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CD4+ T cells from MHC II-dependent thymocyte–
thymocyte interaction provide efficient help for B cells

Eun Ji Kim1,5, Bomi Choi2,5, Hana Moon3, You Jeong Lee1,4, Yoon Kyeong Jeon4, Seong Hoe Park1,4,
Tae Jin Kim3 and Kyeong Cheon Jung1,4

Recently, a novel CD4+ T-cell developmental pathway was reported that generates thymocyte–thymocyte (T–T) CD4+ T cells.

We established a mouse system (CIITAtgCIITApIV�/�) where thymic positive selection occurred only by major histocompatibility

complex (MHC) class II+ thymocytes. T–T CD4+ T cells selected via MHC class II-dependent T–T interaction are comprised of

PLZF-negative and innate PLZF-positive populations. Until recently, the functional role of the PLZF-negative population was

unclear. In this study, we demonstrate that naı̈ve T–T CD4+ T cells provide B-cell help to a level comparable with that of naı̈ve

conventional CD4+ T cells. Considering the absence of PLZF expression in naı̈ve T–T CD4+ T cells, these results suggest that

PLZF-negative naı̈ve T–T CD4+ T cells are functionally equivalent to conventional naı̈ve CD4+ T cells in terms of B-cell help.
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Unlike conventional T cells, a distinct lineage of T cells, termed innate
T cells, can arise in the thymus by positive selection on hematopoietic
cells.1 During their developmental progress from CD4+CD8+ thymo-
cytes, they acquire effector functions as a result of maturation
processes, rather than as a consequence of activation following an
antigenic encounter in the periphery, and thus have innate-like
characteristics in terms of rapid cytokine secretion in response to
antigenic or other stimuli.2 To date, invariant natural killer T cells, gd
T cells, mucosa-associated invariant T cells, H2-M3-restricted CD8+

T cells and CD8aa+ intraepithelial lymphocytes have been described
as innate T cells.2–8 In mice, all of these innate-type T cells are mostly
restricted to major histocompatibility complex (MHC) class Ib
molecules. However, some T cells in humans, called thymocyte–
thymocyte (T–T) CD4+ T cells, are selected by recognition of MHC
class II self-peptide complexes on thymocytes. The T–T hypothesis
was first raised by in vitro reaggregate culture systems of human
thymocytes, on the basis of their expression of MHC class II
molecules,9,10 and then sequentially evidenced in class II MHC
transactivator (CIITA)-transgenic mice11,12 and human fetuses.13

They share some characteristics with invariant natural killer T cells,
such as SLAM-SAP-dependent development,14 simultaneous produc-
tion of interferon-g (IFN-g) and interleukin-4 (IL-4),15 and promye-
locytic leukemia zinc-finger protein, PLZF (also known as zbtb16)
expression.13,16 Specifically, PLZF directs the acquisition of innate

phenotypes in both invariant natural killer T cells and T–T CD4+

T cells.13,17–19 However, T–T CD4+ T cells are unique in that they have
a diverse T-cell receptor (TCR) repertoire and consist of a PLZF-
negative population as well as a PLZF-positive population. Given
their innate properties and preferential generation during the prenatal
stage in humans, PLZF-positive T–T CD4+ T cells have been impli-
cated in neonatal antiviral immunity.13,16 In contrast, PLZF-negative
T–T CD4+ T cells are more similar to conventional T cells with respect
to the absence of activation/memory markers on their surface during
the intrathymic maturation process. However, their function in
immune response has not yet been fully determined.

The B-cell response to protein antigens requires cognate interac-
tions between antigen-specific B cells and activated antigen-specific
CD4+ helper T cells.20 This cognate help for B cells is a specialized
spectrum of effector T-helper cell functions. Alternatively, T-cell help
for B cells can be indirect or non-cognate, in which the T cell is not
specific for peptide-MHC molecules presented by B cells. In this case,
activated T cells support B-cell immune responses by secreting large
quantities of cytokines.21 This type of B-cell help is more likely to be
performed by innate T cells, such as natural killer T cells.22 On the
basis of these findings, we investigated whether T–T CD4+ T cells were
able to help B-cell responses upon antigen challenge and examined
whether B-cell help was performed by PLZF-positive or PLZF-negative
T–T CD4+ T cells.
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RESULTS

Normal B-cell development in the presence of T–T CD4+ T cells
The mouse system in which T–T CD4+ T cells develop was previously
described.13,16 In CIITAtgpIV�/� mice, immature CD4+ T cells are
positively selected only by MHC class II-expressing cortical thymo-
cytes (Supplementary Figure 1) and subsequent negative selection is
normally executed by medullary thymic epithelial cells and dendritic
cells.23 Before addressing a B-cell helper function of T–T CD4+ T cells,
we investigated whether B-cell development was compromised in
CIITAtgpIV�/� mice. As previously reported, a substantial fraction
of T–T CD4+ T cells are PLZF-positive innate cells that can rapidly
secret large amounts of IL-4 and IFN-g. These cells influence CD8+

T cell development.11,12 In wild-type mice, therefore, it was impor-
tant to ask whether the presence of T–T CD4+ T cells disturbs
B-cell development. In the overall proportion of B cells in bone
marrow, spleen and lymph nodes, no significant difference was
found between CIITAtg pIV�/� and wild-type B6 mice (Figure 1a).
Moreover, dissection of the B-cell population in spleen into mature
B cells (IgM+IgD+), follicular B cells (CD19+CD21+CD23+), marginal
zone B cells (CD19+CD21+CD23lo), germinal center B cells
(GL7+CD19+) and plasma cells (CD138+CD19+) showed a normal
distribution of B-cell sub-populations in CIITAtgpIV�/� mice
(Figures 1b and c). Thus, T–T CD4+ T cells do not seem to have
any influence on B-cell development in terms of proportion of
respective B-cell subcompartments.

T–T CD4+ T cells are able to help B-cell responses to T-dependent
antigen
To evaluate the B-cell help activity of T–T CD4+ T cells, we
immunized CIITAtgpIV�/� and wild-type B6 mice with the T-cell-
dependent antigen, 4-hydroxy-3-nitrophenylacetyl (NP)-keyhole lim-
pet hemocyanin (KLH), in alum and measured serum titers of NP-
specific antibodies at various time points. Antigen-challenged pIV�/�

mice, in which positive selection of CD4+ T cells is almost abolished,
served as a negative control. Serum levels of IgG1 and IgG3 antibodies
were quantified by ELISA. Compared with wild-type mice, serum
levels of NP-specific IgG1 and IgG3 were somewhat lower in
CIITAtgpIV�/� mice (Figure 2a). However, CIITAtgpIV�/� mice
produced significantly more NP-specific IgG1 and IgG3 than pIV�/�

mice, indicating that T–T CD4+ T cells were able to provide help to
B lymphocytes for the production of antigen-specific antibodies. NP-
specific antibody response was further investigated in mice that were
re-challenged with NP-KLH at 60 days after primary immunization.
NP-specific antibody titer in serum of CIITAtg pIV�/� mice was still
lower than that of wild-type mice (Figure 2b).

In an earlier mouse model of T–T interaction (CIITAtgCIITA�/�),
the splenic CD4+ T-cell number was slightly higher than that of wild-
type littermates.11 However, negative selection by thymic epithelial
and dendritic cells is defective in this system. Thus, we compared the
proportion of CD4+ T cells in the thymus and secondary lymphoid
tissues of CIITAtgpIV�/� and wild-type mice to determine the effect

Figure 1 Normal B-cell development in CIITAtgpIV�/� mice. (a) Comparison of B-cell percentage in bone marrow (BM), spleen and lymph nodes (LN)

between wild-type (WT) and CIITAtgpIV�/� mice. To identify B-cell population, total nucleated cells obtained from BM, spleen and LN of each mouse were

stained with CD19 antibody and analyzed via flow cytometry. The percentage of CD19+ cells is shown in each compartment. The data are mean

values±s.e.m. from three animals in each group. (b, c), Comparison of splenic B-cell subset percentage in spleen between WT and CIITAtgpIV�/� mice. To

identify mature B cells, splenocytes from each mouse were stained with anti-IgD and anti-IgM. To reveal marginal zone B cells (MZB) and follicular B cells

(FOB), CD19+-gated B cells were analyzed for expression of CD21 and CD23. Germinal center B cells (GCB) were identified with anti-GL7 and anti-CD19
and plasma cells (PC) with anti-CD138 and anti-CD19. In bar graph, the percentage of each subset among total splenocytes of CIITAtgpIV�/� or WT mice is

summarized, and the data are mean values±s.e.m. from three animals in each group (b). A representative flow-cytometric profiles of each B-cell subset are

also shown, and the numbers are the percentage of given subsets of B cells among total splenocytes (Mature B, GCB and PC) or the percentage of marginal

zone B cells and follicular B cells among all CD19+ B cells (c). NS, not significant.
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of negative selection on the population of mature T–T CD4+ T cells.
As expected, MHC class II expression in thymic medullary epithelial
cells and dendritic cells in CIITAtgpIV�/� mice led to a significant
reduction in the percentage of CD4+ T cells in the thymus, spleen and
lymph nodes compared with that of wild-type mice (Figure 3a). On
the contrary, we were not able to find any significant difference in the
BrdU-labeled fraction of the peripheral CD4+ T cells from
CIITAtgpIV�/� and wild-type mice after the daily injection of BrdU
during 9 days (Figure 3b), suggesting that CD4+ T-cell turnover was
not overtly affected in CIITAtgpIV�/� mice. Therefore, these findings
raised the possibility that the lower level of NP-specific antibody
production in CIITAtg pIV�/� mice might result from the decrease in
CD4+ T-cell number.

To investigate this possibility, CD4+ T cells were isolated from the
spleens of CIITAtgpIV�/� mice and wild-type littermates at day 14
after primary or secondary immunization, and 3�105 CD4+ T cells
were re-stimulated with KLH in the presence of irradiated antigen-
presenting cells. When the ex vivo T-cell responses were compared via
thymidine incorporation, the CD4+ T cells of CIITAtgpIV�/� mice
showed a lower proliferative response in both primary and secondary
response, compared with that of wild-type mice (Figure 3c). These
data suggested that the generation of antigen-specific CD4+ T cells per
se was somewhat attenuated in CIITAtgpIV�/� mice.

Next, to compare B-cell help activity of the same number of CD4+

T cells in in vivo, 5�105 splenic CD4+ T cells were isolated from
CIITAtgpIV�/� and wild-type mice and adoptively transferred into
pIV�/�mice. Thereafter, these mice were immunized with NP-KLH in
alum, and the serum titers of NP-specific antibodies were compared
with those in pIV�/� mice where CD4+ T cells were not adoptively
transferred (Figure 3d). Similar to those in CIITAtgpIV�/� mice,
adoptively transferred T–T CD4+ T cells were able to help the antibody
response by host B cells. However, both IgG1 and IgG3 antibody
responses in recipients of T–T CD4+ T cells were still somewhat lower
than in mice provided with wild-type CD4+ cells. These data suggest

that T–T CD4+ T cells have a clear ability to provide B-cell help, but
seemingly to a slightly lower level than that of wild-type CD4+ T cells.

B-cell helper activity of the naı̈ve population of T–T CD4+ T cells
was comparable to that of conventional naı̈ve CD4+ T cells
Unlike conventional CD4+ T cells, a substantial fraction of T–T CD4+

T cells express PLZF and have innate properties.13 To investigate the
possibility that the PLZF-positive innate T cells, which comprise a
substantial fraction of total T–T CD4+ T cells, might affect their total
B-helper activity, T–T CD4+ T cells were fractionated into naı̈ve and
activation/memory cells, based on the expression of CD62L and
CD44, and then transferred to pIV�/� mice. Thereafter, we investi-
gated the B-cell helper activity of each population of T–T CD4+ cells
separately. As reported previously,13 T–T CD4+ T cells had an even
lower fraction of CD62LhighCD44low naı̈ve cells, and PLZF was not
expressed in this population (Figure 4a). To see the helper response for
antibody production, the recipient mice were immunized with NP-
KLH and serum anti-NP antibodies were measured at indicated time
points. Naı̈ve T–T CD4+ T cells were able to induce fairly good NP-
specific antibody responses in recipient mice that were comparable to
those of conventional naı̈ve CD4+ T cells (Figure 4b). In contrast,
recipients of T–T and conventional activation/memory cells showed
attenuated responses (Figure 4c). Thus, it was evident that PLZF-
negative naı̈ve T–T CD4+ cells were responsible for sufficient B-cell
help, indeed, comparable to that of conventional naı̈ve CD4+ T cells.
These data indicate that the lower antibody response in mice provided
with unfractionated T–T CD4+ T cells was due to the increased
frequency of activation/memory CD4+ T cells and their decreased
B-cell helper activity.

DISCUSSION

In this study, our primary question was whether T–T CD4+ cells had
the ability to recognize peptides that were processed in B cells and
dendritic cells. Thymocytes are less likely to be equipped with a full

Figure 2 CIITAtgpIV�/� mice are able to mount B-cell responses to a T-dependent antigen, NP-KLH. (a) Serum IgG1 and IgG3 antibody responses to NP after

primary immunization with NP-KLH. Wild-type (WT), CIITAtgpIV�/�, or pIV�/� mice were injected i.p. with 50mg of NP-KLH on day 0 and bled on days 0, 3,

7, 10, 14, 21 and 28. Serum anti-NP responses were measured, and expressed as arbitrary OD units. Two separately performed experiments (experiment 1
and experiment 2) are shown. The data are mean values±s.e.m. from five animals in each group. (b) Secondary antibody responses to NP. Wild-type and

CIITAtgpIV�/� mice were re-challenged with NP-KLH at 60 day after primary immunization, and the anti-NP antibody titers in serum were compared on day 7

and 14. The data are mean values±s.e.m. from four (CIITAtg pIV�/�) or six (WT) animals in each group. NS, not significant; *Po0.05; ***Po0.001.
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spectrum of antigen-presenting machinery for the positive selection of
other thymocytes, compared with cortical thymic epithelial cells. For
example, thymus-specific serine protease, that is expressed in cortical
thymic epithelial cells and crucial for the positive selection of some
CD4+ T cells, is not expressed in thymocytes.24,25 Moreover, TCR-
transgenic CD4+ T cells, such as AND or DO11.10 TCR transgenic
T cells, are hardly selected by T–T interaction.12 Thus, it is possible
that T–T CD4+ T cells might be biased to recognize extracellularly
generated peptides loaded onto MHC class II, regardless of the
action of H2-DM, and thus are selected by peptides in a type-B
presentation.26–28 To evaluate this possibility, we initially generated
a mixed bone-marrow chimera, in which OT-II TCR transgenic
thymocytes were induced to be selected by MHC class II-expressing
thymocytes in pIV�/� host. However, T–T interaction in this chimera
did not allow the generation of sufficient OT-II T cells (Supple-
mentary Figure 2). Thus, as an alternative, CIITAtgpIV�/� mice were
immunized with NP-KLH, and we found that T–T CD4+ T cells could
respond against KLH antigen presented by antigen-presenting cells
and then provide B-cell help.

It is well known that, in conventional CD4+ T cells, the TCR
repertoire of the naı̈ve cell population is more diverse than that of

memory subsets acquired through previous antigenic selection.27,29

Memory CD4+ T cells are less likely to offer appropriate help for
newly encountered antigens, because they were selected by previously
exposed antigens and their repertoire is more restricted than that of
naı̈ve CD4+ T cells. In our experiments, this suggestion was supported
by the adoptive transfer study. The pIV�/� hosts that were repopu-
lated with memory CD4+ T cells from un-sensitized CIITAtgpIV�/� or
wild-type mice showed a lower antibody response against NP-KLH
immunization, compared with pIV�/� mice which received naı̈ve
CD4+ T cells. On the basis of this, as well as the abundance of already
existing memory CD4+ T cells in CIITAtgpIV�/� mice compared with
those in wild-type mice before antigen challenge, our interpretation
was that the lower B-cell helper activity of overall T–T CD4+ T cells
was due to the decreased number of naı̈ve CD4+ T cells in the
peripheral lymphoid organs of CIITAtgpIV�/� mice. In the adoptive
transfer experiments of sorted cells, naı̈ve T–T CD4+ T cells were
as good as naı̈ve conventional CD4+ T cells in their B-cell help
capability. Regarding the TCR diversity of T–T CD4+ T cells,
we observed that T–T CD4+ T cells had a diverse TCR-Vb usage,
similar to that of conventional CD4+ T cells,11 which further supports
our interpretation.

Figure 3 T–T CD4+ T cells help B-cell responses to a T-dependent antigen, NP-KLH, to a lower level than WT CD4+ T cells. (a) Comparison of the percentage
of thymic or splenic CD4+ cells between WT and CIITAtg pIV�/� mice. (b) Assessment of T-cell turnover rate via in vivo BrdU labeling of CD4+ T cells in

spleen and lymph nodes of WT and CIITAtgpIV�/� mice given BrdU for 9 days. Each symbol represents an individual mouse, and the bars mark the mean

percentage of BrdU-positive population in each subset. (c) Comparison of T-cell responses after first (left) and second (right) immunization with NP-KLH in

WT and CIITAtgpIV�/� mice. Mice were immunized with NP-KLH on day 0 and 60, and CD4+ T cells isolated from spleen at 14 days after each immunization

were re-stimulated with KLH in the presence of irradiated antigen-presenting cells. Proliferative response of T cells was measured as [3H]thymidine uptake.

The data are mean values±s.e.m. of quadruplicate reactions. (d) Serum antibody response to NP in pIV�/� mice, which received un-fractionated CD4+ T

cells from WT or CIITAtgpIV�/� mice. The pIV�/� mice without CD4+ T-cell transfer were used as a negative control. The pIV�/� mice with or without CD4+ T-

cell adoptive transfer were injected i.p. with 50mg of NP-KLH on day 0, and serum anti-NP responses were measured and expressed as arbitrary OD units.

The data are mean values±s.e.m. from three animals in each group. NS, not significant; *Po0.05; **Po0.01; ***Po0.001.
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In summary, our work demonstrated that T–T CD4+ T cells have
the ability to support B-cell immune responses and that this B-cell
helper activity primarily resides in the naive population. Considering
that the most of PLZF-negative T–T CD4+ T cells in thymus are naı̈ve
in their phenotype, the development of this population is implicated
in the generation of additional capacity of naı̈ve T cells for providing
B-cell help because of their addition to conventional CD4+ T cells in
terms of T-cell diversity.

METHODS
Mice
C57BL/6 (B6) mice were purchased from The Jackson Laboratory (Bar Harbor,

ME, USA). The plck-CIITAtg mice expressing CIITA in T cells were generated

previously in our laboratory.11 Mice carrying a deletion in promoter IV of the

Mhc2ta gene for CIITA (pIV�/�) mice were provided by Hans Acha-Orbea

(University of Lausanne, Switzerland).23 The plck-CIITAtg mice were back-

crossed to pIV�/� to generate CIITAtgpIV�/�. All the mice were maintained

under specific pathogen-free conditions in the animal facility at the Center for

Animal Resource Development, Seoul National University College of Medicine.

Experiments were performed after receiving approval of the Institutional

Animal Care and Use Committee of the Institute of Laboratory Animal

Resources, Seoul National University.

Antibodies and flow-cytometric analysis
The following fluorochrome- or biotin-labeled monoclonal antibodies were

purchased from BD Pharmingen (San Diego, CA, USA) eBioscience (San

Diego, CA, USA) or Dinona (Seoul, Korea): anti-mouse CD3 (145–2C11), CD4

Figure 4 Naı̈ve T–T CD4+ T cells demonstrate B-cell helper activity. (a) A representative profile of PLZF expression in naı̈ve and activation/memory

populations in gated splenic and lymph node CD4+ T cells from WT and CIITAtg pIV�/� mice. Cells were assessed for the expression of CD44 and CD62L and

the intracellular expression of PLZF. The numbers indicate the percentage of cells in each quadrant. (b, c) Serum antibody responses to NP in pIV�/� mice

after adoptive transfer of naı̈ve (b) or activation/memory (c) CD4+ T cells from WT or CIITAtgpIV�/� mice. The pIV�/� mice without CD4+ T-cell transfer were

used as a negative control. The pIV�/� mice with or without CD4+ T-cell adoptive transfer were injected i.p. with 50mg of NP-KLH on day 0, and serum anti-

NP responses were measured and expressed as arbitrary OD units. The data are mean values±s.e.m. from three animals in each group. ***Po0.001.
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(RM4.5), CD5 (L17F12), CD8 (53–6.7), CD62L (MEL-14), CD44 (IM7),

CD11a (M17/4), CD19 (1D3), CD11b (M1/70), CD19 (1D3), CD21 (7G6),

CD23 (B3B4), CD43 (S7), CD138 (281–2), I-Ab (AF6–120.1), IgM (G155-228),

IgD (11-26c.2a), GL-7 and BrdU (3D4). After staining with fluorochrome-

conjugated antibodies for 30 min at 4 1C, live cells (that is, the propidium

iodide (PI; Sigma, St Louis, MO, USA)-negative population) were analyzed

using a FACSCalibur (Becton-Dickinson, Mountain View, CA, USA) equipped

with CellQuest Pro software (Becton-Dickinson).

Immunization and ELISA for serum immunoglobulin
measurement
Mice were injected i.p. or s.c (in the footpad) with 50mg of alum-precipitated

NP-KLH (Biosearch Technologies, Novato, CA, USA). Imject Alum was

purchased from Pierce (Rockford, IL, USA). For analysis of serum anti-NP

antibodies, plates (Nunc Maxisorp; Thermo Fisher Scientific, Waltham, MA,

USA) were coated overnight with 5mg ml�1 NP14-bovine serum albumin

(Biosearch Technologies, Novato, CA, USA). Plates were blocked for 1 h at

37 1C with blocking buffer (Sigma-Aldrich, St Louis, MO, USA). Sera were

diluted in blocking buffer, added to the NP-bovine serum albumin-coated

plates, and incubated for 1 h. Unbound antibodies were removed by washing

and bound antibodies were detected using anti-mouse IgG1-horseradish

peroxidase or IgG3-horseradish peroxidase (SouthernBiotech, Birmingham,

AL, USA). After washing with phosphate-buffered saline with 0.05% Tween-

20 three times, 50ml per well of the horseradish peroxidase substrate tetra-

methylbenzidine was added for color development. The optical density of

samples at an absorbance of 450 nm was measured.

Ex vivo analysis of antigen-specific T cell response
Ex vivo analysis of antigen-specific T cell response was carried out as previously

described.30 In brief, CD4+ T cells were isolated from spleen of mice using a

MACS CD4+ T-cell isolation kit (Miltenyi Biotec, Auburn, CA, USA) at day 14

after immunization. After washing, the cells were passed through LS columns

within the MACS device. The buffers used throughout the whole procedure

were phosphate-buffered saline supplemented with 0.5% fetal calf serum.

The cells were washed and then cultured in the presence of irradiated (2000

cGy) T-cell depleted splenocytes from B6 mice. CD4+ T cells were incubated

with various concentrations of KLH for 4 days. Cultures were pulsed with 1mCi

per well [3H]thymidine (Amersham Bioscience, Uppsala, Sweden) for the final

18 h, and the mean incorporation of thymidine in DNA was measured in

quadruplicate wells by liquid scintillation counting.

Assessment of T cell turnover rate
T cell turnover rate was assessed according to the methods described by Tough

and Sprent.31 In brief, mice daily received intraperitoneal injection of 2 mg

BrdU (Sigma) in phosphate-buffered saline for 9 days, and single cell suspen-

sion from spleen and lymph nodes was then stained with anti-CD4, anti-CD44

and anti-CD62L antibodies, fixed using a Cytofix/Cytoperm Kit (BD Pharmin-

gen), and stained with anti-BrdU antibody. BrdU-positive fraction was detected

by flow cytometry.

Cell sorting and adoptive transfer
MACS-purified CD4+ T cells were incubated with anti-CD62L and anti-CD44

antibodies for 30 min at 4 1C on ice. A FACS Aria system (Becton Dickinson,

San Jose, CA, USA) was used to sort CD4+ T cell sub-populations according to

CD62L and CD44 expression at purities above 95% (Supplementary Figure 3).

Isolated naı̈ve or memory CD4+ T cells (5�105) from B6 and CIITAtg pIV�/�

mice were adoptively transferred into pIV�/� mice.

Statistical analyses
All data were analyzed using the Prism software (GraphPad Software, Inc.,

La Jolla, CA, USA). Three to five mice per group were evaluated for all strains.

Significance between two animal groups in bar graphs was computed by t test,

and two groups in time curve were compared statistically using a two-way

analysis of variance (ANOVA).
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