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A B S T R A C T

Atrial fibrillation (AF) is the most clinically diagnosed arrhythmia, as its prevalence increases with age, and its
initial stage is paroxysmal atrial fibrillation (PAF). This pathology usually triggers hemodynamic disorders that can
generate cerebrovascular accidents (CVA), causing morbidity and even death. The aim of this study is to predict
the occurrence of PAF episodes in order to take precautions to prevent PAF episodes. The PhysioNet AFPDB
prediction database was used to extract 77 heart rate variability (HRV) features using time domain, geometrical
analysis, Poincar�e plot, nonlinear analysis, detrended fluctuation analysis, autoregressive modeling, fast Fourier
transform (FFT), Lomb-Scargle periodogram, wavelet packet transform (WPT) and bispectrum measurements. The
number of features was reduced using the near-zero value, correlation, and recursive feature elimination (RFE)
methods for time windows of 1, 2, 5, 10, and 30 min. Feature selection was performed using backwards selection,
genetic algorithm, analysis of variance (ANOVA), and non-dominated sorting genetic algorithm (NSGA-III)
methods, and then random forest, conditional random forest, k-nearest neighbor (KNN), and support vector
machine (SVM) classification algorithms were applied and evaluated using 10-fold cross-validation. The proposed
method achieved a precision of 93.24% with a 5-minute window and 89.21% with a 2-minute window, improving
performance in predicting PAF when compared with similar studies in the literature.
1. Introduction

The analysis of heart rate variability (HRV) time series is of utmost
importance from a clinical point of view due to its high correlation
with the autonomic nervous system (ANS) [1]. HRV measurement
is an early predictive tool to detect cardiovascular diseases. The
indicators of the progression of paroxysmal atrial fibrillation (PAF)
to persistent or permanent PAF have not been fully identified; there-
fore, detecting atrial fibrillation (AF) in its early form is important to
avoid the risks of stroke, heart failure, and/or mortality [2]. In its
initial stage, PAF complications can be avoided if they are predicted
early [3].

In 30-minute electrocardiogram (ECG) recordings, premature ven-
tricular contraction (PVC) is an important feature that indicates the
future appearance of PAF [4]. Furthermore, PAF appearance is linked to a
considerable increase in the number of atrial and ventricular ectopic
beats [5]. Based on this information, previous works have detected an
early estimate of PAF using the following features:
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A time-domain analysis distinguishes two types of HRV indices: fast
beat-to-beat indices and slower fluctuation indices. Both indices are
calculated from RR or NN intervals in a chosen time window [6].

A Poincar�e plot of the "width" of the graph is a measure of the activity
of the parasympathetic nervous system, and this method allows for the
immediate recognition of ectopic beats [7, 8].

A Lomb-Scargle periodogram is used to estimate the power spectral
density (PSD) of an HRV signal. Spectrum characteristics can discrimi-
nate between the sympathetic and parasympathetic content of the HRV
signal, which is affected before PAF attacks [6]. It is generally accepted
that the spectral power in the high frequency (HF) band (0.15–0.4 Hz) of
the HRV signal reflects respiratory sinus arrhythmia (RSA) and thus
cardiac vagal activity. On the other hand, the low-frequency band (LF)
(0.04–0.15 Hz) is related to the control of baroreceptors and is mediated
by both the vagal and sympathetic systems [9].

In a geometrical method, the triangular interpolation of NN interval
(TINN) metrics and HRV index generally reflect HRV and are more
influenced by lower frequencies than by high frequencies [1].
ber 2021
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Figure 1. Research method overview.
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Nonlinear analysis allows for evaluating the functioning of the car-
diovascular system and discriminating PAF events by measuring the
regularity of the HRV signal through the entropy per sample [9, 10, 11].

Detrended fluctuation analysis is used to quantify the fractal scale
properties of short-interval RR signals, and the fluctuations are related to
a scaling exponent (or self-similarity factor), ∝. ∝ can be seen as an in-
dicator of the "roughness" of the original time series: the higher the value
of ∝, the smoother the time series will be [12]. For normal subjects
(healthy young people) ∝ is closer to 1, and this value falls in different
ranges for various types of cardiac abnormalities [13].

Bispectral analysis is a technique used to reveal the time-phased re-
lationships between noisy interacting oscillators, and it has been used to
study the nature of the coupling between cardiac and respiratory activity [9,
14].

Autoregressive modeling is used to classify normal sinus rhythm
(NSR) and various cardiac arrhythmias, including premature atrial
contraction (PAC). Autoregressive (AR) coefficients were calculated
using the Burg algorithm, and the AR modeling results showed that an
order of sixteen was sufficient to model the HRV signals [15].

In fast Fourier transform (FFT), the HRV signal can be analyzed using
different higher-order spectra (known as polyspectrals), which are
spectral representations of higher-order moments or accumulations of a
signal. A time-dependent spectral analysis of HRV was found to be
valuable in explaining patterns of heart rate control during reperfusion
[10].

Wavelet packet transform (WPT) is a useful method for R-R interval
analysis given that it highlights time-dependent changes in the frequency
spectrum [16]. WPT applies low-pass and high pass filters determined by
a mother wavelet, this process yields a set of packages each of which
describes a specific sub-band of the spectrum. Consequently, it is
important to choose an appropriate mother wavelet function. According
2

to [17], Daubechies wavelet functions are the most suitable to be used on
ECG and HRV signals.

In addition, different techniques have been described for the pre-
diction of PAF from technical to clinical points of view. The computers in
cardiology (CinC) Challenge 2001 by PhysioNet obtained an accuracy of
82% [18]. Thong et al. [11] obtained a sensitivity and specificity of 84%
and 88%, respectively, by analyzing premature atrial complexes (which
trigger 93% of PAF episodes). Boon et al [19] achieved an accuracy of
87.7% with a window length of 5 min. Chazal et al [20], using a window
length of 10min, achieved an accuracy of 90.4%.Mohebbi et al [21] used
a 30-minute window of length for the accuracy of PAF with an accuracy
of 92.86%.

This paper defines a methodology to find an optimal set of HRV
features, a classifier, and a validator to create a robust system that allows
predicting the appearance of a PAF event with a high degree of precision.

2. Research method

In this research the methodology was developed using RStudio soft-
ware, PBC V1.3.1093 and MatLab R2020a.

The proposed methodology is divided into 3 main stages: pre-
processing, feature extraction, and data analysis. In the first stage, the
extraction and preprocessing of the HRV signal are carried out from the
ECG signal. In the second stage, 10 different methods are used to extract
77 HRV features. In the last stage, these features are analyzed and
selected until the optimal combination is found to predict PAF.

In Figure 1, the general scheme of the proposed methodology is
shown, Which consists of three main stages:

1. Preprocessing: Where an HRV signal, extracted from an ECG signal, it
is resampled and its trend is removed.



Figure 2. HRV extraction from RR intervals of an ECG signal.
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2. Feature extraction: Where 10 different methods are used to extract 77
HRV features.

3. Data Analysis: Where three methods, including a recursive feature
elimination method, are used to find the optimal number of features
to predict a PAF.

2.1. Data description

This research uses the AFPDB database of PhysioNet [22], which
contains 50 record sets called "n" obtained from normal subjects or
people who have never experienced PAF and 50 record sets called "p"
obtained from people who have experienced PAF. Each record contains
approximately 30 min of continuous ECG signals without any PAF con-
tent. Record sets "p" are divided into two classes: records that precede the
immediate appearance of PAF (close PAF) and records that do not have
PAF 45 min after its termination or 45 min before its start (distant PAF).
Figure 3. Windowin
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Each record contains 2 leads of the ECG signal and the location in
time of the onset of the QRS complex. In this paper, we find the HRV
signal by determining the duration of each beat through the QRS com-
plex. The start of the QRS complex to the next QRS complex is equivalent
to the RR interval, as shown in Figure 2.

Record n27 was not taken into account in this paper because previous
works claimed that it contains considerable noise and greatly affects the
calculation of the HRV signal [19]. The remaining 99 record sets were
used to predict PAF through its classification. To compare this work with
previous works [4, 9, 19, 20, 23, 24, 25, 26] having as criteria: window
length, the number of features, and validation. The classification is car-
ried out in two different ways:

� Group 1: Record sets are divided into 2 classes. The first class con-
tains normal subjects and distant PAF signals, and the second class
contains close PAF signals.
g of ECG signal.



Figure 4. HRV signal preprocessing. Raw HRV signal (blue), resampled HRV signal (green), detrended HRV signal (red).
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� Group 2: Record sets are divided into 2 classes. The first class con-
tains distant PAF signals, and the second class contains close PAF
signals.
2.2. Preprocessing

Previous work has used ECG signals of different durations for the
prediction of PAF [4, 9, 19, 20, 23, 24, 25, 26]. In this paper, signals with
durations of 30, 10, 5, 2, and 1min were used, and their effectiveness was
compared. These windows length were chosen to compare the results
obtained by this study with previous work done by other authors.

To obtain these signals, a windowing process was performed by
dividing the original ECG signal into overlapping segments by 50%, as
shown in Figure 3.

Once this process had been carried out, the HRV signal was extracted
from each record by measuring the time elapsed between two consecu-
tive beats or two consecutive R peaks (RR interval), as shown in Figure 2
and Algorithm 1.
Algorithm 1. Windowing process.
The time domain, Poincar�e plot, and Lomb-Scargle periodogram
feature extraction methods can work with raw HRV signals; however, the
other methods require uniform sampling. Due to the nature of obtaining
4

the HRV signal, the time between samples is directly affected by the
instantaneous heart rate of the ECG signal. To correct this, resampling of
the HRV signal is performed at 7 Hz using the cubic spline method, which
allows an ECG signal up to 210 bpm to be correctly represented [27].

Methods based on frequency domain analysis require that, in addition
to uniform sampling, the HRV signal has no trend. To achieve this
feature, the wavelet package decomposition method was used to elimi-
nate frequencies lower than 0.04 Hz corresponding to the trend of the
signal [28, 29], as illustrated in Figure 4.
2.3. HRV feature extraction

In this stage, a raw HRV signal was used to extract 8 features by time-
domain analysis, 3 features by Poincar�e plot, and 5 features by Lomb-
Scargle periodogram [30]. Additionally, the resampled HRV signal was
used to extract 2 features by the geometrical method, 1 feature by
nonlinear methods, and 2 features by detrended fluctuation analysis.
Finally, the resampled and detrended HRV signal was used to extract 45
features by bispectral analysis, 3 features by autoregressive modeling, 3
features by fast Fourier transform, and 5 features by wavelet packet
transform. Table 1 summarizes these characteristics and describes the
references used for their calculation.

2.3.1. Extracted features from raw HRV signal
The time-domain analysis allows us to statistically describe the HRV

signal: AVNN is the mean value of the signal NN interval, SDNN is the
standard deviation, SDSD is the standard deviation of the difference
between consecutive HRV values, RMSSD is the root mean square of
successive differences between consecutive HRV values; NN50 is the
total number of consecutive HRV values whose difference is greater
than 50 ms, NN20 is the total number of consecutive HRV values whose
difference is greater than 20 ms, pNN50 is the percentage of the total
consecutive HRV values whose difference is greater than 50 ms, and
pNN20 is the percentage of total consecutive HRV values whose
difference is greater than 20 ms. These features are calculated using
Algorithm 2.



Table 1. Standard HRV features Time and frequency domains and different
techniques used in the study.

Feature References

Time Domain Analysis

AVNN, SDNN, SDSD, RMSSD,
NN50, NN20, pNN50, pNN20

[25] Boon et al. 2016

Poincar�e Plot

SD1, SD2, SDRate [31] Yu et al. 2012

Lomb–Scargle Periodogram

lsULF, lsVLF, lsLF, lsHF, lsLFHF [32] Lomb. 1976

Geometrical Method

rrTri, TINN [1] García et al. 2017

Nonlinear Analysis

SampEn [9] Mohebbi et al. 2012

Detrended Fluctuation Analysis

DFA1, DFA2 [25] Boon et al. 2016

Bispectral Analysis

Mave, Pe, P1, P2 [10] Acharya et al. 2006

H1, H2, H3, H4 [9] Mohebbi et al. 2012

MaveROI [31] Yu et al. 2012

MaveLL, MaveLH, MaveHH [25] Boon et al. 2016

PaveROI [31] Yu et al. 2012

PaveLL, PaveLH, PaveHH, P1ROI, P1LL,
P1LH, P1HH, P2ROI, P2LL, P2LH, P2HH,
H1ROI, H1LL, H1LH, H1HH, H2ROI, H2LL,
H2HH, H3ROI, H3LL, H3HH, H4ROI,
H4LL, H4HH

[25] Boon et al. 2016

Z1ROI, Z2ROI, Z1LL, Z2LL, Z1LH, Z2LH,
Z1HH, Z2HH

[31] Yu et al. 2012

Autoregressive Modeling

arLF, arHF, arLFHF [10] Acharya et al. 2006

Fast Fourier Transform

fftLF, fftHF, fftLFHF [19] Narin et al. 2018

Wavelet Packet Transform

waveLF, waveHF, waveLFHF, entLF, entHF [19] Narin et al. 2018
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Algorithm 2. Time-domain analysis.
ROI

The Poincar�e plot method is a graph of each RR interval versus

immediately following the RR interval. This graph provides detailed
beat-to-beat information on heart behavior [7, 33] and is very useful as a
predictor of heart disease and dysfunction [10]. The features extracted by
this method are based on the instantaneous beat-to-beat interval vari-
ability (SD1), the continuous long-term RR interval variability (SD2), and
the SD1/SD2 ratio (SDRate) [34], as shown in Algorithm 3.

Algorithm 3. Poincare plot.
Figure 5. Region of interest (ROI) of the bispectrum and its 3 subdivisions.
The Lomb-Scargle periodogram is a method used to calculate power
spectral density (PSD)without the need for preprocessing and ismuchmore
accurate thanFFTmethods [35]. Toperformfeature extraction, thismethod
is applied in the 4 main frequency bands in an HRV signal: the
ultralow-frequency band (ULF) between 0 Hz and 3.3 mHz, the
very-low-frequency band (VLF) between 3.3 mHz and 40 mHz, the
5

low-frequency band (LF) between 40 mHz and 150 mHz and the
high-frequencyband (HF)between150mHzand400mHz.Asanadditional
feature, the LF/HF ratio is also calculated [19, 36], as shown inAlgorithm4.
Algorithm 4. Obtaining PSD by Lomb-Scargle periodogram method.
2.3.2. Extracted features from resampled HRV signal
According to the geometric method, the histogram of the HRV signal

was obtained, and from it, the HRV index (rrTri) and the triangular
interpolation of the RR intervals (TINN) were calculated using Algorithm
5 [1,37,38].

Algorithm 5. Geometrical method.
From the nonlinear analysis, the sample entropy feature (SampEn)
was extracted since it overcomes the limitations of Kolmogorov-Sinai
(KS) entropy when working with real data [39], as shown in Algorithm
6. Where the length of two simultaneous data points (m) to be compared
and the distance between said data points (r) were fixed according to the
study done in [40].
Algorithm 6. Sample entropy method.
Detrended fluctuation analysis (DFA) is used to extract nonlinear
characteristics from the HRV signal. It is a measure that quantifies the
fractal scale properties of short RR intervals [13]. It is calculated by
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Algorithm 7. In this study, HRV is divided in windows of 20-samples
length, then, DFA applies a linear regression (Order 1) to find and
eliminate the local trend.
Algorithm 7. Detrended fluctuation analysis method.
2.3.3. Extracted features from resampled and detrended HRV signals
Higher-order spectral analysis (HOS) has been used to estimate the

bispectrum in recent research based on HRV analysis [15]. A region of
6

interest (ROI) between frequencies of 40 mHz and 400 mHz is identified
in this bispectrum. This region is subdivided into 3 smaller regions: the
low-low- frequency region (LL), the low-high-frequency region (LH), and
the high-high-frequency region (HH). Figure 5 shows these regions.

The HRV characteristics in the frequency domain are based on the
analysis of the PSD obtained from different algorithms, such as FFT and
wavelet packet transform (WPT) [41]. Spectral analysis tends to relate
variations in frequency bands with physiological modular effects. WPT
analysis in HRV is used to separate the signal by amplitude and scaling to
simultaneously analyze the timeand frequencydomains [28].Basedon [42,
43], this paperused aDaubechies (DB4)motherwaveletwith a scale of 7 for
this process. Algorithm 8 shows how to obtain the bispectral features.

Algorithm 8. Bispectral analysis.
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The autoregressive modeling, FFT, and WPT methods were applied to
the LF andHF frequency bands used in the Lomb-Scargle periodogram. ULF
and VLF were not used in these methods since detrending eliminates the
information of these frequency bands. Each of these methods is calculated
using Algorithm 9, Algorithm 10, and Algorithm 11. The autoregressive
model uses 16 coefficients (order 16) to calculate the power spectral density
of the HRV signal [44]. On the other hand, WPT method uses 10 decom-
position levels (nPack ¼ 10) and a mother wavelet daubechies 6 [17].
7

Algorithm 9. Autoregressive modeling.
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Algorithm 10. Fourier transform.
Algorithm 11. Wavelet transform.
Table 2. Different methods and parameters for optimal feature selection and
classification.

Feature selection Classification Evaluation

Backwards Selection Random Forest
Number of trees ¼ 500

Cross Validation 10-
Fold (CV-10)Genetic Algorithm

Population size ¼ 100
Max generations ¼ 50
Crossover probability ¼ 0.8
Mutation probability ¼ 0.1

ANOVA

NSGA-III
Population size ¼ 100
Max generations ¼ 50
Crossover probability ¼ 0.8
Mutation probability ¼ 0.1

Conditional Random Forest
Number of trees ¼ 500

KNN

SVM k ¼ 1
Kernel ¼ Radial
σ2 ¼ Number of features
2.4. Data analysis

In this stage, some of the extracted features are removed and prepared
to be delivered to a classifier.

Reducing computational cost and reducing classifier dimensionality
are two of the benefits of eliminating features. Furthermore, the elimi-
nation process seeks to obtain features that contain the most relevant
information to classify the data. In this paper, three methods were used to
reduce the characteristics in the following order: near-zero value, cor-
relation, and recursive feature elimination.

First, the values are standardized to facilitate the learning process and
normalize the scale in all dimensions.

Subsequently, data is rounded to two digits to facilitate obtaining
unique values, which are the same data but with no repeating values.
Rounding allows small differences between data to be eliminated, thus,
reduces the number of unique values and increases the effectiveness of
the near-zero variance elimination.

2.4.1. Eliminating features with near-zero variance
A feature whose variance is zero or contains highly repeating values

has no contribution to the classification process. It is possible to find
these features by calculating the number of unique values and
comparing how many times these values are repeated. Using the
method proposed in [45], a feature is eliminated if it meets both of the
following conditions:

� The percentage of unique values is less than 10%.
� The rate between the value that is repeated the most and the second
value that is repeated the most is greater than 19.

2.4.2. Eliminating features with high correlation
The fact that two or more features are correlated implies that they

contain redundant information. To avoid this situation, the correlation
matrix between all features was calculated. Each pair of features that had
a very strong correlation, that is a value greater than 0.9 or less than -0.9
[46] was analyzed, and the feature that had a higher index calculated
according to equation (1) was eliminated.

indexx ¼
X

y 6¼x

ðρx;yÞ2 (1)

where x is each of the features in the correlated pair, y is each of the
features of the database, and ρx;y is the Pearson correlation coefficient
between x and y.
8

2.4.3. Recursive feature elimination
Recursive feature elimination (RFE) recursively evaluates subsets of

features and finds the importance of each feature individually. This al-
lows us to retain independent features and remove features that have a
low impact on improving accuracy [47].

RFE has 2 main stages: feature subset selection and classification
using this subset. There are different combinations of methods applicable
to these stages. In this paper, backward selection, genetic algorithm,
analysis of variance (ANOVA), and non-dominated sorting genetic algo-
rithm (NSGA-III) were used for the selection of features, and random
forest, conditional random forest, k-nearest neighbor (KNN), and support
vector machine (SVM) were used for classification. To ensure the inde-
pendence of the partitioning of data, 10-fold cross-validation was used to
evaluate the results. The partitioning was the same for all methods.
Table 2 summarizes the methods used.

The feature selection aims to find the most relevant features of a
problem. It improves computational speed and prediction accuracy [48].
In this study, the feature selection algorithms of ‘caret’ package version
6.0–88 in R software is used: Backwards selection, genetic algorithm and
anova, and the random forest classifier, which works well with
high-dimension problems and identifies strong predictors of a specific
result without making assumptions about a underlying model [48].

Furthermore, we extend the study using NSGA-III from the package
'mlr' version 2.19.0 and as classifiers: Contidional Random Forest, KNN
and SVM. These machines build a classification model based on previous
features and have been successfully applied in previous clinical studies
[49].

Each of the aforementioned methods was evaluated using 3 perfor-
mance metrics: sensitivity (SN), specificity (SP), and accuracy (ACC), as
shown in equations (2), (3), and (4), respectively. These metrics are
widely used and allow comparing the probability of success of the pro-
posed method with previously published works.

SN¼ TP
TP þ FN

(2)



Figure 6. Elimination of features in group 1 using near-zero variance and high correlation methods.
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SP¼ TN
TN þ FP

(3)
ACC¼ TPþ TN
TPþ TN þ FPþ FN

(4)

where TP is the true positive value, TF is the true negative value, FP is the
false positive value, and FN is the false negative value.

2.5. Ethical statement

The work covered in this paper has been carried out using the AFPDB
database from PhysioNet [22]. All medical data included in this database
is publicly available and approved to be freely used and shared.

We confirm that this paper complies with any ethical conditions
established by Physionet and the database authors.

3. Results and analysis

Once the 77 features were obtained, the near-zero variance and high
correlation method were applied. The results obtained show that
depending on the length of the window, some features become more or
less relevant. Figure 6 and Figure 7 graphically show the results obtained
for groups 1 and 2, respectively.
9

In group 1, it can be seen that regardless of the window length, 15
features contain a large amount of information; therefore, they were not
eliminated due to low variance or high correlation.

In contrast, 13 features (lsULF, dfa2, arLF, waveLF, Mave, MaveROI,
MaveLL, MaveLH, MaveHH, PaveROI, PaveLL, PaveLH, and PaveHH)
were eliminated due to low variance regardless of the window length.
Likewise, 20 features (RMSSD, NN50, NN20, SD1, DFA1, arHF, H1, H3,
H4, H1ROI, H1LL, H1LH, H1HH, H2HH, H3ROI, H3LL, H3HH, H4HH,
Z2ROI, and Z1LH) were highly correlated with other features and were
thus eliminated regardless of the window length.

In group 2, 17 features were not eliminated by near-zero variance or
by high correlation regardless of the window length. In contrast, the 6
features dfa2, lsULF, PaveROI, PaveLL, PaveLH, and PaveHH were
eliminated by near-zero variance in all window lengths. In the same way,
the 20 features SDSD, RMSSD, NN50, pNN20, SD1, SD2, DFA1, H1, H3,
H4, P1LH, H1ROI, H1LL, H1LH, H1HH, H2LL, H2HH, H3HH, H4HH, and
Z1LH were eliminated by correlation across all window lengths.

Based on these results, 12 features (AVNN, pnn50, rrTri, TINN,
SDRate, entHF, P1, P2, Z1LL, Z2LL, Z2LH, and Z2HH) contain the most
information and can help to correctly predict AFP. In contrast, 21 fea-
tures (RMSSD, NN50, SD1, DFA1, DFA2, lsULF, PaveROI, PaveLL,
PaveLH, PaveHH, H1, H3, H4, H1ROI, H1LL, H1LH, H1HH, H2HH,
H3HH, H4HH, and Z1LH) contain reduced or redundant information and
should not be used for the prediction of AFP.



Figure 7. Elimination of features in group 2 using near-zero variance and high correlation methods.
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After an exhaustive elimination of features, between 29 and 34 of
them remain depending on the window length. Some of these features
were further eliminated using the recursive feature elimination method.
Table 3 and Table 4 show the obtained optimal set of features and the
classification accuracy.

The highest accuracy was 89.01% for a window length of 2 min and
93.24% for a window length of 5 min.

According to these results, the best combination of algorithms for the
selection of the optimal set of features was NSGA-III þ KNN for group 1
and a 5-minute window length and backwards selectionþ random forest
for group 2 and a 2-minute window length.

In group 1, the highest precision was obtained using the 6 features
AVNN, SDNN, pNN50, pNN20, lsLF, and TINN. This result shows that
time-domain analysis has a great impact on predicting a PAF event.

In group 2, the highest precision was obtained using the 9 features
AVNN, NN20, pNN50, TINN, rrTri, SDNN, fftHF, MaveROI, and SDRate.
As with group 1, time-domain analysis is very important in predicting
PAF events, but in this case, the geometrical method also has a great
impact.

According to these results, fftHF, MaveROI, and SDRate features are
relevant to discriminate between distant PAF and close PAF. However,
when including normal subjects, this feature's importance is lost.
Therefore, the information contained in the high frequencies of the ECG
signal and the rate of occurrence of ectopic beats vary considerably in
10
normal subjects, but in people with fibrillation, it helps to predict when a
PAF may occur.

In Table 5, this paper is compared to previous works in predicting a
PAF event on the AFPDB. Five separate works used a 5-minute window
length [30]. obtained a classification performance of 78.4% by using the
P wave power spectral density [31]. achieved a classification perfor-
mance of 72% using HRV power spectral density and premature atrial
contractions (PACs). A very recent study in [13] reconsidered the prob-
lem using 5-minute HRV segments and obtained a classification perfor-
mance with an accuracy of 87.7%.

The proposed methodology exceeds the results obtained by all of the
methods mentioned before. The highest sensitivity and specificity for
group 1 were 88.53% and 95.03%, respectively, using a 5-minute win-
dow. These results outperform previous studies with the same window
length. On the other hand, for group 2 using a 2-minute window, a
sensitivity of 88.00% and a specificity of 90.43% were obtained. Despite
using a shorter window length, the results of the group are higher than in
previous works except for [20], where they used a 10-minute window,
and [9], where they used a 30-minute window.

Using a smaller window length reduces the amount of data that needs
to be processed to obtain a classification of the signal and allows a PAF to
be predicted more quickly than with a longer window length. In a real
implementation, these advantages mean fewer data to store and process
and timely medical decision making. On the other hand, reducing the



Table 3. Optimal set of HRV features for group 1.

Window length
(minutes)

Features SN
(%)

SP
(%)

ACC
(%)

Backwards Selection þ Random Forest þ CV-10

30 SDRate, P2LH 32.00 87.83 75.77

10 P2, SDRate, P1, pNN20, rrTri, TINN,
Z1ROI, waveHF, sampEn, SD2

54.00 98.32 86.11

5 AVNN, P2, pNN20, SDNN, SDRate 62.80 95.95 87.59

2 AVNN, pNN20, SDNN, pNN50, rrTri,
TINN, SDRate

62.71 95.53 88.00

1 AVNN, SDSD, pNN20, TINN, SDRate,
rrTri, fftHF, pNN50, waveHF, arLFHF,
H2ROI

62.00 96.88 88.31

Genetic Algorithm þ Random Forest þ CV-10

30 pNN50, lsLF, rrTri, P2LH, P2HH,
H4ROI, Z2LL, Z1HH, Z2HH

28.00 91.89 75.76

10 AVNN, pNN20, SD2, SDRate, rrTri,
TINN, sampEn, arLFHF, P2, P2HH,
Z2LH

55.00 97.98 87.15

5 AVNN, SDNN, pNN50, pNN20,
SDRate, TINN, sampEn, fftLFHF, Z2HH

63.60 96.49 88.19

2 AVNN, SDNN, pNN50, pNN20,
SDRate, TINN, fftLFHF, H2ROI, Z2HH

63.71 96.62 88.32

1 AVNN, SDSD, pNN50, pNN20, SDRate,
lsHF, TINN, arLFHF, fftHF

68.62 95.90 89.01

Anova þ Random Forest þ CV-10

30 SDRate, sampEn, Z2LH 16.00 91.89 72.73

10 SDRate, arLFHF, entLF, Pe, P1, P2,
P1ROI, P1LH, P1HH, P2LL, P2HH,
Z1ROI, Z1LL, Z2LL, Z2LH, Z1HH

23.00 96.30 77.83

5 SDRate, lsLF, rrTri, tinn, arLFHF,
fftLFHF, entLF, P1, P2, P1ROI, P1LH,
P1HH, H2ROI, H4ROI, Z1ROI, Z1LL

46.40 95.95 83.45

2 AVNN, pNN50, SDRate, arLFHF,
fftLFHF, waveLFHF, entLF, entHF, P1,
P2, P1ROI, P1LH, H2ROI, H4ROI

43.14 97.97 84.13

1 AVNN, PNN50, pNN20, SDRate,
arLFHF, fftHF, fftLFHF, waveLFHF,
entLF, entHF, P1, P2, P1LL, P2ROI,
P2LH

40.21 97.74 83.21

NSGA-III þ Conditional Random Forest þ CV-10

30 tinn, P2, P2LH, P2HH, H2LL, H4ROI 16.00 91.89 72.73

10 lsLFHF, rrTri, sampEn, P2, P1HH 38.17 97.93 82.14

5 AVNN, SDRate, sampEn, fftLFHF,
H2ROI

42.44 96.70 82.84

2 AVNN, SDNN, pNN20, SDRate 50.61 96.16 84.63

1 AVNN, SDSD, TINN 54.87 96.38 85.90

NSGA-III þ KNN þ CV-10

30 SDRate, sampEn, entHF, P1, P2, H2,
P2LL, P2LH, H4ROI

55.00 89.11 80.88

10 AVNN, pNN50, pNN20, SD2, P2 80.68 93.11 89.66

5 AVNN, SDNN, PNN50, pNN20, lsLF,
TINN

88.53 95.03 93.24

2 AVNN, SDNN, pNN20, SDRate, lsHF,
P1LH

64.46 89.15 82.90

1 AVNN, SDSD, TINN 66.10 88.77 83.06

NSGA-III þ SVM þ CV-10

30 pNN20, SDRate, P1, Z1HH 11.67 100 77.94

10 pNN50, pNN20, SDRate, entLF, P1,
H2LL

19.95 99.33 79.11

5 AVNN, pNN50, pNN20, SDRate,
entHF, P1, P1HH, H2ROI, H4ROI,
Z2LH, Z1HH

22.69 97.87 78.81

2 AVNN, pNN50, pNN20, P1LH, H2ROI,
H4ROI, Z1ROI, Z1LL, Z2LH, Z1HH

19.54 97.91 78.27

1 AVNN, TINN 8.49 98.71 75.94

Row in bold shows the solution with the highest accuracy for each group.

Table 4. Optimal set of HRV features for group 2.

Window length
(minutes)

Features SN
(%)

SP
(%)

ACC
(%)

Backwards Selection þ Random Forest þ CV-10

30 Pe, SDNN 56.00 72.00 64.00

10 Z2ROI, SDNN, pNN50, rrTri, P2,
NN20, AVNN, TINN

80 83 81.50

5 AVNN, NN20, pNN50, SDNN, Z2ROI,
rrTri, TINN, fftHF

85.6 86.4 86

2 AVNN, NN20, pNN50, TINN, rrTri,
SDNN, fftHF, MaveROI, SDRate

88.00 90.43 89.21

1 AVNN, NN20, pNN50, SDNN, rrTri,
TINN, arHF, SDRate, arLFHF

87.03 88.07 87.55

Genetic Algorithm þ Random Forest þ CV-10

30 SDNN, lsLFHF, rrTri, TINN, waveHF,
P1ROI, H4LL

48.00 56.00 52.00

10 AVNN, SDNN, NN20, pNN50, SDRate,
rrTri, TINN, sampEn, P1ROI, H2ROI,
H4LL, Z1LL, Z1HH, Z2HH

72.00 72.00 72.00

5 AVNN, SDNN, NN20, pNN50, SDRate,
sampEn, P2, H2ROI, Z2ROI, Z1LL

83.20 84.80 84.00

2 AVNN, SDNN, NN20, pNN50, SDRate,
TINN, fftHF, P2, H2ROI, Z2LH

84.86 86.57 85.71

1 AVNN, SDNN, NN20, pNN50, SDRate,
rrTri, arHF, arLFHF, Z2ROI

85.59 85.86 85.72

Anova þ Random Forest þ CV-10

30 pe 40.00 40.00 40.00

10 rrTri, TINN, entHF, P2ROI, H4LL,
Z2HH

64.00 67.00 65.50

5 pNN50, SDRate, rrTri, TINN, sampEn,
fftHF, waveHF, entHF, H2, P1HH,
P2LH, H2ROI, H4ROI, Z2ROI

72.8 74.4 73.6

2 SDNN, NN20, pNN50, SDRate, rrTri,
TINN, fftHF, MaveROI, H2ROI, Z1LL,
Z2LL, Z2LH, Z2HH

78.29 82.14 80.21

1 SDNN, NN20, pNN50, SDRate, rrTri,
TINN, arHF, waveLF, P1, P2, P2LH,
H3ROI, Z1LL, Z2LL, Z2LH, Z1HH

74.62 76.41 75.52

NSGA-III þ Conditional Random Forest þ CV-10

30 AVNN, pNN20, SDRate, fftLFHF 53.52 95.50 84.92

10 SDNN, rrTri, TINN, sampEn 63.60 76.27 70.5

5 AVNN, SDNN, NN20 76.43 82.48 79.00

2 AVNN, SDNN, NN20, pNN50, SDRate,
rrTri, P2LH, Z2ROI

80.49 84.26 82.36

1 AVNN, SDRate, TINN 78.12 79.04 78.60

NSGA-III þ KNN þ CV-10

30 AVNN, SDSD, pNN20, TINN, fftHF,
P2ROI

71.68 90.35 85.60

10 AVNN, pNN50, lsHF, fftHF, P2, Z2ROI,
Z1HH, Z2HH

69.51 82.03 76.00

5 rrTri, sampEn, Z2HH 59.00 63.42 60.8

2 AVNN, pNN50, TINN 83.11 84.10 83.64

1 AVNN, SDNN, pNN50, TINN 82.40 83.14 82.76

NSGA-III þ SVM þ CV-10

30 AVNN, TINN, H4ROI, Z1ROI, Z2LH 10.76 99.14 76.82

10 AVNN, NN20, TINN, H2ROI, H4LL 66.72 70.88 68.00

5 AVNN, NN20, SDRate, TINN, P1ROI,
P2LL

62.98 73.63 68.20

2 AVNN, NN20, pNN50 TINN, H2ROI 69.30 73.40 71.35

1 pNN50, entHF 41.37 73.59 57.41

Row in bold shows the solution with the highest accuracy for each group.
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length of the window excessively affects the precision of the classifica-
tion. In [23], they used a 1-minute window, obtaining a low precision of
68%; in the same way, in our work, the results obtained by 1-minute
windows were lower in both group 1 and group 2.



Table 5. Proposed method compared to previous works.

Reference Methods Group Window length
(minutes)

Cross
Validation

SN (%) SP (%) ACC (%)

[20] Chazal et al. 2001 Time Domain Analysis
Fast Fourier Transform

Group 2
Group 2

10
5

5-Fold
5-Fold

85
81

97
75

90.4
78.4

[23] Hickey et al. 2002 Time Domain Analysis
Fast Fourier Transform

Group 1
Group 1
Group 1
Group 1

30
10
5
1

5-Fold
5-Fold
5-Fold
5-Fold

61
65
62
60

75
75
77
72

70
72
72
68

[4] Zong et al. 2001 Time Domain Analysis Group 1 30 Single-fold - - 80

[24] Thong et al. 2004 Time Domain Analysis Group 1 30 Single-fold 84 88 86

[9] Mohebbi et al. 2012 Time Domain Analysis
Poincar�e Plot
Nonlinear Analysis
Autoregressive Modeling
Fast Fourier Transform

Group 2 30 Single-fold 96.30 93.10 92.86

[25] Boon et al. 2016 Time Domain Analysis
Poincar�e Plot
Nonlinear Analysis
Autoregressive Modeling
Fast Fourier Transform

Group 2
Group 2
Group 2
Group 2
Group 2
Group 2

30
30
10
10
15
15

Single-fold
10-fold
Single-fold
10-fold
Single-fold
10-fold

96.4
81.1
75.1
58.5
85.1
77.4

71.4
79.3
54.3
81.1
82.1
81.1

83.9
80.2
69.6
68.9
83.9
79.3

[26] Boon et al. 2018 Time Domain Analysis
Poincar�e Plot
Nonlinear Analysis
Autoregressive Modeling
Fast Fourier Transform

Group 2 5 10-fold 86.8 88.7 87.7

[19] Narin et al.2018 Time Domain Analysis
Lomb–Scargle Periodogram
Fast Fourier Transform
Wavelet Packet Transform

Group 1
Group 2

5
5

10-fold
10-fold

64
92

90.5
88

83.8
90

Proposed Method Time Domain Analysis
Poincar�e Plot
Lomb–Scargle Periodogram
Geometrical Method
Nonlinear Analysis
Detrended Fluctuation Analysis
Bispectral Analysis
Autoregressive Modeling
Fast Fourier Transform
Wavelet Packet Transform

Group 1
Group 2

5
2

10-fold
10-fold

88.53
88.00

95.03
90.43

93.24
89.21
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4. Conclusion

HRV has proven to be an essential tool to predict PAF events and
thereby to study the behavior of the sympathetic and parasympathetic
function of sympathetic nerve activity.

In this study, a methodology was presented using the HRV signal,
from which 77 features were selected based on a literature review of the
majority of studies carried out in PAF event prediction. Features con-
taining near-zero variance and high correlation were eliminated. In
addition, 6 different techniques were used for recursive feature elimi-
nation, and the performance of the classifier was evaluated using 10-fold
cross-validation.

Our method can predict a PAF event with 93.24% accuracy using a 5-
minute window of an ECG signal or 89.21% accuracy using a 2-minute
window of an ECG signal. These results were obtained for groups 1 and
2 using the AFPDB database from PhysioNet.

The proposed methodology exceeds the accuracy obtained by all of
the methods consulted. The sensitivity obtained for group 1 was 88.53%,
and the sensitivity of 95.03% was the highest.

The accuracy obtained for group 2 was 1% below the top 2 other
methods. However, since this study uses a smaller window length, it has
greater advantages than the methods consulted.

Another highlight of this work is the ability to reduce high-
dimensional data from 77 to just 6 to 9 features. For group 1, the most
important features were AVNN, SDNN, pNN50, pNN20, lsLF, and TINN.
For group 2, the highest precision was obtained using AVNN, NN20,
pNN50, TINN, rrTri, SDNN, fftHF, MaveROI, and SDRate. This result
12
shows that time-domain analysis and geometrical methods have a great
impact on predicting a PAF event.

This study uses features based only on the HRV signal. In future work,
features based on the morphology of the ECG signal could be added, such
as P-Wave and QR alternance analysis, the methodology could be
extended to other cardiac pathologies, the hardware implementation of
the propose methodology to create a real-time PAF detection and pre-
diction device and expand the methodology including other ECG leads or
with multiple leads at the same time.
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