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Raw Sewage Harbors Diverse Viral Populations
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ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a
small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from
virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect,
and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included vi-
ruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssSRNA [ssRNA(+)], and dsRNA ge-
nomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the
most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However,
the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific
taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater
provides a rich matrix for identifying novel viruses and for studying virus diversity.

IMPORTANCE At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are stud-
ied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge
of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important
issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal
system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw
sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that

the viral universe is far more vast and diverse than previously suspected.
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iruses are everywhere. On Earth, every species of bacteria,

archaea, fungi, plants, worms, insects, and animals is likely to
harbor numerous viruses. The presence of viruses is not limited to
sites within cellular organisms; extracellular virions are also found
in the environment. Oceans, rivers, lakes, and air all contain viri-
ons released from infected hosts. Every time we touch another
human or pet, and often when we have contact with a contami-
nated environment, we are exposed to microbes, including vi-
ruses. Metagenomic studies of the oceans (1-6), arctic lakes (7),
stool samples (8—14), and other environments (15-19) suggest
that known viruses are found in unsuspected locations and that a
large number of uncharacterized viruses exist in nature.

How big is the viral universe and how many types of viruses
exist? Current views of viral diversity are shaped by the analysis of
about 3,000 fully sequenced viral genomes representing 84 viral
families (20). Recently, powerful metagenomic strategies in which
all viruses present in an environmental or clinical sample are de-
tected by sequencing virion-associated nucleic acids have been
developed (21). Metagenomic approaches allow simultaneous
comparisons of many genomes from multiple taxa, including
those viruses that cannot be cultured. We are using metagenomics
to explore the virus populations in diverse biomes and unique
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niches throughout the world. For our initial studies, we sought an
environment, raw sewage (untreated wastewater), that we hy-
pothesized would harbor a high diversity of viruses.

Raw sewage represents the effluence of society. Human waste
from thousands of individuals is deposited into collection systems
that terminate at a common point, the wastewater treatment
plant. Pathogens excreted into urban sewage reflect the infections
that have been transmitted in the population (22) and would in-
clude the viral pathogens that are transmitted through fecally con-
taminated water or food (23, 24). The implementation of current
regulations on wastewater treatments has significantly reduced
the levels of microbiological contamination. However, human vi-
ruses are still widely disseminated in water and the environment
through discharges of untreated and treated sewage (25, 26) to
river catchments and to coastal water, water reuse in food irriga-
tion, and shellfish production (27). This mixture of water, human
and animal wastes, and plant material forms a special ecosystem
supporting insect, rodent, and plant populations as well as both
prokaryotic and eukaryotic microorganisms. Viruses are associ-
ated with the biological wastes deposited into sewage as well as
with all the species growing in sewage, making untreated waste-
water an ideal environment for exploring viral diversity. In fact,
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FIG 1 Raw sewage contains diverse viruses. (A) Raw sewage was obtained from three cities (P, Pittsburgh, Pennsylvania, United States; B, Barcelona, Spain; A,
Addis Ababa, Ethiopia) on three different continents. Virion populations were concentrated by organic flocculation (31). Raw sewage metagenomes were
obtained through pyrosequencing, and the sequences are classified by subsequent bioinformatic methods. 10 L, 10 liters; NA, nucleic acid. (Reproduced from
Google—Map data ©2011 Geocentre Consulting, MapLink, Tele Atlas.) (B) Examination of raw sewage by electron microscopy reveals a diversity of virion
morphologies. All black bars represent 100 nm, except the top bar, which represents 50 nm. (C) Total nucleic acid (DNA and reverse-transcribed RNA) was
sequenced and binned according to taxa based on BLAST searches. Most sequences found within virions do not match the sequences in public databases.

many studies have shown that multiple types of viruses can be
found in raw sewage (28-30). Here we report the results of a meta-
genomic survey of viruses present in raw sewage.

RESULTS

Untreated wastewater was collected from three different locations:
(i) Pittsburgh, Pennsylvania, United States; (ii) Barcelona, Spain;
and (iii) Addis Ababa, Ethiopia (Fig. 1A). Electron microscopy
confirmed the presence of numerous different virion morpholo-
gies in the samples (Fig. 1B). Virions were concentrated and pu-
rified by organic flocculation and DNase treatment (31). In order
to capture the genomes of both DNA and RNA viruses, total nu-
cleic acids were isolated from each sample and reverse transcribed
followed by deep sequencing. This resulted in a total of 897,647
high-quality reads (approximately 278 megabases) from all three
samples (see Table S1 in the supplemental material). Each indi-
vidual read was then compared to databases by a series of BLAST
searches and binned according to taxa (Fig. 1C). A total of 8,491
sequence reads were most closely related to eukaryotic viruses,
while 37,917 were most closely related to bacteriophages. About
27% of the sequence reads (247,363) were identified as bacterial, a
number consistent with other metagenomic studies. Since these
sequences were obtained from a purification scheme designed to
enrich for virions, the putative bacterial sequences most likely
represent either prophage genes misannotated as bacterial or gene
transfer agents (GTAs) (8, 15, 19, 32, 33). Most sequences
(596,146) showed no sequence relation to any known sequences in
the databases and thus are most likely to be derived from novel,
uncharacterized viruses. Further analysis of the bacterial and un-
assigned sequences is described in the supplementary material.
Raw sewage contains many known viruses from a diversity of
hosts. We further partitioned the individual reads that have a
significant BLAST hit (see Materials and Methods) to eukaryotic
viruses or phages into two categories: known and novel. We arbi-
trarily defined known sequences as those that are related to a viral
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genome listed in the NCBI taxonomy database with =80% se-
quence identity over =95% of the length of the sequence read. By
these criteria, 3,027 reads were deemed to be derived from known
viruses. The remaining sequences were binned as novel viruses
and are discussed below. Analysis of the sequences identified as
known viruses demonstrates that our methods detected diverse
types of viruses. We detected 234 known viruses. Members of 26
different families, including those with double-stranded DNA
(dsDNA), single-stranded DNA (ssDNA), positive-sense ssRNA
[ssRNA(+)], and dsRNA genomes, and those with either envel-
oped or nonenveloped virions were found, making raw sewage the
most diverse viral biome examined thus far (Fig. 2A; see Table S2
in the supplemental material).

Like other biomes that have been studied, the virome of raw
sewage is dominated by bacteriophages. Of the 46,408 high-
quality reads that matched viruses in the databases at this time,
37,917 (~80%) were related to bacteriophages. These viruses
included members of 13 virus families, but members of five fam-
ilies dominated the population. The five families were the Micro-
viridae (37%), Siphoviridae (24%), Myoviridae (17%), Podo-
viridae (14%), and Inoviridae (3%). These bacteriophage families
are associated with 24 bacterial host species, but over half of the
reads are related to bacteriophages that infect enterobacteria or
lactococci (Fig. 2C). The bacteriophage sequences binned as novel
viruses outnumbered those that matched bacteriophage genomes
in GenBank databases by 30:1.

Most of the known eukaryotic virus reads (90.9%) found in
raw sewage were derived from plant viruses (Fig. 2B). This is not
surprising, given that plant viruses dominate the viral communi-
ties present in human stool samples and that they have been de-
tected in a number of aquatic biomes (13, 29). Roughly 85% of the
sequence reads classified as known viruses were derived from 18
different species of the family Virgaviridae. Many other types of
plant viruses were found; they included members of the Alpha-
flexiviridae, Betaflexiviridae, Bromoviridae, Closteroviridae, sobe-
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FIG 2 Raw sewage contains many known and novel viruses. (A) Known
sequences (n = 3,027) identified by BLAST are related to many different viral
families. Families with <1% abundance were collapsed into the “Other” cat-
egory. Only the prefixes of family names are shown (e.g., Virga for Virgaviri-
dae). (B) Distribution of the hosts of the known eukaryotic virus reads (n =
1,748). Plant, human, and insect viruses are abundant in raw sewage. (C)
Distribution of the hosts of the known bacteriophage reads (n = 1,279). (D)
Novel sequences (n = 43,381) identified by BLAST are related to many differ-
ent virus families. Families with <1% abundance were collapsed into the
“Other” category. See Table S6 for a list of families and hosts in the “other”
category.

movirus, Tombusviridae, and Tymoviridae. A large number of in-
sect virus reads (3.1%), including those that infect cockroaches,
flies, and mosquitoes, were present in all three samples. Insect
viruses most likely are present because some insect viruses also
infect plants and because wastewater transmission lines can har-
bor large insect populations. These viruses included members of
the Dicistroviridae, Iridoviridae, Nodaviridae, and Parvoviridae
families. We also identified several viruses of rodents, including
strains closely related to a newly identified rat hepatitis E virus (see
Fig. SI and Table S3 in the supplemental material) (34).

We detected 17 viruses known to infect humans in the three
sewage samples (Table 1). These viruses included human adeno-
virus, a well-studied indicator of human fecal contamination (35,
36), as well as a number of known human pathogens, including
astroviruses, Norwalk virus, and members of the family Picorna-
viridae, such as Aichi virus and parechoviruses. We also detected
the newly discovered klassevirus (37). The relatively newly char-
acterized human bocavirus and picobirnaviruses were also pres-
ent. We also detected human papillomavirus 112 (data not
shown) and the newly discovered human polyomavirus 6 (see
Fig. S1 and Table S3 in the supplemental material) (38). Both of
these viruses are tropic for skin, suggesting that viruses from hu-
man skin as well as stools find their way into sewage, possibly
through excretion in urine as is the case for human polyomavi-

September/October 2011 Volume 2 Issue 5 e00180-11

Viruses in Raw Sewage

TABLE 1 Human viruses present in raw sewage

Family Species Genome
Adenoviridae Human adenovirus 41 dsDNA
Astroviridae Astrovirus MLB1 sSRNA(+)
Human astrovirus 1 sSRNA(+)
Caliciviridae Norwalk virus sSRNA(+)
Sapporo virus ssRNA(+)
Papillomaviridae Human papillomavirus 112 dsDNA
Parvoviridae Adeno-associated virus ssDNA
Human bocavirus 2 ssDNA
Human bocavirus 3 ssDNA
Picobirnaviridae Human picobirnavirus dsRNA
Picornaviridae Aichi virus sSRNA(+)
Human klassevirus 1/Salivirus NG-J1 ssRNA(+)
Human parechovirus 1 sSRNA(+)
Human parechovirus 3 ssSRNA(+)
Human parechovirus 4 sSRNA(+)
Human parechovirus 7 sSRNA(+)
Polyomaviridae Polyomavirus HPyV6 dsDNA

ruses. Despite the large number of viruses detected, the current
depth of sequencing was not sufficient to detect all viruses known
experimentally to be present in the samples. For example, no se-
quences related to the human polyomavirus JC virus (JCV) were
found, even though its presence in the samples was established by
PCR (Table 2).

Raw sewage contains many novel viruses. Next, we examined
the 43,381 sequence reads that represent novel viruses according
to our criteria (see Table S4 in the supplemental material). Fig-
ure 3 shows the distribution of these sequences by identity to
known viruses in the GenBank databases. The outer ring repre-
sents the group of sequences with >90% identity to the reference
genome in the top BLAST hit. The internal rings indicate se-
quences with decreasing identity, binned by 10% intervals. The
area of each colored circle is proportional to the number of se-
quence reads that match the reference genome at a given percent
identity in that location for that virus family. The color of the
circle indicates the location from which the sequence was ob-
tained. For some virus families, such as the Virgaviridae, nearly all
of the sequence reads matched known viruses. In other cases, such
as the Picornaviridae and Parvoviridae, some of the sequences
matched recognized viruses, but the majority were only distantly
related to known members of these families. In most cases (i.e.,
Circoviridae, Phycodnaviridae, Microviridae, and Siphoviridae),
nearly all of the sequence reads were derived from putatively novel
viruses. Thus, greater than 90% of the sequence reads that could
be aligned to known viruses represent sequences from novel vi-
ruses that have not been described previously. The novel viruses in
the samples show enormous diversity, falling into 51 different
viral families (Fig. 2D; see Table S4 in the supplemental material).

Next, we assembled the virus sequence reads and aligned them
to a common GenBank reference genome (Fig. 4). In these frag-
ment recruitment plots, assembled sequences belonging to a par-
ticular virus family were aligned to GenBank reference genomes
for that virus family. Then, the sequence relations of the common
regions were compared to each other and to known members of
the viral taxon using standard phylogenetic methods.

For example, Fig. 4A shows the four assembled sequences that
align to the same region of the human bocavirus genome. Phylo-
genetic analysis of these sequences suggests that they each repre-
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TABLE 2 Detection of classical and emerging viruses in urban sewage by PCR assays

Virus detected” in urban sewage sample from:

Addis Ababa, Ethiopia

Virus analyzed® PCR type Barcelona, Spain Sample 1 Sample 2
Human adenovirus Real time 10,100 GC/ml 10.3 GC/ml 802 GC/ml
JC polyomavirus Real time 18.3 GC/ml 178 GC/ml 734 GC/ml
Human hepatitis E virus Nested - + -

Human hepatitis A virus Nested - + +
Klassevirus 1 Nested + + +
Asfarvirus like-virus Nested - + -

@ See Materials and Methods for references for each PCR.

b GC, genome copies; —, not detected; +, detected. The volume of sample analyzed in 10 ul of extracted nucleic acid was 33.33 ml for the sewage sample from Barcelona, Spain,

and the volume was 43.75 ml for the samples from Addis Ababa, Ethiopia.

sent a different novel bocavirus. Figure 4C shows a similar analysis
of 11 sequences that align to the human picobirnavirus genome.
Picobirnaviruses are dsSRNA viruses whose genome consists of two
segments. Five assembled sequences aligned to a common region
of genomic segment 1, while six aligned to segment 2. Again, phy-
logenetic analysis suggests the presence of 5 or 6 novel picobirna-
viruses. Fragment recruitment plots also suggested the presence of
at least three different novel viruses related to the human patho-
gen Aichi virus (Fig. 4B), and multiple novel viruses related to the
dicistroviruses (see Fig. S2 in the supplemental material). In addi-
tion, a large number of novel circovirus-like genomes were iden-
tified (see Table S4 in the supplemental material; also data not
shown). Circoviruses are a family of viruses with a single-stranded
circular DNA genome that have been shown to be present in ani-
mal, bird, and human feces as well as raw sewage (29, 39).

A novel member of the Inoviridae is abundant in raw sewage
worldwide. The initial assignment of sequence reads to viral taxa
was accomplished by BLAST searches. We performed two addi-
tional computational steps to confirm our conclusions regarding
virus diversity in raw sewage. First, we subjected selected assem-
bled sequences to genetic signature analysis (GSA), a manual se-
quence analysis procedure in which the sequence reads and open
reading frames (ORFs), contained within the reads, were exam-
ined for the presence of eukaryotic and prokaryotic genetic signa-
tures such as promoters, factor binding sites, polyadenylation and
splice signals, and ribosome binding sites. GSA also included a
close examination of the sequence alignments that led to the tax-
onomic assignment of each sequence. These steps led to the reas-
signment of some of the sequences to different taxa. The most
striking example of a misassignment uncovered by GSA is that of
non-A, non-B hepatitis virus. The large number of sequence reads
related to this virus suggested that it was among the most abun-
dant eukaryotic viruses present in raw sewage, a result confirmed
by PCR (Fig. 5C). This virus was originally isolated from stool
samples from hepatitis patients and thus potentially was of great
interest (40, 41).

We assembled 794 reads that had at least 80% identity to
non-A, non-B hepatitis virus (GenBank accession no. X53411)
with phrap (http://www.phrap.org), using the default parameters.
The assembly produced a 4,818-bp contig (named WW-nAnB).
Initial alignments with the sequence deposited in GenBank under
accession no. X53411 (X53411 sequence) showed that WW-nAnB
assembled as a circle. After we edited the contig to put it in the
same orientation as in the X53411 sequence, we aligned it to the
X53411 sequence with BLASTN, and the resulting dot matrix plot
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is shown in Fig. 5A. At the 5’ end of the contig, there were two
small insertions of 20 and 38 bp with respect to the X53411 se-
quence. There was also a 250-bp deletion in WW-nAnB with re-
spect to the X53411 sequence at nucleotide position 1542. We
identified homologs of the four ORFs in the X53411 sequence. We
discovered several positions in the sequence of WW-nAnB that
disrupted the reading frame of three ORFs compared to homolo-
gous ORFs in the X53411 sequence. Additionally, there was an
ambiguous base in one position. To determine the correct nucle-
otide sequence of these positions, targeted regions of the genome
were resequenced by Sanger sequencing of PCR products, and
appropriate corrections were made to the WW-nAnB sequence.
Sanger sequencing gave unambiguous resolution to the uncer-
tainties in the original sequence, in particular correcting all the
apparent frameshift errors, which brought the ORF structures of
the X53411 sequence and WW-nAnB into agreement (Fig. 5B).
We further confirmed the presence of non-A, non-B hepatitis vi-
rus in the virion preparations using specific PCR primers targeted
to the open reading frame 4 (ORF4) sequence of the X53411 se-
quence. Forty-five cycles of PCR were performed on different vi-
rion preparations from five samples of raw sewage. The expected
373-bp PCR product appeared in all virion preparations (Fig. 5C).
Sequencing of the PCR products revealed some nucleotide varia-
tion, suggesting the presence of different variants of non-A, non-B
hepatitis virus in raw sewage. Also, the phylogenetic relationships
among the sequences revealed that they are more similar to each
other than to the X53411 sequence.

There are no reports on the properties of non-A, non-B hepa-
titis virus beyond the original report of the genomic sequence
(41), and it has not been classified into any formal taxonomic
group. Our attempts to identify some of the sequence signals typ-
ically found in a virus infecting eukaryotic hosts, such as promot-
ers and poly(A) addition sequences, were not successful. How-
ever, we did find strong evidence of prokaryotic transcription and
translation signals, including sigma70-like promoters and Shine-
Dalgarno (SD) translation initiation sequences. We found con-
vincing SD sequences appropriately positioned at the beginnings
of three of the four ORFs annotated in the X53411 sequence. For
the fourth ORF (ORF2), there is no SD sequence upstream from
the AUG start codon annotated in the X53411 sequence. How-
ever, there is an excellent SD sequence upstream of that position,
appropriately located for an initiation codon 90 bases upstream
from the annotated start codon in the ORF2 reading frame in both
genomes. Therefore, we suggest that this is the correct start site for
translation of this gene. This initiation codon is AUG in the WW-
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FIG 3 Most virus-related pyrosequencing reads found in raw sewage represent previously unknown viruses. Diversity plot of selected viral families (only the
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sequence reads were obtained are indicated by color: blue, Addis Ababa, Ethiopia; green, Barcelona, Spain; red, Pittsburgh, PA, USA.

nAnB sequence but GUG in the X53411 sequence. GUG start
codons are found rather commonly in prokaryotic sequences but
virtually never in eukaryotic sequences. In addition to the four
large ORFs, we have identified four additional small putative
genes located in the spaces between the larger ORFs, based on
appropriately positioned SD sequences and good coding potential
(Fig. 5D).

We probed the public databases with the predicted protein
sequences from WW-nAnB, and the results are reported in the
supplemental material. On the basis of the size of the genome, the
sequence matches obtained, and other features of the sequence
described in the supplemental material, we believe that WW-
nAnB (and the non-A non-B hepatitis virus with GenBank acces-
sion no. X53411) are members of the Inoviridae family of bacte-
riophages. The Inoviridae family contains the filamentous phages,
of which the best-characterized examples are the Escherichia coli
phages f1, fd, and M13. Figure 5D compares the genome map of
WW-nAnB to those of 3 well-characterized filamentous phages.

Deep sequencing of virion-associated nucleic acids suggests
the presence of large numbers of uncharacterized viruses. Most
of our analysis has focused on the 46,408 sequence reads that
could be assigned to one of the existing 84 viral taxa. However,
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over 247,000 reads were binned as bacteria, and nearly 600,000
reads were not related to sequences in genomic databases
(Fig. 1C). The bacterial sequences in the samples could represent
bacteria that escaped the virion enrichment methods, gene trans-
fer agents (33), or prophage genes (8, 15, 19, 32). Microscopic
examination of the virion preparations used for deep sequencing
did not reveal any bacterial contamination. Still, we cannot rule
out the possibility that a small amount of bacterial DNA remains
in the virion preparations. Furthermore, the amount of sequences
binned as bacteria in our study is consistent with the results of
several other metagenomic studies (1, 8, 12, 18, 19, 29). It is likely
that these sequences either represent GTAs or bacterial genes pres-
ent in bacteriophage transducing particles or they are in fact bac-
teriophage genes. Thus, novel bacteriophages are likely included
among these bacterial sequences.

A majority of the high-quality sequence reads obtained in this
study were binned as “unassigned” because they did not signifi-
cantly match sequences present in the current databases. These
sequences most likely represent uncharacterized viruses that are
notrelated to or are very distantly related to the 3,000 or so known
viruses. Examination of some of the assembled unassigned se-
quences revealed ORF patterns consistent with members of the
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PorPV, porcine parvovirus; AleutMDV, aleutian mink disease virus; AAVS5, adeno-associated virus 5; BovAAV, bovine AAV; CMV, canine minute virus; PorBV,
porcine bocavirus; HepAV, hepatitis A virus; AvianEV, avian encephalomyelitis virus; HumPV1, human parechovirus 1; DuckHAV, duck hepatitis A virus;
PorTV, porcine teschovirus; SaffoldV, Saffold virus; AichiV, Aichi virus; FootMDV, foot-and-mouth disease virus; EquineRBV, equine rhinitis B virus; Sen-
ecaVV, Seneca Valley virus; Rabbit PbV, rabbit picobirnavirus; HumPbV, human picobirnavirus; BPV, bovine picobirnavirus.

Microviridae and other bacteriophage taxa (data not shown). Fur-
thermore, approximately 355,000 metagenomic reads did not as-
semble into multiread contigs, suggesting a high degree of se-
quence diversity. If we assume that all individual sequence reads
binned as unassigned represent novel viruses, then novel viruses
(596,146 + 43,381 = 639,527) outnumber those binned as known
viruses (3,027) by a ratio of over 200:1. On the other hand, if none
of the unassigned sequences represent novel viruses but rather are
derived from other taxa (bacteria, etc.), then the ratio (43,381/
3,027) of novel to known viral sequence reads is approximately
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10:1. In any event, our data demonstrate that known viruses rep-
resent a small fraction of the viral universe.

Finally, we compared the high-quality sequence reads from
our experiment with sequences detected in other metagenomic
studies, including reclaimed wastewater (29), human feces (8, 11,
14), and three marine environments (1, 2, 19). Since several of the
metagenomes consisted of individual reads, we used CD-HIT (us-
ing the same parameters as performed on the raw sewage metag-
enome) to remove duplicate reads. For this comparison, we per-
formed a BLASTN search using the 897,647 high-quality raw
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FIG 5 An assembled genome of non-A, non-B hepatitis virus from raw sewage shows that it belongs to the Inoviridae family. (A) BLASTN alignment of
WW-nAnB and the non-A, non-B hepatitis virus with GenBank accession no. X53411 (X53411 sequence) is displayed as a dot matrix plot. The WW-nAnB
sequence and the X53411 sequence run 5’ to 3’ on the x axis and y axis, respectively. The positions of the insertions (I) and deletion (D) are labeled. (B) Protein
alignment of the X53411 ORF1 with the corrected gene C sequence from WW-nAnB. Identical amino acids (*), highly similar amino acids (:), and amino acids
with low similarity (.) are indicated. (C) Forty-five cycles of PCR were performed with 0.1 and 1 ul of five different virion preparations from raw sewage. Shinola
was used as a negative control (Neg. Con.). PCR products were visualized by EtBr on a 1.5% agarose gel. DNA ladder sizes are indicated in base pairs. The specific
PCR product bands (373 bp) were excised and sequenced. The resulting nucleotide sequences were aligned (shown at the bottom of the panel), and a
bootstrapped phylogenetic tree was generated based on the alignment (top right corner of panel). (D) WW-nAnB belongs to the Inoviridae family of bacterio-
phages. The genomic organization of WW-nAnB compared to non-A, non-B hepatitis virus (GenBank accession no. X53411), Propionibacterium phage phiB5
(B5) (GenBank accession no. AF428260), enterobacterial phage fd (GenBank accession no. J02451), and bacteriophage Pf3 (GenBank accession no. M19377) is
shown. Unlabeled X53411 ORFs are homologous to the similarly located ORFs in WW-nAnB. DNA replication initiation proteins are shown in red, assembly
proteins with an ATPase domain are shown in yellow, absorption proteins are shown in blue, and all other identified ORFs are shown in green. Each tick mark
in the ruler below each genome represents 100 bp. IG, noncoding intergenic region.

sewage reads as the query sequences against each metagenome. DISCUSSION
We applied an E-value cutoff of le — 5 to score a significant
match. We found that only a small number of sequences detected
in each of these metagenomes were significantly related (see Ta-
ble S5 in the supplemental material). The metagenome most
closely related to raw sewage is the monozygotic twin feces met-
agenome (11). A total of 486,392 unique sequences were obtained
in the twin study of which 40,594 (8.3%) showed a significant

match to 17.3% (155,083) of the raw sewage sequence reads. Sim-

The International Union for Conservation of Nature lists nearly 1.8
million species of living organisms on Earth. Each of these species is
likely to harbor multiple types of viruses uniquely adapted to prolif-
erate in the cellular environment they provide. However, only about
3,000 viruses have been identified thus far, suggesting that our knowl-
edge of the viral universe is limited to a tiny fraction of the viruses that
exist. Pioneering studies in viral metagenomics have led to advances

ilarly, about 12.2% and 9.9% of the sequences we identified in raw
sewage were similar to sequences from the human gut micro-
biome and reclaimed water, respectively. Other metagenomes
harbored fewer viral sequences similar to those found in raw sew-
age. In total, these observations emphasize the vastness of viral
diversity among different biomes.

September/October 2011 Volume 2 Issue 5 e00180-11

in methods for capturing virus particles, sequencing their nucleic ac-
ids, and in the computational analysis of metagenomic data (21, 42).
The results of metagenomic studies of the viromes present in oceans,
lakes, human gut and stool samples, and reclaimed wastewater are
consistent with the notion that large numbers of uncharacterized vi-
ruses exist in nature.
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We performed a metagenomic survey of the viruses present in
three samples of untreated wastewater obtained from three differ-
ent continents. After steps to remove bacteria and other relatively
large particles, virus particles were concentrated by organic floc-
culation and treated with DNase. Virion-associated nucleic acids
were extracted and reverse transcribed so as to include both RNA
and DNA genomes in the subsequent deep sequencing steps. Al-
though each of the three samples was sequenced separately, we
pooled these data for the purposes of this study. Computational
methods were then used to assign each sequence read to specific
taxa and to determine whether the sequence represented a previ-
ously characterized (known) virus recorded in the GenBank data-
bases. This approach detected 234 known viruses. However, the
vast majority of genomes present in the samples represent novel
viruses. Representatives of 51 viral families were detected, making
raw sewage the most diverse viral biome examined thus far.

Despite the large number of known and novel viruses detected,
not all viruses present in the samples were detected by our meth-
ods. For example, JC virus (JCV), a human polyomavirus fre-
quently associated with fecal/urine contamination was not de-
tected by deep sequencing, although PCR experiments indicated
its presence. This suggests that our data underestimate the num-
ber of viruses present in the samples. One reason viruses present in
the sample could fail to be detected is that their abundance is
below the resolution of sequencing. For example, JC polyomavi-
rus is present in samples of raw sewage from Barcelona, Spain, at
18 genome copies (GC)/ml, but human adenovirus, which is rep-
resented by 20 sequencing reads in the raw sewage metagenome, is
present at 10,100 GC/ml (Table 2). In this case, deeper sequencing
of the sample will reveal additional viruses.

The probability of detecting a particular virus in a complex
environmental sample such as untreated wastewater is directly
proportional to the number of observable virions of species i in the
sample (N°?). This value changes in time according to the differ-
ential equation shown below, with the right hand side being a
function of five time-dependent variables.

Ny
d; :< b+ K 51')81' B

deposition

production decay/ recovery  detection

First is the rate with which virus particles are deposited in the
sample. In the case of raw sewage, virus particles enter the sample
in the form of human and animal feces and urine, plant material
from domestic and agricultural areas, as well as from insects and
rodents found in the sewer system (¢;). Second, new virus parti-
cles are created by the infection of host species growing in the
sewage (k;). Raw sewage provides a rich environment for the
growth of bacteria, rotifers, amoeba, and fungi, and as these or-
ganisms become infected, the resulting progeny viruses will be
shed into the sample. The accumulation of virus particles in sew-
age via deposition and infection is balanced by the physical decay
of virions (8§;). All three of these parameters are dependent on time
and thus will vary during different times of day, in different sea-
sons, and in different climates. Finally, the probability of detection
is a function of both the efficiency of virion recovery (g;) from the
sample and the efficiency of detection (3;). For example, the use of
CsCl gradients to purify virions eliminates certain types of viruses
either because they do not band in the selected density range or
because they are disrupted by CsCl. Similarly, the methods used to
isolate and amplify viral nucleic acids can eliminate or favor cer-
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tain genome types. No one method efficiently recovers and detects
all types of virions, and thus, a complete survey of viral diversity
will require a combination of approaches.

A key step in metagenomic analysis is the assignment of indi-
vidual sequence reads or assembled sequences to viral taxa. Each
individual read or assembled sequence should represent the nu-
cleic acid present in an individual virion, and thus, a single viral
species. Generally, this taxon assignment is accomplished by a
BLAST search with the E value being the arbiter of taxon assign-
ment with most metagenomic studies using the top BLAST hit to
identify and classify sequence reads. In this study, we divided the
taxonomic classification of sequence reads into three steps. First,
the broad binning of sequences into those related to viruses, bac-
teria, or other major taxa was based on BLAST scores. Second,
known viruses were identified on the basis of nucleotide identity
through the entire sequence read with a viral genome listed in the
GenBank database. However, it is still possible that some novel
viruses might be classified as a known virus. For example, bacte-
riophages exhibit high levels of horizontal gene transfer generat-
ing a mosaic of genome types (43—45). Since metagenomic studies
seldom yield enough sequence data to assemble an entire genome,
it is possible that some of the viruses classified as known are actu-
ally chimeras where only a portion of the genome matches the
GenBank reference sequence. Finally, the remaining sequences
representing potentially novel viruses were manually examined to
confirm their taxonomic assignment. This manual analysis re-
vealed numerous ambiguities and in some cases errors in taxon
assighments. Some errors in taxon assignments resulted from
misannotations of databases. In other cases, the correct viral taxon
could not be ascertained because homologs of viral genes exist in
multiple viral taxa.

We are using metagenomics to explore viral diversity in a num-
ber of different biomes. To begin these studies, we wanted to ex-
amine environments where viral concentrations and diversity are
relatively high. In this regard, we hypothesize that the highest con-
centrations of viruses will be found where there is a high density of
host species and that viral diversity will correspond to the biodi-
versity of host species. Urban sewage has been selected as a unique
example of a matrix with high concentrations of highly diverse
viruses. Urban sewage is a virus-rich matrix because humans ex-
crete waste materials from the diverse food consumed, especially
plants that are known to be very rich in viruses, and the bacterial
and viral members of the human microbiota and common viral
infections. The matrix we analyze includes the excreted virome
plus the external input from insects, rodents, and other inhabit-
ants of the urban sewerage system as well as bacteria growing in
the wastewater. We have not attempted to measure the relative
numbers of different viral species present in the sample. Nor have
we sampled sewage in different seasons or in different climates or
performed an extensive study of different geographic locations, all
of which are likely to influence the dynamics of viral populations.
These issues await future studies.

Finally, we point out that while untreated wastewater is a rich
source of novel viruses, it is still a limited one. The diversity of host
species that occupy this ecosystem is limited by its unique chem-
ical composition. Earth is rich with many disparate biomes, each
harboring a multitude of host species and their viruses. The explo-
ration of the viral universe has only just begun.
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MATERIALS AND METHODS

Sample collection sites. Untreated wastewater was obtained from three
locations: (i) Pittsburgh, Pennsylvania, United States; (ii) Barcelona,
Spain; and (iii) Addis Ababa, Ethiopia. The Pittsburgh wastewater treat-
ment plant (WWTP) provides services to approximately 1 million people
in the city and many surrounding communities. The Barcelona WWTP is
located on the south coast of Spain. The Barcelona WWTP receives waste-
water from six towns with an approximate total population of 172,000
inhabitants. The WWTP treats the raw wastewater from domestic origin
as well as treated wastewater from industries. The Addis Ababa WWTP
services a city that contains approximately 3 million inhabitants. Data on
the volume of raw sewage that is treated by the WWTPs are not available.

Enrichment of virion populations from untreated wastewater. Un-
treated wastewater (5 liters) was collected from the WWTP in Pittsburgh,
PA, in December 2009 and was stored at 4°C for 2 h prior to processing.
Similarly, 10 liters of untreated wastewater was collected from the WWTP
in Barcelona, Spain, in September 2008 and stored for 2 h at 4°C before
processing. Two samples (10 liters each) were collected from the WWTP
in Addis Ababa, Ethiopia, in June 2009 and processed on-site. In this case,
the virion concentrates were stored frozen prior to viral nucleic acid iso-
lation.

Virions were concentrated from wastewater samples by organic floc-
culation based on the procedure previously described (31). Briefly, 100 ml
preflocculated skim milk solution (pH 3.5) was added to 10 liters acidified
raw sewage (pH 3.5) and mixed for 8 h. Flocculants were allowed to settle
and then centrifuged. The flocculated viral concentrate was resuspended
in 15 ml phosphate buffer (1:2 [vol/vol] mixture of 0.2 M Na,HPO, and
0.2 M NaH,PO,) and then eluted in 30 ml of 0.25 M glycine (pH 9.5) for
45 min at 4°C by slow agitation with vortexing. Suspended solids were
separated by low-speed centrifugation at 7,500 X g for 30 min at 4°C, and
the high pH of the supernatant was stabilized by adding 20 ml of 2X
phosphate buffer. Virions present in the supernatant were concentrated
by ultracentrifugation at 100,000 X g for 1 h at 4°C and resuspended in
phosphate buffer.

Nucleic acid preparation and 454 sequencing. Aliquots (100 ul) of
the virion concentrates from Addis Ababa, Ethiopia, Pittsburgh, Pennsyl-
vania, and Barcelona, Spain, were treated with DNase to remove non-
virion-associated DNA. One thousand units (10 ul) of DNase (catalog no.
EN0523; Fermentas) and 10 ul of the supplied 10X reaction buffer were
added to each sample and incubated at 37°C for 1 h. Virion nucleic acid
was purified from the DNase-treated samples and 100 ul of untreated
Barcelona virus preparation using the Qiagen DNeasy blood and tissue kit
(catalog no. 69504) using the manufacturer’s protocol (46) except that
elution was performed with 30 ul of distilled H,O (dH,0).

To enable subsequent detection of both RNA and DNA viruses,
total virion-associated nucleic acid from each sample was reverse
transcribed and amplified as previously described (47, 48). Briefly,
RNA templates were reverse transcribed using PrimerA (5'-
GTTTCCCAGTCACGATANNNNNNNNN) containing a 17-nucleotide
specific sequence followed by 9 random nucleotides for random
priming. Sequenase (United States Biochemical) was used for second-
strand ¢cDNA synthesis and for random-primed amplification of
DNA templates using PrimerA. Each sample was then subjected to 40
cycles of PCR amplification using PrimerB with a bar code (5'-
XXXXXXGTTTCCCAGTCACGATA) for the Barcelona samples or
PrimerB without the bar code for the Pittsburgh and Addis Ababa samples
using the following program: 30 s at 94°C, 30 s at 40°C, 30 s at 50°C, and
60 s at 72°C. The bar code is a unique 6-nucleotide sequence (indicated by
“X”) at the 5" end of PrimerB. PrimerB is complementary to the 17-
nucleotide sequence that was incorporated by PrimerA. The amplified
material was visualized on an agarose gel as a final quality control step and
was sequenced at the Washington University Genome Sequencing Center
on the 454 GS FLX titanium platform (454 Life Sciences) according to the
manufacturer’s instructions.
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Sequence annotation. Raw sequence reads were trimmed to remove
bar codes and PrimerB sequences. CD-HIT (49) was used to remove re-
dundant sequences. Sequences were clustered on the basis of 95% identity
over 95% sequence length, and the longest sequence from each cluster was
picked as the representative sequence. Then, unique sequences were
masked by RepeatMasker (http://www.repeatmasker.org). If a sequence
did not contain a stretch of at least 50 consecutive non-“N” nucleotides or
if greater than 40% of the total length of the sequence is masked, it was
removed from further analysis (i.e., “filtered”). These preprocessing steps
resulted in 897,647 high-quality sequences which were sequentially com-
pared against (i) the human genome using BLASTN; (ii) GenBank nt
database using BLASTN; (iii) GenBank nr database using BLASTX; and
(iv) the NCBI viral genome database (ftp://ftp.ncbi.nlm.nih.gov/refseq
[release/viral/) using TBLASTX. The nt and nr databases were down-
loaded on 29 May 2009, and the viral genome database was downloaded
on 12 August 2010. Minimal E-value cutoffs of 1e — 10 for BLASTN and
le — 5 for BLASTX or TBLASTX were applied. Sequences were phylo-
typed as human, mouse, fungal, bacterial, phage, viral, or other based on
the identity of the top BLAST hit. Sequences without any significant hit to
any of the databases were placed in the “unassigned” category. All virus
and phage sequences were further classified into families using the taxo-
nomic information from the top BLAST hit.

A second annotation analysis (Bar-v1) was performed with the Barce-
lona raw sequence reads only. The reads were trimmed to remove any bar
code and PrimerB sequences. CD-HIT was used to remove redundant
sequences. Sequences were clustered on the basis of 98% identity over
98% sequence length, and the longest sequence from each cluster was
picked as the representative sequence. Then, unique sequences were
masked using RepeatMasker and processed as described above to generate
a high-quality set of reads. The high-quality Barcelona sequences (n =
680,295) were sequentially compared against (i) the human genome using
BLASTN, (ii) GenBank nt database using BLASTN and TBLASTX, and
(iii) the NCBI viral genome database using TBLASTX. Minimal E-value
cutoffs of 1le — 10 for BLASTN and le — 5 for TBLASTX were applied.
Sequences were phylotyped and classified as described above.

Sequence assembly. Using the high-quality Pittsburgh, Addis Ababa,
and Barcelona reads (from Bar-v1 annotation analysis), sequences iden-
tified as eukaryotic viruses regardless of the source of isolation were sep-
arately assembled into contigs using phrap (version 1.090518; http://www
.phrap.org) at 95% nucleotide identity by using the command line option
“-penalty -19.” The phrap singlets and contig files were merged to create
an assembled set of virus sequences (n = 2,782). The assembled sequences
were sequentially annotated by (i) BLASTN and then by TBLASTX versus
the GenBank nt database and (ii) TBLASTX against the viral genome
database using an E-value cutoff of 1e — 5. Sequences with no significant
hit were classified as “unassigned.” Sequences were binned into families
using the taxonomic information from the top BLAST hit.

A full assembly of the 897,647 high-quality Pittsburgh, Addis Ababa,
and Barcelona reads and quality scores was done with phrap at 95% nu-
cleotide identity. The phrap singlets and contig files were merged to create
a set of assembled sequences (n = 476,960).

Sequence alignments. Nucleotide and protein sequences were aligned
with ClustalW2 using default parameters. Bootstrap neighbor-joining
(NJ) trees (1,000 iterations) were constructed using homologous posi-
tions that do not contain any gaps.

Electron microscopy. Samples were observed with a transmission
electron microscope Tecnai SPIRIT (FEI Company, Eindhoven, The
Netherlands) working at an acceleration voltage of 120 kV. Images were
acquired with a MegaviewlII camera and digitized with the iTEM pro-
gram, both from Soft Imaging System (SIS).

Wastewater non-A non-B hepatitis virus analysis. The Pittsburgh,
Addis Ababa, and Barcelona reads (from Bar-v1 annotation analysis) that
had at least 80% identity to non-A, non-B hepatitis virus (n = 794) were
assembled using phrap with default parameters. Virions were purified
from five different samples of raw sewage. PCR was performed with 0.1
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and 1 pl of virion preparations using GoTaq (Promega) under the follow-
ing conditions: initial denaturation, 5 min at 94°C; 45 cycles, with 1 cycle
consisting of 1 min at 94°C, 1 min at 54°C, and 75 s at 72°C; a final
extension step of 7 min at 72°C. The primers (forward [5'-
GATGCAGGAAGGTCACGAAT] and reverse [5'-
ACGGCCAAAAGAATTCACAC]) were designed to ORF4 of non-A,
non-B hepatitis virus (GenBank accession no. X53411). PCR products
were resolved on a 1.5% agarose gel and stained with ethidium bromide.
PCR bands were excised and sequenced using the forward primer. Se-
quences were aligned with ClustalW2 and a bootstrapped NJ tree was
constructed using MEGA4.

Molecular detection of viruses in wastewater by PCR. Extractions of
viral nucleic acids from the Addis Ababa and Barcelona samples used in
the present metagenomic study were analyzed to detect classical and
emerging viruses (Table 2) by nested PCR (nPCR) and quantitative PCR
(qPCR) TagMan assays. The viruses analyzed were human strains of hep-
atitis E viruses (HEV), hepatitis A (HAV), klassevirus I (KV) (37),
asfarvirus-like virus (ASFLV) (50), human adenoviruses (HAdV), and JC
polyomavirus. The protocols used are based on previous studies (22, 51—
53; B. Calgua et al., submitted for publication).

For the detection of HPyV6 polyomavirus and rat HELV (see Table S3
in the supplemental material), urban sewage samples were collected in
Barcelona, Spain. Viruses from 42 ml of each untreated wastewater sam-
ple were concentrated in 100 ul of PBS by applying a virus concentration
procedure based on ultracentrifugation and elution with glycine-alkaline
buffer as described previously (36). Nucleic acids from the viral concen-
trates were extracted using the QIAamp viral RNA minikit (catalog no.
522906; Qiagen). Nested primers for the VP1 region of HPyV6 were de-
signed for nested PCR (nPCR) assays based on the NCBI reference se-
quence with accession no. NC_014406. For the detection of rat HELV, a
nested set of primers for the ORF1 region was designed on the basis of the
sequence obtained in the present metagenomic study (6AIF). For reverse
transcription, a Qiagen OneStep RT-PCR kit (catalog no. 210212) was
used according to the manufacturer’s instructions. The first and second
round of enzymatic amplification for both viruses (DNA/RNA) were per-
formed as follows. In the first round of enzymatic amplification, 10 ul of
the undiluted and a 10-fold dilution of the extracted nucleic acids was
analyzed. The amplification mixture (40 pl) contained 1X PCR bulffer,
1.5 mM MgCl,, 250 uM each deoxynucleoside triphosphate (dNTP),
0.5 uM of each specific primer for each virus, and 4 U of TagGold DNA
polymerase (Applied Biosystems). In the second round of enzymatic am-
plification, 2 ul of the product obtained in the first round was added to
48 pl of amplification mix, containing a set of specific primers for each
virus and the same reagent composition described above. The PCR con-
ditions for the first and second rounds were as follows: 10 min at 95°C; 30
cycles, with 1 cycle consisting of 60 s at 94°C, 60 s at 52°C for HPyV6 or 60 s
at 56°C for rat HELV, and 60 s at 72°C; a final extension step of 7 min at
72°C.

Accession numbers. The sequence of WW-nAnB was submitted to
GenBank (JN402401), and the raw sewage metagenome was deposited in
the Sequence Read Archive (SRA040148).
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