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Abstract

Background: As an important non-coding RNA, microRNA (miRNA) plays a
significant role in a series of life processes and is closely associated with a variety of
Human diseases. Hence, identification of potential miRNA-disease associations can
make great contributions to the research and treatment of Human diseases.
However, to our knowledge, many existing computational methods only utilize the
single type of known association information between miRNAs and diseases to
predict their potential associations, without focusing on their interactions or
associations with other types of molecules.

Results: In this paper, we propose a network embedding-based method for
predicting miRNA-disease associations by preserving behavior and attribute
information. Firstly, a heterogeneous network is constructed by integrating known
associations among miRNA, protein and disease, and the network representation
method Learning Graph Representations with Global Structural Information (GraRep)
is implemented to learn the behavior information of miRNAs and diseases in the
network. Then, the behavior information of miRNAs and diseases is combined with
the attribute information of them to represent miRNA-disease association pairs.
Finally, the prediction model is established based on the Random Forest algorithm.
Under the five-fold cross validation, the proposed NEMPD model obtained average
85.41% prediction accuracy with 80.96% sensitivity at the AUC of 91.58%.
Furthermore, the performance of NEMPD is also validated by the case studies.
Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47
(colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases.

Conclusions: The proposed NEMPD model has a good performance in predicting
the potential associations between miRNAs and diseases, and has great potency in
the field of miRNA-disease association prediction in the future.
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Background
MicroRNAs (miRNAs) are a kind of endogenous non-coding RNA with a length of ~

22 nt, which regulates the expression of target mRNAs by controlling the expression of

target genes through sequence complementary pairing [1]. The sequence of miRNA is

very short, and it is only expressed in specific tissues or cells at specific stages, so miR-

NAs are not well known to people before and usually called dark matter in life [2]. In

1993, Lee et al. [3] identified the first miRNA gene, lin-4, in Caenorhabditis elegans.

Since then, numerous studies have shown that miRNAs play an important role in life

processes, including cell metabolism, proliferation, apoptosis, and development [4–8].

Besides, miRNAs are also involved in the occurrence and development of many Human

diseases, such as prostatic neoplasms, breast neoplasms, and so on [9–11]. Therefore,

identifying potential miRNA-disease associations is crucial in the research and treat-

ment of Human diseases. Traditional experimental methods have high accuracy in pre-

dicting the miRNA-disease associations, but such methods are often limited to the

disadvantages of small scale, high time-consuming, and high cost. Hence, using compu-

tational methods to predict the potential associations has gradually attracted more and

more researchers [12, 13].

In the past few years, there are many computational methods have been developed to

predict the miRNA-disease associations. For example, Chen et al. [14] developed a

model named RBMMMDA, which utilizing the restricted Boltzmann machine to pre-

dict multi-type associations between miRNAs and diseases. This method can not only

discover new potential associations between miRNAs and diseases but also indicate the

corresponding association types. Chen et al. [15] proposed a novel method based on

heterogeneous graph inference (HGIMDA). This approach takes advantage of the

miRNA functional similarity, disease semantic similarity, Gaussian interaction profile

kernel similarity, and known miRNA-disease associations. It breaks through the limita-

tions of traditional methods and can be used for new miRNAs and diseases without

any known associations. You et al. [16] constructed a heterogeneous graph and utilized

the depth-first search algorithm (PBMDA). Compared with other previous models, this

method has better reliability and accuracy. Chen et al. [17] proposed a new method of

within and between score, named WBSMDA. This method can be used for diseases

without any known related miRNAs. Wang et al. [18] proposed a method of the logistic

model tree (LMTRDA) by combining miRNA sequence information, miRNA functional

similarity, and disease semantic similarity. Li et al. [19] designed a novel method

(MCMDA) for the prediction of potential miRNA-disease associations by updating the

known association adjacency matrix. Zheng et al. [20] developed a prediction model

based on the machine learning method. This model combines Gaussian interaction

spectrum kernel similarity information, disease semantic similarity, and miRNA func-

tional similarity and sequence information. Furthermore, it respectively utilizes the

auto-encoder neural network (AE) and random forest for feature extraction and train-

ing. Zheng et al. [21] developed a novel model based on the distance sequence similar-

ity method (DBMDA). This method utilizes the regional distance to calculate the global

similarity and is implemented through a chaotic game representation algorithm based

on miRNA sequences, which provides a new idea for the field of miRNA-disease pre-

diction. Zeng et al. [22] summarized the calculation methods for predicting the poten-

tial associations between miRNA and disease based on biological interaction networks.
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By discussing the advantages and disadvantages of these methods, they provided con-

structive help for this problem. Zou et al. [23] developed two miRNA-disease associ-

ation computational methods, one method uses social network analysis methods and

machine learning, and the other is supervised machine learning methods, both of which

have achieved excellent prediction results. Zeng et al. [24] constructed a heterogeneous

network by integrating the neighborhood information in the neural network to predict

the miRNA-disease associations (NNMDA). By comparing with other methods, the

prediction performance of NNMDA is more accurate and reliable.

At present, most existing state-of-the-art algorithms only make use of the single

known miRNA-disease associations for potential miRNA-disease association prediction.

However, diseases are mainly caused by the disturbance of a complex of interacting

multiple biomolecules, rather than the abnormity of a single biomolecule. In addition,

the functionally dependent molecular components in Human cells form a complex bio-

logical network, in which proteins are an important part of Human tissues and cells.

The protein-miRNA associations and protein-disease associations have been confirmed

by many previous experiments [25–27]. Therefore, we proposed a novel method to pre-

dict the miRNA-disease associations by preserving behavior and attribute information

based on the heterogeneous miRNA-protein-disease network and the GraRep network

embedding method (NEMPD). More specifically, we firstly constructed and compre-

hensively analyzed a heterogeneous miRNA-protein-disease network by integrating the

miRNA-protein and protein-disease associations (see Fig. 1). Secondly, the network

representation method can be used to get the embedding representation of nodes from

Fig. 1 The miRNA-protein-disease network. The association network is constructed by combining the
known miRNA-protein and protein-disease associations. Each node respectively represents miRNA, protein
and disease, and each edge represents the relationship between the two biomolecules

Ji et al. BMC Bioinformatics          (2020) 21:401 Page 3 of 17



the network while maintaining the network property. In recent years, network embed-

ding methods such as LINE [28], DeepWalk [29] and so on, have been applied to sev-

eral bioinformatics problems and have good performance. In this article, we choose the

GraRep [30] method to learn the association information with proteins (behavior infor-

mation) of miRNAs and diseases. Thirdly, the behavior information of miRNAs and

diseases is combined with their own attribute information (disease semantic similarity

and miRNA sequence information) to represent the 16,427 known miRNA-disease

pairs downloaded from HMDD [31] database. Finally, the Random Forest classifier was

utilized to train the converted miRNA-disease feature pairs. The pipeline of NEMPD is

shown in Fig. 2. In the experimental results, under five-fold cross-validation, the aver-

age AUC and AUPR of NEMPD is respectively 0.9158 and 0.9233. Furthermore, we

measured the performance of NEMPD with different feature combinations and classi-

fiers. Besides, in order to further test the performance of NEMPD, we conducted case

studies of three major Human diseases. All the results demonstrate that NEMPD has a

good performance and can be used as a reliable model in the field of miRNA-disease

association prediction.

Results and discussion
The five-fold cross-validation performance of NEMPD

To evaluate the prediction performance of NEMPD, we adopted the 5-fold cross-

validation method in our experiment. Specifically, we firstly divide the training set into

five parts, where the ratio of positive and negative samples is the same in each part.

Each time we select 4 parts as the training sample and the remaining 1 part as the test

sample, and then repeat the experiment 5 times. In the results, we selected six parame-

ters as evaluation indicators: accuracy (Acc.), precision (Prec.), matthews correlation

coefficient (MCC), specificity (Spec.), sensitivity (Sen.) and areas under the ROC curve

Fig. 2 The pipeline of NEMPD. DSS represents disease semantic similarity
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(AUC). Table 1 shows the results of each fold in detail. The final results well proved

the good performance of NEMPD in the prediction of potential miRNA-disease

associations.

The ROC (Receiver Operating Characteristic) curve is often used to evaluate the ad-

vantages and disadvantages of a binary classifier, and to measure the non-equilibrium

in classification. The abscissa of the ROC curve is FPR (false positive rate), which

means the number of cases predicted to be positive among all negative cases. The or-

dinate of the ROC curve is TPR (true positive rate), which means the total predicted

true positive samples. The AUC is defined as the areas under the ROC curve, with

values generally ranging from 0.5 to 1. In general, the reason why AUC is usually used

as an evaluation indicator in most cases is that the ROC curve cannot clearly indicate

which classifier has a better effect. The PR (Precision-Recall) curve is another tool for

evaluating the classification ability of machine learning algorithms for a given data set.

Moreover, when dealing with some highly imbalanced data sets, the PR curve can dis-

play more information and find more problems. Similarly, the AUPR is defined as the

areas under the PR curve. The ROC and PR curves of NEMPD under 5-fold cross-

validation are respectively shown in Figs. 3 and 4. As we can be seen from the figure,

the mean AUC and AUPR of NEMPD is 0.9158 and 0.9233, respectively. Generally, the

results fully demonstrate that NEMPD has a good performance in the field of potential

miRNA-disease association prediction.

Comparison with different feature combinations

In order to verify the validity of the proposed feature representation information, we dis-

cussed the influence of different feature combinations on the results of NEMPD. In detail,

the combination 1 is only composed of the attribute information of miRNAs and diseases,

the combination 2 is only composed of behavior information of miRNAs and diseases, the

combination 3 is composed of attribute and behavior information. These three different

feature combinations were respectively used as training features of the random forest clas-

sifier and were verified under 5-fold cross-validation. The detailed results and ROC and

PR curves are respectively shown in Table 2 and Fig. 5. In the end, the experimental re-

sults show that using the combination of attribute and behavior information as the final

training feature vector can get better performance in the prediction.

Comparison with different classifier models

To verify the performance of the random forest classifier in NEMPD, we further com-

pared it with three other different classifier models (KNN, Naive Bayes and Decision

Table 1 The 5-fold cross-validation performance of NEMPD

Fold ACC.(%) Spec.(%) Sen.(%) MCC(%) Prec.(%) AUC(%)

0 85.33 89.17 81.50 70.87 88.27 91.72

1 85.01 89.90 80.13 70.36 88.80 90.70

2 85.47 90.23 80.71 71.26 89.20 91.50

3 85.73 90.17 81.28 71.74 89.21 92.06

4 85.50 89.83 81.18 71.27 88.86 91.93

Average 85.41 ± 0.26 89.86 ± 0.42 80.96 ± 0.55 71.10 ± 0.52 88.87 ± 0.38 91.58 ± 0.54
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Tree). It is worth noting that all these four classifiers use the same data set, and all use

the default parameters for training and prediction to ensure the effectiveness of the

comparison. We also utilize these six parameters (accuracy (Acc.), precision (Prec.),

matthews correlation coefficient (MCC), specificity (Spec.), sensitivity (Sen.) and areas

under the ROC curve (AUC)) as evaluation indicators. As a result, the KNN model

achieves the average AUC of 90.14 ± 0.48%, which the AUC value of each fold is 89.86,

89.52, 90.12, 90.73, and 90.47%. The Naive Bayes model achieves the average AUC of

88.98 ± 0.44%, which the AUC value of each fold is 88.79, 88.52, 88.84, 89.69, and

89.07%. The Decision Tree model achieves the average AUC of 82.20 ± 0.80%, which

the AUC value of each fold is 81.66, 81.07, 82.59, 82.96, and 82.70%. The Random

Fig. 3 The 5-fold cross validation ROC curves and AUC of NEMPD

Fig. 4 The 5-fold cross validation PR curves and AUPR of NEMPD
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Forest model achieves the average AUC of 91.58 ± 0.54%, which the AUC value of each

fold is 91.72, 90.70, 91.50, 92.06, and 91.93%. Details of the remaining 5 parameters are

shown in Table 3, and Fig. 6 shows the ROC and PR curves of different classifiers. The

results of the comparison experiment fully prove that the random forest classifier is

more suitable for NEMPD. Although it is not as good as KNN and Naive Bayes in sen-

sitivity, random forest performs better in accuracy and AUC, which can better reflect

the classification ability of a model.

Case studies

To further verify NEMPD’s ability to discover potential miRNA-disease associa-

tions, we selected three common Human diseases (colon neoplasms, breast neo-

plasms, and lung neoplasms) to conduct the case studies, which is the most

common experiment in miRNA-disease association prediction methods. After the

experiment was completed, we selected the top 50 predicted associations between

miRNAs and corresponding cancers and confirmed them with two other databases,

dbDEMC [32] and miR2Disease [33].

Colon neoplasms are currently the third common gastrointestinal disease in the

world [34, 35]. Furthermore, some of the potential miRNA-colon neoplasms associa-

tions have been verified by previous experiments, such as miR-17, miR-92a, miR-31,

miR-155, and miR-21 [36]. These researches have demonstrated that miRNA is crucial

for the prediction of colon neoplasms and can be used as an important biomarker for

Table 2 Performance of NEMPD with different combinations. Combination1 represents only
attribute information. Combination2 represents only behavior information. Combination3
represents a combination of attribute and behavior information

Acc.(%) Spec.(%) Sen.(%) MCC(%) Prec.(%) AUC(%)

combination1 79.95 ± 0.68 78.25 ± 0.66 81.65 ± 1.22 59.95 ± 1.37 78.97 ± 0.55 86.67 ± 0.61

combination2 85.26 ± 0.52 89.57 ± 0.59 80.96 ± 0.73 70.79 ± 1.02 88.59 ± 0.60 91.45 ± 0.50

combination3 85.41 ± 0.26 89.86 ± 0.42 80.96 ± 0.55 71.10 ± 0.52 88.87 ± 0.38 91.58 ± 0.54

*combination1: only attribute information
*combination2: only behavior information
*combination3: attribute and behavior information

Fig. 5 The ROC and PR curves of NEMPD with different combinations. Three different feature combinations
(only attribute information, only behavior information, attribute and behavior information) were respectively
used as training features of the random forest classifier and verified under 5-fold cross-validation
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colon neoplasms. Therefore, the prediction of miRNA-colon neoplasms associations is

very important for the treatment and diagnosis of colon neoplasms. In this work, we

sorted the final prediction results of NEMPD according to the prediction score. Finally,

48 of the top 50 miRNAs are verified to be associated with colon neoplasms through

the miR2Disease and dbDEMC databases (see Table 4). For example, hsa-miR-20a-5p

has been experimentally confirmed to be associated with colon neoplasms [37]. This

method draws conclusions through statistical analysis of population-based colorectal

cancer studies conducted in Utah and the Kaiser Permanente Medical Care Project

(PMID: 26963002).

Breast neoplasms are another common malignant tumor that mainly occurs in

women. In the United States, there are about 180,000 new breast patients each year,

and about 40,000 die from breast neoplasms. In recent years, the incidence of breast

neoplasms in China is also rising and has become the second leading cause of cancer

death after lung neoplasms. As a small molecule RNA, miRNA can inhibit breast neo-

plasms by inhibiting its target mRNA. Besides, the miRNA-breast neoplasms associa-

tions have been verified by many previous works of literature. For example, miR-21 has

been found to be excessive in breast neoplasms [38], while miR-429 and miR-200c are

down-regulated [39]. Similarly, we sorted the final prediction results according to the

prediction score. Finally, 47 of the top 50 miRNAs are verified to be associated with

breast neoplasms through the miR2Disease and dbDEMC databases (see Table 5). For

example, hsa-miR-93-5p has been experimentally proved to be related to breast neo-

plasms [40] (PMID: 24865188).

Lung neoplasms are a common tumor disease worldwide and one of the leading

causes of cancer death. It is also one of the fastest-growing morbidity and mortal-

ity rates and the most threatening to the health and life of the population. In re-

cent years, the incidence and mortality of lung cancer in many countries have

increased significantly. In addition, miRNAs have been confirmed by many previous

Table 3 Comparison of NEMPD with different classifiers

Classifier ACC.(%) Spec.(%) Sen.(%) MCC.(%) Prec.(%) AUC.(%)

KNN 84.71 ± 0.53 84.39 ± 0.71 85.03 ± 0.59 69.42 ± 1.07 84.49 ± 0.63 90.14 ± 0.48

Naive Bayes 83.04 ± 0.53 82.73 ± 0.66 83.34 ± 0.95 66.08 ± 1.05 82.84 ± 0.53 88.98 ± 0.44

DecisionTree 82.20 ± 0.80 84.96 ± 1.21 79.43 ± 0.96 64.50 ± 1.61 84.09 ± 1.09 82.20 ± 0.80

RandomForest 85.41 ± 0.26 89.86 ± 0.42 80.96 ± 0.55 71.10 ± 0.52 88.87 ± 0.38 91.58 ± 0.54

Fig. 6 The ROC and PR curves of NEMPD with different classifiers
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researches that are crucial in the early treatment and diagnosis of lung neoplasms.

For example, Yanaihara et al. [41] found that the expression of 17 miRNAs in lung

cancer cells has changed compared to normal cells through microarray analysis.

Mascaux et al. [42] also found that the expression profile of miRNAs also changed

during the entire process of lung cancer. Similarly, we sorted the final prediction

results of NEMPD according to the prediction score. Finally, 47 of the top 50 miR-

NAs were verified to be related to lung neoplasms by the dbDEMC and miR2Di-

sease databases (see Table 6).

Conclusion
The prediction of potential miRNA-disease associations by using computational

models addresses the disadvantages of high time-consuming and cost of traditional

methods, and provides data support for traditional experimental researches. In this

article, we proposed a novel computational model (NEMPD) by constructing a het-

erogeneous miRNA-protein-disease network based on known miRNA-protein and

protein-disease associations and utilizing the GraRep network embedding method

Table 4 The top 50 miRNAs associated with colon neoplasms were predicted by NEMPD. The top
1–25 associated miRNAs were shown in the first column. The top 26–50 associated miRNAs were
shown in the third column

miRNA Evidence miRNA Evidence

hsa-mir-20a-5p dbDemc hsa-mir-128-3p Unconfirmed

hsa-mir-146a-5p dbDemc hsa-mir-125b-5p dbDemc

hsa-mir-93-5p dbDemc hsa-mir-122-5p dbDemc

hsa-mir-150-5p dbDemc hsa-mir-107 dbDemc;miR2Disease

hsa-mir-1-3p dbDemc hsa-mir-106b-5p dbDemc

hsa-mir-429 dbDemc hsa-mir-106a-5p dbDemc

hsa-mir-133b dbDemc;miR2Disease hsa-mir-98-5p dbDemc

hsa-mir-34a-5p dbDemc hsa-let-7 g-5p dbDemc

hsa-mir-326 dbDemc hsa-let-7c-5p dbDemc

hsa-mir-96-5p dbDemc hsa-let-7a-5p dbDemc

hsa-mir-29b-3p dbDemc hsa-mir-17-5p dbDemc;miR2Disease

hsa-mir-26a-5p dbDemc hsa-mir-138-5p dbDemc

hsa-mir-24-3p dbDemc hsa-mir-20b-5p dbDemc

hsa-mir-21-5p dbDemc hsa-mir-216a-5p dbDemc

hsa-mir-206 dbDemc;miR2Disease hsa-mir-182-5p dbDemc

hsa-mir-204-5p dbDemc hsa-mir-28-5p dbDemc

hsa-mir-195-5p dbDemc hsa-mir-125a-5p dbDemc

hsa-mir-181c-5p dbDemc hsa-mir-224-5p dbDemc

hsa-mir-181b-5p dbDemc hsa-mir-424-5p dbDemc

hsa-mir-181a-5p dbDemc hsa-mir-7-5p Unconfirmed

hsa-mir-16-5p dbDemc hsa-mir-140-5p dbDemc

hsa-mir-15b-5p dbDemc hsa-mir-18b-5p dbDemc

hsa-mir-15a-5p dbDemc hsa-mir-18a-5p dbDemc

hsa-mir-155-5p dbDemc hsa-mir-135a-5p dbDemc

hsa-mir-145-5p dbDemc hsa-mir-34c-5p dbDemc
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to obtain network behavior information (association information with proteins) of

miRNA and disease. After that, their intrinsic attribute and behavior information

are combined into the final node feature vectors. Finally, the converted known

miRNA-disease pairs are used for training and prediction by the random forest

classifier. In the results, NEMPD obtained the average AUC and AUPR values of

0.9158 and 0.9233 under 5-fold cross-validation. Moreover, we also verified colon

neoplasms, breast neoplasms, and lung neoplasms for case studies, and respectively

confirmed 48, 47, and 47 miRNAs in the top 50 prediction results. All the experi-

mental results proved that NEMPD can effectively predict potential miRNA-disease

associations and can also be extended to other biological small molecule associ-

ation prediction researches.

Methods
Construct the miRNA-protein-disease association network

The miRNA-protein-disease association network is constructed by combining the

known miRNA-protein and protein-disease associations. More specifically, the miRNA-

Table 5 The top 50 miRNAs associated with breast neoplasms were predicted by NEMPD. The top
1–25 associated miRNAs were shown in the first column. The top 26–50 associated miRNAs were
shown in the third column

miRNA Evidence miRNA Evidence

hsa-mir-20a-5p dbDemc hsa-mir-155-5p dbDemc

hsa-mir-503-5p dbDemc hsa-mir-18a-5p dbDemc

hsa-mir-93-5p dbDemc hsa-mir-145-5p dbDemc

hsa-mir-9-5p dbDemc hsa-mir-128-3p dbDemc

hsa-mir-661 dbDemc;miR2Disease hsa-mir-125b-5p dbDemc

hsa-mir-532-5p dbDemc hsa-mir-122-5p Unconfirmed

hsa-mir-429 dbDemc;miR2Disease hsa-mir-107 dbDemc;miR2Disease

hsa-mir-34b-5p dbDemc hsa-mir-106b-5p dbDemc

hsa-mir-424-5p dbDemc hsa-mir-106a-5p dbDemc

hsa-mir-326 dbDemc hsa-mir-100-5p dbDemc

hsa-mir-7-5p dbDemc hsa-let-7 g-5p dbDemc

hsa-mir-29b-3p dbDemc hsa-let-7c-5p dbDemc

hsa-mir-26a-5p dbDemc hsa-let-7a-5p Unconfirmed

hsa-mir-140-5p dbDemc hsa-mir-184 dbDemc;miR2Disease

hsa-mir-21-5p dbDemc hsa-mir-17-5p dbDemc;miR2Disease

hsa-mir-206 dbDemc;miR2Disease hsa-mir-138-5p Unconfirmed

hsa-mir-204-5p dbDemc hsa-mir-20b-5p dbDemc

hsa-mir-199b-5p dbDemc hsa-mir-324-5p dbDemc

hsa-mir-195-5p dbDemc hsa-mir-135a-5p dbDemc

hsa-mir-181c-5p dbDemc hsa-mir-34c-5p dbDemc

hsa-mir-181b-5p dbDemc hsa-mir-182-5p dbDemc

hsa-mir-181a-5p dbDemc hsa-mir-520 h dbDemc

hsa-mir-16-5p dbDemc hsa-mir-28-5p dbDemc

hsa-mir-15b-5p dbDemc hsa-mir-125a-5p dbDemc

hsa-mir-15a-5p dbDemc hsa-mir-224-5p dbDemc
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protein and protein-disease associations are respectively obtained from the miRTarBase

[43] and DisGeNET database [44]. After that, we unified identifiers and simplified unre-

lated items. Finally, a total of 4944 groups of miRNA-protein associations and 25,087

groups of protein-disease associations were acquired (see Table 7). In addition, we fur-

ther classified the three types of nodes in the network and separately calculate the

number of them. Finally, 271 miRNA nodes, 1147 protein nodes and 693 disease nodes

were respectively got (see Table 8).

Numerical miRNA sequence information

In this work, the numerical miRNA sequence information derived from the miR-

base [45] database was used as its own attribute information. At the same time,

considering the simplicity of the experiment, we choose the 3-mer method to en-

code the miRNA sequences into 64(4 × 4 × 4) dimension vectors, where each di-

mension means the occurrence rate of the corresponding 3-mer of miRNA

sequences (e.g. UGA, AGC, CUA).

Table 6 The top 50 miRNAs associated with lung neoplasms were predicted by NEMPD. The top
1–25 associated miRNAs were shown in the first column. The top 26–50 associated miRNAs were
shown in the third column

miRNA Evidence miRNA Evidence

hsa-mir-20a-5p dbDemc hsa-mir-145-5p dbDemc

hsa-mir-146a-5p Unconfirmed hsa-mir-128-3p dbDemc

hsa-mir-93-5p dbDemc hsa-mir-125b-5p dbDemc

hsa-mir-9-5p dbDemc hsa-mir-122-5p Unconfirmed

hsa-mir-429 dbDemc;miR2Disease hsa-mir-107 dbDemc

hsa-mir-34b-5p dbDemc hsa-mir-106b-5p dbDemc

hsa-mir-34a-5p dbDemc hsa-mir-106a-5p dbDemc

hsa-mir-326 dbDemc hsa-mir-100-5p dbDemc

hsa-mir-31-5p dbDemc hsa-let-7 g-5p dbDemc

hsa-mir-29b-3p dbDemc hsa-let-7c-5p dbDemc

hsa-mir-26a-5p dbDemc hsa-let-7a-5p dbDemc

hsa-mir-24-3p dbDemc hsa-mir-184 dbDemc

hsa-mir-21-5p dbDemc hsa-mir-17-5p dbDemc;miR2Disease

hsa-mir-206 dbDemc hsa-mir-138-5p dbDemc

hsa-mir-204-5p dbDemc hsa-mir-140-5p dbDemc

hsa-mir-199b-5p dbDemc hsa-mir-324-5p dbDemc;miR2Disease

hsa-mir-195-5p dbDemc hsa-mir-942-5p dbDemc

hsa-mir-181c-5p dbDemc hsa-mir-182-5p dbDemc

hsa-mir-181b-5p dbDemc hsa-mir-520 h dbDemc

hsa-mir-181a-5p dbDemc hsa-mir-28-5p dbDemc

hsa-mir-16-5p dbDemc hsa-mir-125a-5p dbDemc;miR2Disease

hsa-mir-15b-5p dbDemc hsa-mir-224-5p dbDemc

hsa-mir-15a-5p dbDemc hsa-mir-503-5p dbDemc

hsa-mir-155-5p Unconfirmed hsa-mir-424-5p dbDemc

hsa-mir-153-3p dbDemc hsa-mir-7-5p dbDemc
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Disease semantic similarity

Disease semantic similarity has been widely used in the identification of disease-related

miRNAs, and its effectiveness has been fully proved in a large number of previous stud-

ies [46–50]. Therefore, we choose to use disease semantic similarity to represent the at-

tribute information of disease and calculate it based on its direct acyclic graphs (DAGs)

and MeSH descriptors. For example, disease C can be described as DAG(C) = (D(C),

E(C)), where D(C) is composed of the disease itself and its ancestor, and E(C) is com-

posed of all edges from the parent node to the child node. Figure 7 below shows the

DAG of lung neoplasms.

In traditional calculation models [46], disease terms at the same layer contribute the

same semantic value to diseases. In fact, it is inaccurate to assign the same contribution

value to two disease items on the same layer because they appear differently in the

DAGs. In this article, we calculate the contribution of disease to the semantic value of

disease C based on the assumption that the more specific diseases should contribute

more to the semantic value of disease C. In this way, the contribution of a disease d to

DAG(C) can be defined as follows:

CC dð Þ ¼ 1 if d ¼ C

CC dð Þ ¼ max Δ�CC d
0� �
jd0

∈children of d
n o

if d≠C

(
ð1Þ

where Δ is the semantic contribution factor. Therefore, the semantic value of disease C

can be obtained by adding the contributions of all ancestor diseases and disease d itself:

C Cð Þ ¼
X

d∈DAG Cð ÞCC tð Þ ð2Þ

Besides, the semantic similarity between disease A and disease B can be obtained by

adding together the contributions of disease terms shared by the two disease DAGs:

SS A;Bð Þ ¼
P

d∈D Að Þ∩D Bð Þ CA dð Þ þ CB dð Þð Þ
C Að Þ þ C Bð Þ ð3Þ

GraRep network embedding model

In many practical problems, information is usually organized using graphs, so it is

important to learn useful information from graphs. One strategy for learning graph

Table 7 The associations in the miRNA-protein-disease network

Association type Database Amount

miRNA-protein miRTarBase 4944

protein-disease DisGeNET 25,087

Total N/A 30,031

Table 8 The nodes in the miRNA-protein-disease network

Node Amount

MiRNA 271

Disease 693

Protein 1147

Total 2111
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representations is that each node of the graph is represented by a low-dimensional

vector, which contains meaningful semantic, relational, and structural information.

GraRep [30] is one of these network embedding models for learning vector repre-

sentations of weighted graph nodes. It utilizes low-dimensional vectors to represent

the node vectors which appear in the graph, and integrate the global structure in-

formation of the graph into the learning process. By operating different global

transformation matrices defined in the graph, GraRep can directly obtain the k-

order relation information between nodes without involving a slow and compli-

cated sampling process. Besides, different loss functions are used to capture differ-

ent k-order local relation information, and matrix decomposition technology is

used to optimize each model. In this way, the global representation of each vertex

is constructed by combining different representations obtained from different

models. This learned global representation can be used as a feature for further pro-

cessing. More specifically, the basic steps of the whole algorithm are as follows:

Step 1. Get k-step transition probability matrix Ak, where k = 1,2...K.

Given the graph G, we can calculate the k-step transition probability matrix Ak by the

product of the inverse of the degree matrix D and the adjacent matrix S (for weighted

graphs, S is a real matrix; for unweighted graphs, S is a binary matrix).

Fig. 7 The DAGs of lung neoplasms. DAGs represents direct acyclic graphs
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Step 2. Get each k-step representation.

Get the k-step log probability matrix Xk, and minus the log(β) of each term,

and replace the negative terms with 0. Then, construct the row representation

vector of Wk. Finally, the k-step representation of each node in the graph was

obtained.

Step 3. Connect all k-step representations.

All the k-step representations are linked together to form a global representation,

which can be used as features in other tasks.

Table 9 describes the whole algorithm in detail.

Node representation

In order to improve the accuracy of the training results, we added the attribute in-

formation on the basis of the network behavior information of miRNAs and dis-

eases to represent the final feature information of known miRNA-disease training

pairs. Among them, the network behavior information of miRNA and disease

nodes is extracted based on the miRNA-protein-disease network and the GraRep

Table 9 The GraRep overall algorithm

GraRep Algorithm

Input

Adjacency matrix S on graph

Maximum transition step K

Log shifted factor β

Dimension of representation vector d

1. Get k-step transition probability matrix Ak

Compute A = D−1S

Calculate A−1, A−2, A−3, …, Ak, respectively

2. Get each k-step representations

For k = 1 to K

2.1 Get positive log probability matrix

calculate Гk1; Г
k
2; Г

k
3;…; ГkN (Гki ¼

P
pA

k
p; j ) respectively

calculate fXk
i; jg

Xk
i; j = log (

Aki; j
Гkj

) – log(β)

assign negative entries of Xk to 0

2.2 Construct the representation vector Wk

SVD(Xk) = [Uk, ∑k, (Vk)T]

Wk ¼ Uk
d ð

Pk
dÞ

1
2

End for

3. Concatenate all the k-step representations

W= [W1, W2, W3, …Wk]

Output

Matrix of the graph representation W
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network embedding method. After that, we respectively select the sequence feature

and semantic similarity information as the attribute feature of miRNA and disease.

Finally, the known miRNA-disease training pairs are transformed into a 128-

dimensional feature vector for training and prediction by using a random forest

classifier.
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