
reluctantly mention the references to the software packages that were used.

Identifying objects by wavelet-filtering. The image was filtered using the product
of two consecutive wavelet transforms as described in ref. 22. Each isolated set of
one or more edge-connected pixels obtained from the filtering was identified as a
region of the image containing an object, i.e., an individual molecule or clathrin-
coated pit. For the subsequent localization of that object, a 5 × 5 pixel region
centered on the average pixel coordinate of the corresponding set of identified
pixels was used.

Identifying objects by global-thresholding. The image was thresholded using
25% of the maximum pixel intensity in the dataset as the threshold value. Each
isolated set of one or more edge-connected pixels obtained from the thresholding
was identified as a region of the image containing an object, i.e., an individual
molecule or clathrin-coated pit. For the subsequent localization of that object, a 5 ×
5 pixel region centered on the average pixel coordinate of the corresponding set of
identified pixels was used.

Localizing objects detected by wavelet/threshold approaches. Each clathrin-
coated pit or single molecule was localized by fitting a Gaussian or Airy profile,
respectively, to the corresponding 5 × 5 pixel image identified using either wavelet-
filtering or global-thresholding as described above. An initial location estimate and
an initial value for the σ parameter denoting the width of a Gaussian profile was
calculated for each clathrin-coated pit or single molecule by applying the approach
described in ref. 26 to the corresponding image. An initial value for the κ parameter
of the Airy profile was calculated as 1.323/σ. The background associated with each
clathrin-coated pit or single molecule was taken as the median of the intensities in
the edge pixels of the corresponding 5 × 5 pixel image. An initial estimate of the
photon count detected from each molecule or clathrin-coated pit was taken as the
sum of the pixel intensities in the corresponding image after subtracting the
background. Airy or Gaussian profiles with initial values for the various parameters
calculated as described above were fitted to each 5 × 5 pixel image using a least-
squares estimator to obtain the final location estimates. The location parameters
(x0, y0), width parameter (σ when fitting Gaussian profiles and κ when fitting Airy
profiles), and the total photon count were estimated for each clathrin-coated pit or
single molecule.

Estimating Ripley’s K-function from one image. When estimating L(r)− r for a
set of localizations obtained by analyzing an image of either clathrin-coated pits or
single molecules, LðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðrÞ=π

p
for r > 0. K(r) denotes the Ripley’s K-function,

defined as

KðrÞ :¼ λ�1Efnumber of events within a distance r of an arbitrary eventg:

The estimator for K(r) is given by

K̂ðrÞ ¼ S2

DðD� 1Þ
XD
i¼1

XD
j¼1

wijIð0<dij<rÞ;

where S2 denotes the area in the object space corresponding to the image being
analyzed, wij denotes the Ripley’s isotropic edge correction weights27, D denotes the
total number of localizations, and dij denotes the distance between the ith and jth
localizations. The indicator function is defined as

Ið0<dij<rÞ :¼
1 if 0< dij<1

0 otherwise
:

�

Estimating Ripley’s K-function using multiple images. When estimating L(r)− r
for a particular image analysis approach from a total of D localizations distributed
among M images,

L̂ðrÞ � r ¼
XM
m¼1

Dm

D

� 	
K̂mðrÞ � r;

where Dm denotes the number of localizations obtained from the mth image and
K̂mðrÞ denotes estimates of the Ripley’s K-function calculated using the localization
obtained from that image.

Estimating pair-correlations for an image analysis approach. Estimates of the
pair-correlation results for an image analysis approach, denoted as a, were calcu-
lated by a weighted averaging of pair-correlation estimates from multiple simulated
images as follows. A total of M images containing D single molecules were
simulated. A set of localizations of size Dm

a were obtained by applying analysis
approach a to the mth image, for m= 1,…,M. Pair-correlations estimates ĝma ðrÞ
were calculated independently for each set of Dm

a localizations using a MATLAB
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implementation of the approach in ref. 28. The weighted-average pair-correlation
estimates for each analysis approach a is then calculated as

ĝaðrÞ ¼
XM
m¼1

Dm
a

Da

� 	
ĝma ðrÞ;

where Da ¼ D1
a þ D2

a þ � � � þ DM
a . The pair-correlation results shown in Fig. 2

were calculated using M= 2000 images containing D= 250,000 molecules.

Determining the algorithmic resolution limit. The radius of correlation for
analysis approach a is defined as

ρ :¼ inf
r>0

r : gaðr′Þ ¼ 1 for all r′ 2 r;1½ Þf g;

when a analyzes completely spatially random data. To estimate ρ from ĝaðrÞ, the
scheme presented in Supplementary Note 9 was implemented. For a set R ¼
fr1; ¼ ; rmg of finely, regularly spaced proposal values of ρ,

ρ̂ ¼ �argminri2RTðriÞ

where

TðriÞ ¼ ðm� iþ 1Þ�1ðm� iÞ�1
Xm
j¼i

ðĝaðrjÞ � �giÞ
2

and �gi ¼ ðm� iþ 1Þ�1Pm
j¼i ĝaðrjÞ. Algorithmic resolution limit α is then esti-

mated as ρ̂=2.

Calculating resolution adjusted Ripley’s K-function. For the algorithmic reso-
lution limit α for a specific image analysis approach determined as described above,
L2α(r)− r is calculated as

L2αðrÞ � r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2αðrÞ þ 4πα2

π

r
� r;

where K2α(r)= K(r)− K(2α). See Supplementary Note 9 for details regarding the
determination of 2α for each image analysis approach from the corresponding pair-
correlation results.

Analyzing experimental superresolution data. Let Di denote the ith dataset
consisting of Mi images fI i

1; ¼ ; I i
Mi
g for i= 1,…,N. Let D1 denote the set of

acquired experimental images. The remaining datasets D2; ¼ ;DN were generated
by summing images from D1 as follows:

I i
m ¼

Xm′

j¼m′
0

I 1
j ;

where m′
0 ¼ mði� 1Þ + 1, m′=m ⋅ i for m= 1,…,Mi. Here, Mi denotes the

number of images in dataset Di and is calculated as Mi= ⌊M1/i⌋. Each of these
datasets were analyzed independently using the image analysis approaches
described above. The experimental dataset analyzed for Fig. 4 consisted of M1=
50,000 images.

Reconstructing superresolution images. Superresolution images were recon-
structed from a set of localizations by simulating Gaussian profiles (as described
above in the simulation of clathrin-coated pits) centered at each localization. The
superresolution image was generated using a pixel size of 1/63 μm in the object
space which corresponds to 1/16th the object space pixel size of the acquired
images. Each Gaussian profile was simulated using σ= 17 nm for the width
parameter and 100 detected photons. The value for σ corresponds to the limit of
the localization accuracy calculated using the average number of photons detected
from each localized fluorophore and the average background noise associated with
each localization.

Software. Region of interest identification using wavelet-filtering or global-
thresholding followed by fitting with either Airy or Gaussian profiles was per-
formed using custom programs developed with the MIATool software frame-
work29 in Java. The ThunderSTORM23 and SimpleFit24 software packages were
used with default settings for the various options within the software. The
QuickPALM25 software was used with the Full Width at Half Maximum = 2 set-
ting to match the width of the single molecule or clathrin-coated pit being loca-
lized. Calculations for L(r)− r, pair-correlations, and L2α(r)− r were performed
using custom-developed scripts in the MATLAB programming environment (The
MathWorks, Inc., Natick, MA). All figures were similarly prepared using
MATLAB.

Data and code availability
The data that support the findings in this study are available upon reasonable request to
the corresponding authors. The software related to the analysis presented in this paper is
available at https://github.com/eakcohen/algorithmic-resolution and http://www.
wardoberlab.com/software.
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