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Marchantia polymorpha L. ethanol extract 
induces apoptosis in hepatocellular carcinoma 
cells via intrinsic‑ and endoplasmic reticulum 
stress‑associated pathways
Fangfang Zhou†, Adila Aipire†, Lijie Xia, Xierenguli Halike, Pengfei Yuan, Mamtimin Sulayman, 
Weilan Wang*   and Jinyao Li* 

Abstract 

Background:  Marchantia polymorpha L. is a kind of Chinese herbal medicine and has various biological activities 
including antioxidant and antifungal. However, it is not clear about the antitumor effect and mechanism of M. poly-
morpha. We prepared M. polymorpha ethanol extract (MPEE) and investigated its antitumor effect on hepatocellular 
carcinoma cells both in vitro and in vivo.

Methods:  The viability of hepatocellular carcinoma cells was detected by MTT assay. The distribution of cell cycle 
was analyzed by propidium iodide (PI) staining. The morphology of nuclei was observed by Hoechst 33258 stain-
ing. Apoptosis was detected by Annexin V/PI staining. JC-1 fluorescent probe and DCFH-DA were used to detect the 
mitochondrial membrane potential (ΔψM) and the level of reactive oxygen species (ROS), respectively. Caspase inhibi-
tors were used to test the function of caspase in the induction of apoptosis. Quantitative real time polymerase chain 
reaction (qRT-PCR) and Western blot were used to evaluate the levels of mRNA and protein, respectively. Differentially 
expressed genes and signaling pathways were identified by transcriptome analysis. The H22 tumor mouse model was 
used to detect the antitumor effect of the extract.

Results:  MPEE significantly suppressed the migration and growth of BEL-7404, HepG2 and H22 cells in a dose- and 
time-dependent manner through induction of apoptosis characterized by chromosomal condensation and cell cycle 
arrest at G0/G1 and G2/M phases. MPEE induced mitochondria-dependent apoptosis via upregulation of Bax and 
downregulation of Bcl-2 to reduce mitochondrial membrane potential and increase the release of cytochrome c. The 
levels of cleaved caspase-8 and -9 were significantly increased, which sequentially activated caspase-3 to cleave PARP. 
We further found that MPEE significantly increased ROS production and activated endoplasmic reticulum (ER) stress 
associated-apoptotic signaling pathway. Moreover, MPEE significantly inhibited H22 tumor growth in mouse model 
and improved the survival of tumor mice.

Conclusion:  These results suggested that MPEE suppressed hepatocellular carcinoma cell growth through induction 
of apoptosis via intrinsic- and ER stress-associated pathways.
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Introduction
Liver cancer is the sixth most commonly diagnosed 
cancer and the fourth leading cause of cancer death 
worldwide in 2018, with about 841,000 new cases and 
782,000 deaths annually [1]. About 90% of primary 
liver cancers are hepatocellular carcinoma (HCC) that 
causes a major global health problem [2]. The pattern of 
HCC occurrence shows a large geographical imbalance, 
with the highest incidence rates in East Asia (more than 
50% of the cases occurring in China) [3]. Due to lack 
of early screening methods, most of patients with HCC 
were at the advanced stage when they were diagnosed, 
which led to the poor prognosis. Although a multitude 
of chemotherapy and targeted therapy agents have been 
evaluated for the treatment of advanced HCC, such 
as sorafenib [4, 5], regorafenib [6], and lenvatinib [7], 
the overall survival benefits are modest. Therefore, the 
innovative drugs and approaches need to be developed.

Natural products with various structures and biologi-
cal activities are the treasure of resources for the devel-
opment of new drugs for cancer treatment. Recently, 
bryophytes attract lots of interests because they have 
various biological activities. Many active components 
including acetogenins, terpenoids and bisbibenzyls 
have been identified from bryophytes [8] and show dif-
ferent activities, such as antifungal [9], antibacterial [10, 
11], antiviral [12], anti-inflammatory [13, 14] and anti-
oxidative [15, 16]. Marchantia polymorpha L., a kind 
of traditional Chinese medicine, distributes worldwide 
and exhibits antioxidant and antifungal functions [16, 
17]. It has been reported that Marchantin A from M. 
polymorpha can inhibit the growth of human MCF-7 
breast cancer cells, and increase the levels of cleaved 
caspase-8, cleaved caspase-3, cleaved caspase-9, and 
cleaved poly (ADP ribose) polymerase (PARP) [18, 19]. 
Riccardin D from M. polymorpha can be used to treat 
lung cancer as a DNA topo II inhibitor [20]. However, 
few research has been done on the anti-hepatoma effect 
of M. polymorpha.

In this study, we prepared M. polymorpha ethanol 
extract (MPEE) and investigated its antitumor effect 
and mechanism on HCC. We found that MPEE sig-
nificantly inhibited the growth of HCC cells including 
BEL-7404, HepG2 and H22 cells through induction of 
intrinsic- and endoplasmic reticulum (ER) stress-asso-
ciated apoptosis.

Materials and methods
Measurement of flavonoids and polysaccharides in MPEE
M. polymorpha was collected from Altay in Xinji-
ang Uygur Autonomous Region, China. MPEE was 
prepared according to our previous procedure [21]. 
Specifically, 100  g powders of M. polymorpha were 
extracted three times using 2 L of 100% ethanol. After 
centrifugation at 6000 rpm for 15 min, the supernatant 
was evaporated and freeze-dried using a Freezone 2.5 
instrument (Labconco, USA). MPEE was dissolved in 
DMSO and the contents of flavonoids and polysaccha-
rides were detected according to previous description 
[22].

Characterization and quantification of MPEE 
by LC‑QTOF‑MS/MS
50  mg of MPEE were applied to extraction procedure, 
and extracted with 800 μL of methanol included inter-
nal standard (2.8  mg/mL, dl-o-Chlorophenylalanine). 
And all samples were grinded to fine powder using 
Grinding Mill at 65 Hz for 90 s. Then the samples were 
ultrasonicated for 30  min, by 40  kHz and let stand 
for 1  h at −  20  °C. The samples were centrifuged at 
12,000 rpm and 4 °C for 15 min. 200 μL of supernatant 
was transferred to vial for LC–MS analysis.

Phytochemical characterization of MPEE was con-
ducted using a quadrupole time-of-flight mass spec-
trometer (Agilent, 1290 Infinity LC, 6530 UHD and 
Accurate-Mass Q-TOF/MS), which was coupled with 
an ultraperformance liquid chromatography system 
(Waters ACQUITY UPLC, Waters Corp., Milford, MA, 
USA). Chromatographic separation was achieved using 
an ODS C18 analytical column (2.5  μm × 210  mm, 
Waters ACQUITY UPLC@HSS T3). MS conditions 
were as follows: the scan range was set at  m/z  100–
1000. The capillary voltage was 4000 V in positive mode 
and 3.5  kV in negative mode, the drying gas flow was 
11 L/min and the temperature was 350 ℃. The nebu-
lizer pressure was set to 45 psi, the fragmentor voltage 
was set to 120  V and the skimmer voltage was set to 
60  V. The column was kept at 40 ℃, and the flow rate 
was 0.4 mL/min. The mobile phase solutions consisted 
of (A) formic acid (0.1%) and (B) acetonitrile: 0.1% for-
mic acid (1:1, v/v). The gradient program was as fol-
lows: 0–2 min, 5% B; 2–13 min, 5% B; 13–16 min, 95% 
B; 16 min, 95% B. All samples were kept at 4 ℃ during 
the analysis. The injection volume was 4 μL.
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The data was performed feature extraction and pre-
processed with XCMS in R software, and then normal-
ized and edited into two-dimensional data matrix by 
Excel 2010 software, including Retention time (RT), 
Mass-to-charge ratio (MZ), Observations (samples) 
and peak intensity.

Animals and ethics statement
Kunming male mice aged 6–8  weeks were housed in a 
temperature-controlled, light-cycled animal facility of 
Xinjiang University. These animal studies were author-
ized by the Committee on the Ethics of Animal Experi-
ments of Xinjiang Key Laboratory of Biological Resources 
and Genetic Engineering (BRGE-AE001) and carried out 
in strict accordance with the guide of the Animal Care 
and Use Committee of College of Life Science and Tech-
nology, Xinjiang University. All surgery was performed 
under sodium pentobarbital anesthesia, and all efforts 
were made to minimize suffering.

Cell lines and cell culture
The murine HCC H22 cells, human HCC HepG2 and 
BEL-7404 cells and the mouse liver NCTC1469 cells were 
obtained from the Xinjiang Key Laboratory of Biological 
Resources and Genetic Engineering, Xinjiang University 
(Urumqi, Xinjiang, China). RPMI 1640 medium (Gibco) 
was used to culture H22 and BEL-7404 cells, and Dulbec-
co’s Modified Eagle medium (Gibco) was used to culture 
HepG2 and NCTC1469 cells. These media were supple-
mented with 10% heat-inactivated fetal bovine serum 
(MRC), 1% L-glutamine (100 mM), 100 U/mL penicillin 
and 100 μg/mL streptomycin. All cells were incubated at 
37 °C in a humidified atmosphere of 5% CO2.

MTT assay and cell morphology observation
The inhibitory effects of MPEE on the growth of H22, 
HepG2, BEL-7404 and NCTC1469 cells were measured 
by MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-
tetrazolium bromide] (Sigma, MO, USA) assay accord-
ing to our previous description [21]. Briefly, H22, HepG2, 
BEL-7404 and NCTC1469 cells at the density of 5 × 104 
cells/mL were seeded in 96-well plates and cultured over-
night. Cells were treated with different concentrations (0, 
25, 50, 70, 100 or 200 μg/mL) of MPEE for 24 h or 48 h. 
DMSO (0.6%) and cisplatin (30  μg/mL) were used as 
negative or positive controls, respectively. Six wells were 
repeated for each treatment. Splenocytes (1 × 106 cells/
mL) from C57BL/6 mice were seeded in 96-well plates 
and treated with different concentrations of MPEE for 
24 h and 48 h. The relative cell viability was determined 
as: Cell viability (%) = (ODtreated/ODuntreated) × 100%.

After treatment with MPEE for 24 h and 48 h, the mor-
phology of H22 cells was observed by inverted fluores-
cence microscope (Nikon Eclipse Ti-E, Japan).

Detection of cell cycle
H22 cells were inoculated in 60 mm culture dishes at the 
density of 5 × 104 cells/mL and treated with different con-
centrations of MPEE for 24 h. Cells were harvested and 
fixed with 70% ethanol at 4  °C overnight. After washing 
with cold PBS, cells were stained with propidium iodide 
(PI)  as described [23]. Samples were analyzed by flow 
cytometry (BD FACSCalibur, CA, USA) and the cell cycle 
distribution was analyzed using ModFit LT 3.0 software.

Analysis of cell apoptosis
H22, BEL-7404 and HepG2 cells were treated with dif-
ferent concentrations of MPEE for 24 h and stained with 
apoptosis detection kit (YEASEN, China) according to 
the manufacturer’s instructions. DMSO and cisplatin 
were used as negative and positive controls, respectively. 
For the inhibitor experiment, H22 cells were pretreated 
with 15  μM Z-VAD-FMK and 20  μM Ac-DEVD-CHO 
(Beyotime, China) for 2  h, then treated with MPEE for 
24 h. Samples were analyzed by flow cytometry.

Hoechst 33258, JC‑1 and DCFH‑DA staining
H22 cells were seeded in 6-well plate at the density of 
5 × 104 cells/mL. After 60% ~ 70% confluence, the cells 
were treated with MPEE for 24 h. The cells were collected 
and fixed with 4% ice-cold Paraformaldehyde at 4 °C for 
10 min. After washing with PBS, H22 cells were stained 
with Hoechst 33258, JC-1 dye or 2,7 dichlorodihydro-
fluoresc-ein diacetate (DCFH-DA) (Beyotime, China) as 
previously described [23]. Samples were observed by an 
inverted fluorescence microscopy (Nikon, Japan) or ana-
lyzed by flow cytometry.

Migration in vitro
The migration of H22 cells in vitro was tested by wound 
healing assay as described [24]. H22 cells (2.5 × 104/well) 
were seeded in a 24-well plate. A vertical wound with 
uniform size was scratched through the center of each 
well using a 200 μL pipette tip. After treatment with 
MPEE for 24  h and 48  h, the average distances of cell 
migration were analyzed by Image J.

Western blot
The antibodies against caspase-9, Bax, Bcl-2, PERK, 
eIF2α and ATF6, the phosphorylation antibodies of 
PERK and eIF2α, anti-mouse IgG-HRP and anti-rabbit 
IgG-HRP were purchased from BBI Life Sciences (Shang-
hai, China). The antibodies against caspase-3, caspase-8, 
PARP, cytochrome c and β-actin were obtained from Cell 
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Signaling Technology (Danvers, MA, USA). The anti-
bodies against CHOP, cyclinB1, cdk2 and cyclin D1were 
bought from Beyotime (Shanghai, China).

After treatment with MPEE for 24  h, total protein of 
H22 cells was isolated by RIPA Lysis Buffer (Beijing Com-
Win Biotech Co., Ltd) and the protein concentration was 
detected by the bicinchoninic acid assay kit (Thermo 
Fisher Scientific, USA) according to the manufacturer’s 
instructions. Equal amount of proteins were separated on 
12% SDS-PAGE and then transferred onto PVDF mem-
brane. The membrane was blocked with TBST buffer 
(20 mmol/L Tris–HCl, 150 mmol/L NaCl, 0.05% Tween 
20) contained 5% skim milk for 1 h at room temperature, 
and incubated with primary antibodies overnight at 4 °C 
on a gentle shaker. After washing with TBST buffer three 
times, the membrane was incubated with secondary anti-
bodies for 2 h. The target proteins were visualized using a 
commercial ECL kit (Beyotime).

Quantitative RT‑PCR (qRT‑PCR)
H22 cells were treated with MPEE for 24  h and the 
total RNA was extracted by TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 

protocol. Reverse transcription and quantitative PCR 
were carried out using reverse transcriptase M-MLV 
(Takara, China) and TransStart Tip Green qPCR Super-
Mix Kit (TransGen Biotech, China), respectively. The 
gene-specific primers were shown in Table 1.

Tumor mouse study
Kunming male mice were subcutaneously injected with 
H22 cells (1 × 106 cells/mice) into the right flank and 
randomly divided into 5 groups (8 mice/group). After 
6 days, tumor mice were intraperitoneally treated with 
MPEE (50 mg/kg or 100 mg/kg in 0.1 mL DMSO) every 
two days for 10 times. Cisplatin (5  mg/kg) was intra-
peritoneally injected every three days for 7 times and 
0.1  mL PBS was intraperitoneally injected every two 
days for 10 times, which were used as positive and neg-
ative controls, respectively. Tumor sizes were measured 
using calipers and calculated according to the following 
formula: tumor volume (mm3) = (length × width2)/2. 
On day 57, the survival rates of tumor mice in each 
group were calculated with Prism 5.

Table 1  The gene-specific primers

Gene Primer sequences (5′–3′)

GAPDH F: AGC​CTC​GTC​CCG​TAG​ACA​ R: CTC​GCT​CCT​GGA​AGA​TGG​

Srp72 F: GAG​GGG​TCG​ACA​TTG​CTC​TC R: GCC​AGT​TAA​AGA​CCT​CCC​CC

Srp14 F: GCA​AAC​CAG​CAC​AGT​GAC​AG R: ACA​ACT​AGC​CCA​AGC​CCA​TC

Srprb F: TCA​GCT​CCT​GTT​GTG​TCA​CC R: ATG​CAG​CGA​TCT​GTA​GGC​TC

Srpr F: AGA​GCC​TTG​GCT​GAC​CAT​TC R: GCC​AGT​ACC​CAC​AAA​GAC​GA

Srp68 F: CCA​AAC​AAG​CCA​ACC​TCG​TG R: TGC​CCT​TGA​TGT​AGC​CTG​TG

Srp19 F: TGC​TCA​GCA​GTT​GGA​CTG​AAT​ R: TTG​CTG​AAG​ACT​TGG​GTC​GG

Wfs1 F: GGA​AAC​TAA​CAT​GGC​CCG​GA R: TCC​AAT​CGC​CCA​GGA​AGA​AC

Atf6 F: AAG​GGT​CAA​CCA​GGG​ATA​CG R: AAA​CAC​CCA​CAA​GCC​ACA​GG

Gadd34 F: GAG​AAG​ACC​AAG​GGA​CGT​GG R: TCG​ATC​TCG​TGC​AAA​CTG​CT

Hspa5 F: GTG​TGT​GAG​ACC​AGA​ACC​GT R: TAG​GTG​GTC​CCC​AAG​TCG​AT

Rpl22l1 F: ATG​GCG​CCG​CAG​AAA​GAC​A R: GAC​CAC​ACG​TAG​CCA​ATC​ACG​

Rps29 F: AGC​CGA​CTC​GTT​CCT​TTC​TC R: TTC​AGC​CCG​TAT​TTG​CGG​AT

Rpl13a F: CGG​CTG​AAG​CCT​ACC​AGA​AA R: GGA​GTC​CGT​TGG​TCT​TGA​GG

Cyclin B1 F: AAG​GCC​AAG​GTC​AGT​ATG​GC R: CTC​AGG​CTC​AGC​AAG​TTC​CA

Cyclin D1 F: AGG​CAG​CGC​GCG​TCA​GCA​GCC​ R: TCC​ATG​GCG​CGG​CCG​TCT​GGG​

Cdk2 F: CAC​AGG​GCT​TGC​ACG​TCA​CT R: TGT​CTC​CTG​GCC​TGC​ATC​AC

Ddit3 F: GCA​GCG​ACA​GAG​CCA​GAA​TA R: ATG​TGC​GTG​TGA​CCT​CTG​TT

Cdc25b F: ATC​CTT​ACC​AGT​GAG​GCT​GC R: CTC​TGG​AAG​CGC​ACA​TTC​TC

Mcm4 F: CAA​GGT​TCA​ACC​AGG​GGA​CA R: ATG​CAG​ACG​TTT​TGC​ATC​CG

Mcm2 F: AGA​AGT​TCA​GCG​TCA​TGC​GGA​GTA​ R: CCC​AAA​GCG​GTT​GCG​TTG​ATA​TGT​

Cdk1 F: AAG​TGT​GGC​CAG​AAG​TCG​AG R: AAA​GTA​CGG​GTG​CTT​CAG​GG

Gadd45α F: CTG​CAG​AGC​AGA​AGA​CCG​AA R: GCA​GGC​ACA​GTA​CCA​CGT​TA

Bax F: GCC​TCC​TCT​CCT​ACTTC​ R: CCT​CAG​CCC​ATC​TTCTT​

Bcl-2 F: CAC​TTG​CCA​CTG​TAG​AGA​ R: GCT​TCA​CTG​CCT​CCTT​
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Statistical analysis
Statistical significance was calculated by one-way analysis 
of variance. All data were expressed as the mean ± stand-
ard error of the mean (SEM). p < 0.05 was considered sta-
tistically significant.

Results
MPEE reduced the viability of HCC cells
MPEE contained 42.5% of polysaccharides and 5.6% of 
flavonoids. The inhibitory effect of MPEE on the prolif-
eration of HCC cells was determined by inverted micro-
scope and MTT assay. After treatment with different 
concentrations (0, 25, 50, 75 and 100  μg/mL) of MPEE 
and cisplatin for 24 and 48 h, H22 cells showed small and 
round morphology, and cell numbers were enormously 
decreased (Fig.  1A). Compared to untreated cells, the 
viability of H22 cells was dose- and time-dependently 
decreased and the IC50 values were 53.5 μg/mL at 24 h 
and 30.8 μg/mL at 48 h (Fig. 1B, C). Moreover, the viabil-
ity of BEL-7404 and HepG2 cells was also dose-depend-
ently reduced by MPEE treatment and the IC50 values 
for BEL-7404 and HepG2 cells were 108.4  μg/mL and 
118.4 μg/mL at 24 h, respectively (Fig. 1D, E). Although 
MPEE reduced the viability of normal liver NCTC1469 
cells, the IC50 value (168.9 μg/mL) is much higher than 
that of HCC cells (Fig. 1F). Moreover, the effect of MPEE 
on the viability of murine splenocytes was also detected. 
We found that MPEE had low cytotoxic effect on sple-
nocytes (Fig. 1G). The results suggested that MPEE sig-
nificantly reduced the viability of HCC cells with low 
cytotoxicity on normal cells.

MPEE induced cell cycle arrest in H22 cells
The nuclear morphology of H22 cells was further 
detected using Hoechst 33258 staining after treatment 
with MPEE for 24  h. The nuclei of MPEE-treated cells 
showed chromatin condensation and fragmentation, 
while the nuclei of untreated cells showed homogeneous 
staining (Fig. 2A). To investigate whether MPEE induces 
cell cycle arrest in H22 cells, cells were treated with dif-
ferent concentrations (0, 25, 50 and 75 μg/mL) of MPEE 
for 24 h and stained with PI. As shown in Fig. 2B, C, cell 
cycle was arrested at G0/G1 phase upon low concentra-
tion of MPEE treatment, while it was arrested at G2/M 
phase upon high concentrations of MPEE treatment. 
The proportions of sub-G1 cells were also significantly 
increased in a dose-dependent manner.

The expression of cell cycle-related genes was analyzed 
by transcriptome analysis and verified by qRT-PCR. After 
treatment with 75  μg/mL MPEE for 24  h, total RNA 
was isolated to carry out transcriptome analysis. Most 
genes related to cell cycle were down-regulated except 
Gadd45α and Sfn (Fig. 2D). qRT-PCR was used to verify 

the expression of Cdk2, Cyclin D1, Cdk1, Mcm2, Mcm4, 
Cyclin B1, Cdc25b and Gadd45α, which was consistent 
with transcriptome analysis (Fig.  2E). The protein levels 
of Cyclin B1, Cdk2 and Cyclin D1 were also significantly 
reduced by MPEE treatment in a dose-dependent man-
ner (Fig. 2F; Additional file 1: Fig. S1). The results showed 
that MPEE induced cell cycle arrest through regulating 
the expression of cell cycle-related genes.

MPEE induced apoptosis of HCC cells
MPEE caused the chromatin condensation and fragmen-
tation that was the characterization of apoptosis. There-
fore, the apoptosis of HCC cells was analyzed by Annexin 
V-FITC and PI staining after treatment with different 
concentrations (0, 25, 50 and 75  μg/mL) of MPEE for 
24  h. The results showed that the percentages of apop-
tosis H22 cells including early (AnnexinV+PI−) and late 
(AnnexinV+PI+) apoptosis were significantly increased 
after MPEE treatment (Fig.  3A, B). The similar results 
were observed in BEL-7404 and HepG2 cells (Fig. 3D, F). 
Although MPEE also induced necrosis (AnnexinV−PI+) 
in HCC cells (Fig.  3C, E, G), it mainly induced apopto-
sis. The results indicated that MPEE induced apoptosis of 
HCC cells.

MPEE activated mitochondria‑dependent apoptosis 
pathway
Mitochondrial membrane potential (Δψm) plays a criti-
cal role in the activation of intrinsic apoptosis pathway, 
which can be monitored by JC-1 staining. Red and green 
fluorescences represent JC-1 aggregate and monomer, 
respectively and the increase of green fluorescence indi-
cates the reduction of Δψm. H22 cells were treated with 
MPEE for 24 h and stained with JC-1 dye. We found that 
the green fluorescence in H22 cells was significantly 
enhanced by MPEE treatment (Fig.  4A, B), indicating 
that Δψm was lessened. Δψm is strictly regulated by pro-
teins of the B cell lymphoma 2 (Bcl-2) family including 
anti-apoptotic Bcl-2 and pro-apoptotic Bcl-2-associated 
X protein (Bax). Therefore, the RNA and protein levels 
of Bax and Bcl-2 were detected by qRT-PCR and West-
ern blot after MPEE treatment for 24 h. Consistently, the 
levels of Bax and Bcl-2 were increased and decreased 
at both mRNA and protein levels, respectively (Fig.  4C, 
D; Additional file  1: Fig. S1), which caused the reduc-
tion of Δψm. Depletion of Δψm leads to the release of 
cytochrome c into the cytoplasm to initiate apoptosis 
cascade [25]. After treatment with MPEE for 24 h, total 
protein of H22 cells was isolated to test the levels of 
cytochrome c by Western blot. Consistently, the levels of 
cytochrome c were greatly increased upon MPEE treat-
ment (Fig. 4C; Additional file 1: Fig. S1). We subsequently 
measured the activation of caspase cascade induced by 
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Fig. 1  Effects of MPEE on the proliferation of H22, BEL-7404, HepG2 and NCTC1469 cells and splenocytes. A After MPEE treatment for 24 h and 
48 h, the morphological changes of H22 cells were observed by inverted microscope. B–C The viability of H22 cells was measured by MTT assay 
after MPEE treatment for 24 and 48 h. D–F The viability of BEL-7404, HepG2 and NCTC1469 cells after MPEE treatment for 24 h. G The viability 
of splenocytes from C57BL/6 mice after MPEE treatment for 24 h. Data were analyzed by ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001 compared to 
untreated group
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Fig. 2  Nuclear morphology and cell cycle distribution of H22 cells upon MPEE treatment. H22 cells were treated with different concentrations 
of MPEE for 24 h. A After staining with Hoechst 33258, nuclear morphology of H22 cells was observed by inverted fluorescence microscopy. The 
arrows indicated the chromosomal condensation. B–C Cell cycle phase distribution was analyzed by flow cytometry following PI staining. D 
Heatmap of clustered cell cycle associated genes as evaluated by transcriptome analysis. E The mRNA levels of Cdk2, Cyclin D1, Gadd45α, Cdk1, 
Mcm2, Mcm4, Cyclin B1 and Cdc25b were analyzed by qRT-PCR. F The protein levels of Cyclin B1, Cyclin D1 and Cdk2 were detected by Western blot. 
Data were analyzed by ANOVA. **p < 0.01; ***p < 0.001 compared to untreated group



Page 8 of 17Zhou et al. Chin Med           (2021) 16:94 

mitochondria-dependent pathway and found that the 
levels of cleaved caspase-9 and -3 were greatly increased 
by MPEE treatment compared with the untreated con-
trol. At the same time, MPEE promoted the cleavage of 
caspase-8 (Fig. 4E; Additional file 1: Fig. S1). Sequentially, 
the upregulated level of cleaved DNA repair enzyme of 
poly (ADP-ribose) polymerase (PARP) was observed. The 
results suggested that caspase cascade was involved in 
the apoptosis induced by MPEE.

To investigate the role of caspase in the induction of 
apoptosis, H22 cells were pretreated with Z-VAD-FMK 

(FMK, a broad-spectrum caspase inhibitor) and Ac-
DEVD-CHO (CHO, a caspase 3 inhibitor), and then 
treated with MPEE. After 24  h, the apoptosis of H22 
cells was analyzed by flow cytometry. The pretreatment 
of FMK and CHO significantly decreased the apoptosis 
of H22 cells induced by MPEE (Fig. 5A–F), suggesting 
that mitochondria-dependent pathway partially medi-
ated MPEE-induced apoptosis.

Fig. 3  The apoptosis of H22, BEL-7404 and HepG2 cells induced by MPEE treatment. Different concentrations of MPEE were used to treat H22, 
BEL-7404 and HepG2 cells for 24 h. A–C The apoptosis and necrosis of H22 cells were analyzed by flow cytometry following Annexin V/PI staining. 
D–G The apoptosis and necrosis of BEL-7404 and HepG2 cells were shown. Data were analyzed by ANOVA. *p < 0.05; **p < 0.01 ***p < 0.001 
compared to untreated group
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MPEE induced reactive oxygen species (ROS) production 
and endoplasmic reticulum (ER) stress
It has been reported that ROS production was involved in 
the induction of mitochondrial dysfunction and ER stress 
[26]. We found that MPEE significantly induced ROS 
production using both flow cytometry and inverted fluo-
rescence microscopy after treatment for 24  h (Fig.  6A–
C). Consistently, the transcriptome analysis showed that 
MPEE significantly up-regulated 70 genes related to pro-
tein processing in ER and 53 genes related to Ribosome 

(Fig.  7A), suggesting that ER stress signaling pathway 
was activated. The expression of Rpl22l1, Rpl13a, Rps29, 
Srp14, Srprb, Srp19, Srp72, Srp68, Srpr, Gadd34, Wfs1, 
Ddit3, Atf6 and Hspa5 was verified by qRT-PCR, which 
was consistent with transcriptome analysis (Fig. 7B).

We further investigated whether the ER stress pathway 
was involved in apoptosis induced by MPEE in H22 cells. 
After treatment with different concentrations of MPEE 
for 24 h, the level of phosphorylated protein kinase-like 
ER kinase (p-PERK) was significantly increased (Fig. 7C; 

Fig. 4  The effects of MPEE on Δψm and caspase cascade in H22 cells. H22 cells were treated with different concentrations of MPEE for 24 h. A, B 
Cells were stained with JC-1 and the fluorescence changes were analyzed by flow cytometry. C The protein levels of Bax, Bcl-2 and cytochrome c 
were detected by Western blot. D The mRNA levels of Bax and Bcl-2 were analyzed by qRT-PCR. E The levels of cleaved-caspases and -PARP were 
detected by Western blot. Data were analyzed by ANOVA. ***p < 0.001 compared to untreated group
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Additional file  2: Fig. S2). PERK releases glucose-regu-
lated protein 78 (GRP78/BiP) and phosphorylates eukar-
yotic translation initiation factor 2 alpha (eIF2α), which 
lead to a general decrease in protein translation [27]. We 
found that the phosphorylation of eIF2α and the level of 

GPR78 were up-regulated by MPEE treatment. In addi-
tion, activating transcription factor 6 (ATF6), an ER type 
II transmembrane protein, was also up-regulated. ATF6 
entered the nucleus to activate the expression of GRP78 
and C/EBP homologous protein (CHOP) genes. We also 

Fig. 5  The effect of caspase inhibitors on apoptosis of H22 cells induced by MPEE. H22 cells were pretreated with 15 μM FMK or 20 μM CHO for 2 h, 
and then treated with MPEE. After 24 h, apoptosis and necrosis of H22 cells were analyzed by flow cytometry. FMK pretreatment was shown in A–C 
and CHO pretreatment was shown in D–F. Data were analyzed by ANOVA. *p < 0.05; ***p < 0.001 compared to untreated group
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found that MPEE significantly increased the levels of 
CHOP (Fig.  7C; Additional file  2: Fig. S2). The results 
indicated that MPEE might induce apoptosis in H22 cells 
through ER stress signaling pathway.

MPEE suppressed in vitro migration and in vivo growth 
of H22 cells
Wound healing method was used to determine the 
migration of H22 cells in  vitro. We found that MPEE 
significantly suppressed H22 cell migration in a dose-
dependent manner (Fig.  8A–C). H22 tumor mouse 
model was further used to evaluate the antitumor effect 
of MPEE. After 6 days of H22 cell injection, tumor mice 
were intraperitoneally treated with DMSO, cisplatin and 
MPEE. The body weight of mice and tumor sizes were 
monitored at indicated time points. Compared with 
untreated and DMSO groups, cisplatin significantly 
reduced the body weight but MPEE did not significantly 
change the body weight, suggesting that the selected 
doses of MPEE had no obvious side effect (Fig.  9A). 
Interestingly, the tumor growth in mice treated with 
both 50 and 100 mg/kg of MPEE was significantly inhib-
ited (Fig.  9B). Moreover, both doses of MPEE greatly 
improved the survival of tumor mice (50 mg/kg: 6 out of 
8; 100  mg/kg: 7 out of 8) compared with model groups 
(0 out of 8) at the end of the experiment (Fig. 9C). The 
results showed that MPEE suppressed H22 cell growth 
in vivo and improved the survival of tumor mice.

Qualitative and quantitative analysis of the active 
ingredients in MPEE
The MPEE was characterized by LC-Q-TOF–MS and 
compounds were identified according to mass spec-
trometry data under both negative and positive ESI 
mode (Additional file  3: Fig. S3). 67 ingredients with 
the relative content more than 100 ng were found under 
negative ESI mode, which included nine fatty Acyls, 
eight flavonoids and four benzopyrans [28–48] (Addi-
tional file 4: Table  S1). The most abundant component 
is 3,5,7-trihydroxy-2-(3-hydroxyphenyl)-4H-chromen-
4-one, which belongs to flavonoids with molecular 
weight of 286.04 and retention time of 6.74 min. Mean-
while, compound identification was performed accord-
ing to mass spectrometry data under positive ESI mode 
(Additional file 3: Fig. S3), 20 ingredients with the rela-
tive content more than 50  ng were identified under 
positive ESI mode (Additional file  5: Table  S2), which 
included two flavonoids, one isoflavonoids, two pre-
nol lipids, one kind of steroids and steroid derivatives, 
coumarins and derivatives and stilbenes [49–54]. The 
most abundant component is beta-patchoulene, which 
belongs to polycyclic hydrocarbons with molecular 
weight of 204.19 and retention time of 12.06 min.

Fig. 6  ROS production in H22 cells induced by MPEE. H22 cells were treated with different concentrations of MPEE for 24 h and stained with 
DCFH-DA. A, B Samples were analyzed by flow cytometry. C Samples were observed using inverted fluorescence microscopy. Data were analyzed 
by ANOVA. *p < 0.05; ***p < 0.001 compared to untreated group
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Discussion
Compared with conventional chemotherapeutics, natu-
ral compounds can exert potent antitumor effect with 
or without minor adverse effects [55]. A number of 

plant-derived natural products have been investigated 
for their antitumor activities [21, 23, 56]. Recently, it has 
been reported that bryophytes can induce apoptosis and 
cell cycle arrests [19, 57]. In this study, our results showed 

Fig. 7  MPEE activated ER stress in H22 cells. H22 cells were treated with MPEE for 24 h and the total RNA was isolated. A Heatmap of clustered ER 
stress-associated genes as evaluated by transcriptome analysis. B The mRNA levels for Rpl22l1, Rpl13a, Srprb, Srp19, Srpr, Gadd34, Atf6, Hspa5, Rps29, 
Srp14, Wfs1, Ddit3, Srp72 and Srp68 were analyzed by qRT-PCR. C The levels of ER stress-associated proteins were analyzed by Western blot. Data 
were analyzed by ANOVA. *p < 0.05; **p < 0.01; ***p < 0.001 compared to untreated group
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that MPEE inhibited HCC cell growth both in vitro and 
in vivo, which might induce cell cycle arrest and apopto-
sis of HCC cells through intrinsic- and ER stress-associ-
ated signaling pathways.

The antiproliferative activity of MPEE was first exam-
ined. The results showed that MPEE significantly inhib-
ited the growth of H22, HepG2 and BEL-7404 cells. 
Cellular proliferation is primarily controlled by the cell 
cycle, which consists of four sequential phases (G0/G1, S, 
G2, and M) [58]. Cyclin-dependent kinases (CDKs) and 
the cyclins are the key regulators of cell cycle transition 
[59, 60]. Cdk2 regulates the cell cycle transition from G1 
to S phase [61]. Cyclin D1 is another regulator that drives 
G1 to S phase progression and its dysregulation can be 
frequently found in human cancers including HCC [62]. 
Cyclin B is mainly involved in the completion of M phase 
[63]. In our study, we observed that low concentrations 
of MPEE treatment significantly induced H22 cell cycle 
arrest at G0/G1phase, and decreased the expression of 

Cdk2 and cyclin D1 at both levels of mRNA and pro-
tein. However, high concentrations of MPEE arrested 
H22 cells at G2/M phase with a significant decrease of 
cyclin B expression, which might be due to the differ-
ent components of MPEE to induce the cell cycle arrest 
at the different phases. Consistently, MPEE significantly 
downregulated the expression of Cdk1, which plays an 
important role in the transition from G2 to M phase [64]. 
It has been reported that Cdc25b activates Cdk1/cyclinB 
but growth arrest and DNA damage-inducible 45 alpha 
(Gadd45a) inhibits the activation of Cdk1and Cdk1-
cyclinB complex [65]. We also found that MPEE down-
regulated and upregulated the expression of Cdc25b and 
Gadd45a, respectively. The results indicated that MPEE 
suppressed the growth of HCC cells by the induction of 
cell cycle arrest.

Minichromosome Maintenance (MCM) family is 
essential for DNA replication in each cell cycle. Mcm4 
affects the DNA helicase activity of the Mcm2–7 

Fig. 8  MPEE suppressed the migration of H22 cells in vitro. H22 cells were treated with different concentrations of MPEE for 24 h and 48 h. 
The migration of H22 cells was observed by inverted microscope (A) and analyzed by Image J (B, C). Data were analyzed by ANOVA. **p < 0.01; 
***p < 0.001 compared to untreated group
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complex. Mcm2 is associated with the progression 
from cirrhosis to HCC and poor cellular differentiation. 
MCMs were significantly up-regulated in HCC [66]. We 
observed that MPEE significantly reduced the expres-
sion of Mcm2 and Mcm4, suggesting that MPEE might 
suppress the growth of HCC cells through interference 
of DNA replication. It has been reported that cyclin D1 
not only regulates the transition from G1 to S phase but 
also promotes tumor invasion and metastasis, and cyclin 
D1 deletion can reduce the migration of tumor cells [67]. 
Similarly, MPEE inhibited H22 cell migration in  vitro, 
suggesting that MPEE might inhibit tumor invasion and 
metastasis.

Apoptosis also plays a crucial role for controlling the 
proliferation of cancer cells and has been considered 
as a major route to eradicate cancer cells [68]. Both 
caspase-independent and -dependent pathways can 
account for the programmed cell death [69, 70]. Caspase-
dependent apoptosis can be induced by the intrinsic 

(mitochondria-dependent) pathway and the extrinsic 
(death receptor) pathway [71]. The loss of Δψm is the 
major characteristic of mitochondria-dependent apopto-
sis because it promotes the release of cytochrome c from 
mitochondria to cytosol and activation of caspase-9. 
We found that MPEE reduced Δψm of HCC cells and 
increased the release of cytochrome c, which activated 
caspase-9. At the same time, MPEE also activated cas-
pase-8. Therefore, both active caspase-9 and -8 might 
activate caspase-3 to degrade PARP. We further observed 
that both broad-spectrum caspase inhibitor and cas-
pase 3 inhibitor significantly reduced apoptosis induced 
by MPEE. The results indicated that MPEE induced 
apoptosis in HCC cells through both intrinsic signaling 
pathways.

ER is well known to regulate cellular responses to 
stress. Aberrant accumulation of misfolded/unfolded 
proteins, oxidative stress and Ca2+ imbalance can acti-
vate ER stress [72, 73], which is involved in the induction 
of apoptosis [74]. ER stress-associated apoptosis in can-
cer cells represents the potential target for the develop-
ment of cancer therapeutic drugs. We found that MPEE 
dramatically increased the ROS production in HCC cells, 
which might contribute to the activation of ER stress. The 
transcriptome analysis showed that a large number of up-
regulated genes including Atf6, Gadd34, Rps29, Srp14, 
Srp19, Srp72, and Srp68 were enriched in ribosome, 
protein export and ER stress-related signaling pathways 
[75]. These data suggested that MPEE induced ER stress 
in HCC cells. ER stress can activate the unfolded protein 
response (UPR), which includes PERK, ATF6 and inosi-
tol-requiring enzyme 1 (IRE1) signaling pathways [76]. 
Western blot result showed that the phosphorylation of 
PERK was up-regulated by MPEE treatment, which could 
release GRP78, phosphorylate eIF2α and increase CHOP 
to induce apoptosis [77]. Consistently, the phosphoryla-
tion of eIF2α and the levels of GPR78 and CHOP were 
up-regulated by MPEE treatment. Moreover, the RNA 
and protein levels of ATF6 were increased by MPEE 
treatment, which could enhance the expression of GPR78 
and CHOP. CHOP could promote the expression of 
GADD34 and the up-regulated expression of GADD34 
was observed upon MPEE treatment, which was involved 
in apoptosis [78]. The results indicated that MPEE 
induced apoptosis of HCC cells through ER stress sign-
aling pathway. The various components of MPEE might 
be endowed the pleiotropic effects on the induction of 
cell cycle arrest and apoptosis through different signaling 
pathways.

Cisplatin is a well-known chemotherapeutic drug. It 
has been employed for treatment of numerous human 
cancers, such as testicular, ovarian, colorectal, bladder, 
lung and liver cancer. Cisplatin exerts anticancer effects 

Fig. 9  MPEE inhibited H22 tumor growth in vivo. Tumor mouse 
model was established by injection of H22 cells. After 6 days, tumor 
mice (8 mice/group) were intraperitoneally treated with DMSO, 
cisplatin and MPEE. Body weight and tumor volumes were shown 
in A and B, respectively. C The survival rate of tumor mice was 
monitored. Data were analyzed by ANOVA. ***p < 0.001 compared to 
model group
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via multiple mechanisms including its most prominent 
ability to cross-link with DNA to block transcription and 
replication, and induce mitochondria-dependent apopto-
sis. However, cisplatin can cause severe side effects, such 
as nephrotoxicity, cardiotoxicity and gastrointestinal tox-
icity [79, 80]. In our study, MPEE significantly suppressed 
the growth of tumor and greatly improved the survival 
of tumor mice without obvious side effect. In the future 
study, we will investigate the antitumor effect of MPEE 
on the metastatic tumor mouse model.

Conclusion
MPEE suppressed the growth of HCC cells both in vitro 
and in vivo through induction of intrinsic- and ER stress-
associated apoptosis. MPEE also inhibited the migration 
of HCC cells in vitro and improved the survival of tumor 
mice. These results indicate that MPEE may be a promis-
ing candidate for the treatment of HCC.
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