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In animals, starvation can increase the level of reactive oxygen species (ROS)
in some tissues. Mitochondrial DNA (mtDNA) is more vulnerable to being
attacked by ROS due to the lack of histone protection, leading to oxidative
damage. However, whether starvation is associated with the genetic diver-
sity of mtDNA remains unclear. Here, by using adult individuals of
Drosophila melanogaster under three different feeding treatments (starvation,
with the provision of only water, and normal feeding), based on the high-
throughput sequencing results of the PCR amplicons of the partial sequences
of the mitochondrial gene cytochrome c oxidase subunit I (mt-cox1), no
significant difference in the mean number of mitochondrial haplotypes
and the mean genetic distance of haplotypes within individuals were
identified between the three treatment groups. Coupled with the low
proportion of heterogeneous mt-cox1 sequences within each individual, it
suggested that starvation had a limited impact on mitotype genetic diversity
and mitochondrial function. Nevertheless, starvation could significantly
increase the sequence number of haplotypes containing specific mutations,
and for males with higher levels of mitochondrial heteroplasmy than
females in the normal feeding group, starvation could further increase
their mitochondrial heteroplasmy.
1. Introduction
Under certain circumstances, the living environment of animals can be charac-
terized by periods of food shortage or even foodlessness, when the metabolism
of the organisms will undergo great changes, such as upregulation of catabo-
lism and downregulation of anabolism [1–3]. In Drosophila melanogaster,
starvation causes hyperactivity and sleep suppression physiologically [4–7].
Moreover, sleep loss can increase the content of mitochondrial reactive
oxygen species (mtROS) in the dorsal fan-shaped body neurons of the Droso-
phila brain, consequently altering the redox state of neurons [8]. Meanwhile,
the gut also experiences a large accumulation of reactive oxygen species
(ROS), which will further trigger oxidative stress to hasten the death of fruit
flies [9]. Mitochondria are the primary source of intracellular ROS [10–12],
and mitochondrial DNA (mtDNA) is a circular double-stranded molecule
that forms nucleoids (nucleoprotein complexes/structures) in mammalian
mitochondria rather than being ‘naked’ [13,14]. Although mitochondria have
antioxidant systems to reduce the damage from mtROS [15] and mtDNA can
form nucleoids, mtDNA is still highly sensitive to mtROS, making it more
vulnerable to being attacked by mtROS, resulting in oxidative damage [16].

There is not only one type of mtDNA in an organism, but actually, the same
individual may contain two or more types of mtDNA, which is known as mito-
chondrial heteroplasmy [17,18]. The types of mitochondrial heteroplasmy can
be classified as site heteroplasmy and length heteroplasmy, which are usually
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derived from somatic mutations that occur mostly in embryo-
nic stages [19], paternal leakage, maternally transmitted
heteroplasmy [20], doubly uniparental inheritance in the
bivalve [21,22], etc. In Drosophila, some species (D. melanoga-
ster, D. simulans, D. mauritian and D. subobscura) were
detected to possess mitochondrial length heteroplasmy
through the method of restriction digestion [23,24]. By cyto-
plasmic microinjection of different mitotypes to construct
mitochondrial heteroplasmic flies, it was discovered that the
selection of mitotypes within individuals was non-random
[25]. In addition, ageing and mating can also affect mitochon-
drial heteroplasmy [26]. In the past decade, the research on
mitochondrial heteroplasmy in fruit flies has focused more
on the mechanisms of paternal leakage origin [27–30], evolution
[31,32] and elimination [33,34].

DNA barcoding has been widely used since it was pro-
posed in 2003 [35]. With the accumulation of barcode
sequences, some databases such as NCBI and BOLD system
[36] have recorded a large number of species barcodes,
among which the commonly used DNA barcode in animals
is the 50 end region of the mitochondrial cox1 gene [37–39],
particularly in insects [40]. Currently, the high-throughput
cox1 amplicon sequencing can be used for rapid identification
of members in ecological communities [41], determination of
animal diets [42,43], biodiversity surveys [40,44], discovery of
cryptic species [45] and conservation biology [46], along with
the estimation of intraspecific genetic diversity [47]. Accord-
ing to the sequencing principle, cox1 amplicon sequencing
can also be used to study intra-individual genetic diversity,
enabling the identification of cox1 haplotypes within individ-
uals, with the advantage of a well-stocked cox1 reference
database that can eliminate contamination introduced
during the experimental processes.

Since starvation can lead to sleep suppression, which
causes the accumulation of ROS in fruit flies [8,9], and further
considering that ROS can cause oxidative damage to mtDNA,
here, by using high-throughput sequencing, we aimed to
evaluate whether starvation would alter the levels of mito-
chondrial heteroplasmy, including the within-individual
number of cox1 haplotypes and genetic diversity, as well
as the distribution of heteroplasmic sites in haplotypes.
The results revealed that starvation, although had a limited
impact on mitotype genetic diversity and mitochondria
function, the effect on mitochondrial heteroplasmy may be
gender-specific, implying that mitochondria of different
gender may respond differently to starvation.
2. Results
2.1. The number of haplotypes and the average genetic

distance of haplotypes within individual
Altogether 60 individuals in the three treatment groups were
subjected to PCR amplification and high-throughput sequen-
cing of the mitochondrial cox1 gene fragment, and a total of 2
214 468 high-quality reads were obtained after quality con-
trol, with the sequencing depth of each sample from 49
814×to 90 509×(electronic supplementary material, table S1).
After removing sequences with a frequency of less than
0.5%, the number of haplotypes in each individual ranged
from four to eight, and the average genetic distance between
haplotypes in each individual ranged from 0.369% to 0.494%,
both values of which were higher in the starved group
(figure 1a,c) than in the other two groups, nevertheless with
no significant differences. In addition, from the comparison
between males and females, regardless of the treatment
group, the average number of haplotypes and the average
genetic distances of haplotypes in the males were higher
than those in the females (figure 1b,d ).
2.2. Identification and comparison of major and minor
haplotypes within individual

Twenty-four haplotypes (figure 2; electronic supplementary
material, table S2) were identified, of which, two were ran-
domly detected as the major (MAJ) haplotypes (Hap1 and
Hap2). The MAJ haplotype sequences accounted for greater
than or equal to 90% of the total sequences within individual
(figure 2a; electronic supplementary material, table S2). In
addition, no correlation was observed between the MAJ
haplotypes and the feeding treatments, but the coexistence
of these haplotypes was noted within individual (e.g. for
DMJM7 and DMZM5, when the Hap1 was the MAJ haplo-
type, the Hap2 was the minor (MIN) haplotype, while for
DMJM8 and DMSM9, when the Hap2 was the MAJ haplo-
type, the Hap1 was the MIN haplotype) (figure 2a;
electronic supplementary material, table S2).

It was interesting to note that there was a correlation
between the distribution of MIN haplotypes and the type
of MAJ haplotypes within individual. When Hap1 was the
MAJ haplotype, the MIN haplotypes were Hap3, Hap5,
Hap7 and Hap13-Hap18; when Hap2 was the MAJ haplo-
type, the MIN haplotypes were Hap4, Hap6, Hap8 and
Hap19-Hap24. The proportion of all the MIN haplotype
sequences in the total sequences within individuals was
very low (3.47%–8.76%; electronic supplementary material,
table S3). After removing the sequences of the MAJ haplo-
types, half of the individuals had three MIN haplotypes
and the remaining had six MIN haplotypes (figure 2b). Fur-
thermore, two unique MIN haplotypes (Hap10 & Hap11)
were detected in the individuals of the starved group, a
MIN haplotype of Hap9 was detected in some individuals
of both the starved and water groups, and a MIN haplotype
of Hap12 was found specifically in an individual of the
normal group, all of which were only in males.
2.3. Analysis of heteroplasmic sites of cox1 haplotypes
within individual

For the heteroplasmic site identification, with all haplotype
sequences of each individual as the dataset, we set its MAJ
haplotype sequence as the reference sequence and defined
the differential sites between the MAJ and MIN haplotypes
as the heteroplasmic sites of the haplotype sequences
contained in the individual. When comparing the heteroplas-
mic sites contained in each individual, regardless of the three
feeding treatment conditions, there were eight heteroplasmic
sites that could result in amino acid changes of the encoded
proteins by non-synonymous substitutions (table 1; electronic
supplementary material, table S4): C22T (Hap18 or Hap21),
A35T (Hap5 or Hap4), G76A (Hap3 or Hap6), A115G
(Hap16 or Hap22), G138A (Hap10), C297T (Hap13 or
Hap24), T390A (Hap15 or Hap23) and T405G (Hap7 or Hap8).
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Figure 1. Comparison of the number of cox1 haplotypes per specimen (a,b) and the average genetic distance of haplotypes within the specimen (c,d ) among
different groups: (a,c) all specimens; (b,d ) females and males in the three treatments. Starved (‘S’ in b,d ), water (‘W’ in b,d ) and normal (‘N’ in b,d ) indicate
specimens in the three treatments. The red lines represent the average values, the black lines represent standard errors, the black circles represent the numbers of
haplotypes (in (a,b)) as well as average genetic distances of haplotypes (in (c,d )) in each specimen.
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In addition, there were two identical synonymous substi-
tutions (152 and 306 sites) between the minor haplotype
groups of Hap3 & Hap6, Hap4 & Hap5, Hap7 & Hap8,
Hap13 & Hap24, Hap14 & Hap20, Hap15 & Hap23,
Hap16 & Hap22, Hap17 & Hap19 and Hap18 & Hap21, and
both of these synonymous substation sites were also the differ-
ential sites for the two major haplotypes (Hap1 and Hap2).
According to the comparison of these differential sites, the
relationship between different haplotypes was observed
(figure 2c), revealing the pattern that all minor haplotypes
were generated by mutations from the two major haplotypes.

The possible effects of the eight non-synonymous sub-
stitutions on protein function were predicted by the
PROVEN Protein program, and the results showed that
six of them were deleterious substitutions. By further com-
paring the average proportion of haplotype sequences
containing these eight non-synonymous substitution sites
in the total sequences of individuals among the individuals
of the three different treatment groups (figure 3), it was
found that individuals in both the starved and water
groups contained a significantly higher average content of
haplotype sequences containing the heteroplasmic site of
A35T than those in the normal group (figure 3b). Besides,
a shared synonymous mutation (A377G) was screened out
in individuals of both the starved and water groups,
which was only detected in one individual in each of the
two treatment groups (DMJM10 and DMSM9; electronic
supplementary material, table S5), and a non-synonymous
substitution (G138A; electronic supplementary material,
table S5) occurred in the individual of DMJM10 in the
starved group, with PROVEN Protein predicted as a neutral
substitution (table 1).
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Figure 2. Stacked plot and network of haplotypes. (a) Proportions of all haplotypes detected in each individual and (b) relative proportions of all minor haplotypes
(without Hap1 and Hap2) detected in each individual, with the horizontal axis showing the ID of different individuals, and the vertical axis presents the proportion
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Table 1. Variable sites of haplotypes distributed in specimens of the three treatments and PROVEN prediction results of the non-synonymous substitution sites.
D, deleterious; N, neutral; —, synonymous mutation.

Variable sites and PROVEN prediction results

starved C22T A35T G76A T86C A115G C297T T390A A326G T405G A152G/G152A C306T/T306C G138A A377G

normal C22T A35T G76A T86C A115G C297T T390A A326G T405G A152G/G152A C306T

water C22T A35T G76A T86C A115G C297T T390A A326G T405G G152A T306C A377G

PROVEN D D D — D D N — D — — N —
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2.4. The reactive oxygen species levels within individual
Among the three feeding treatments, the level of ROS in the
starved group was significantly lower than in the other two
groups. The water and normal groups had similar levels of
ROS, with the normal group having a slightly higher level
(electronic supplementary material, figure S1).
3. Discussion
In this study, the correlation between starvation and the
haplotype genetic diversity of mitochondrial cox1 gene frag-
ment was investigated by using laboratory-reared adult
Drosophila melanogaster. The result indicated that the coexis-
tence of two mitotypes is present in the reared fruit fly
population, which is not uncommon in natural or labora-
tory-reared populations [48–51], and several hypotheses
have been proposed to explain the maintaining mechanisms
of the coexistence of two mitotypes within populations,
such as negative frequency-dependent selection (NFDS),
direct natural selection of mtDNA and cytonuclear coadapta-
tion [52]. Among them, NFDS played a role in maintaining
the coexistence of multiple mitotypes in the population of
Drosophila subobscura, and food conditions could enhance
this selective effect [53]. We thought that the coexistence of
two mitotypes in D. melanogaster in this study might also
be due to NFDS.

The results of the study revealed an association between
starvation and the heteroplasmic sites of mitotypes in indi-
vidual adults of D. melanogaster, although the sequences
containing these heteroplasmic sites might not have a signifi-
cant deleterious effect on organismal function due to their
low proportion. Firstly, the results of the distribution pattern
of MAJ and MIN haplotypes and the origin of the heteroplas-
mic sequences suggested that the heteroplasmic sequences
we detected were not related to the random errors during
PCR and amplicon sequencing, rather they were truly non-
random mutation sites. Subsequently, although six of eight
non-synonymous substitutions were deleterious, the pro-
portions of these mutation-containing sequences were low
and given that deleterious mutations in mitochondria
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represents the ratio of sequences containing each non-synonymous site per specimen (a–h). Notes: the red lines represent the average values, the black
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would not show corresponding symptoms in the organism
until they had accumulated beyond a certain proportion
[54,55], the presence of these deleterious mutations should
not have too many deleterious effects on the organism. More-
over, the significantly higher levels of mutation site A35T in
the starved and water groups implied that starvation could
increase the content of haplotype sequences containing
some specific mutations within individuals, possibly
related to the stress of starvation imposed on the fidelity of
mtDNA.

Male fruit flies have a higher level of mitochondrial het-
eroplasmy than females, and starvation could further
increase the level of heteroplasmy in males. In bivalves, the
males may possess specific sequences derived from the
male parent through the doubly uniparental inheritance
[56,57], resulting in higher mitochondrial heteroplasmy in
males than females; among insects, some male fig wasps
(Hymenoptera, Insecta) also showed a higher level of
heteroplasmy [45], which suggests that a higher level of het-
eroplasmy in males than in females may be a more general
phenomenon. In this study, we not only revealed a higher
level of mitochondrial heteroplasmy in male fruit flies than
in females but also found a gender-specific increasing effect
of starvation on mitochondrial genetic diversity, with the
increasing effect higher in males.

Of all the detected haplotypes, the vast majority were
shared among the three treatment groups except only two
unique haplotypes (with A377G, synonymous substitution
and G138A, non-synonymous substitution) in the starved
group. Subsequently, the threshold of haplotype sequence
screening was relaxed (changing from ‘removing the sequences
whose frequency is lower than 0.5% of the total sequences’ to
‘removing only singletons which may be caused by errors
during PCR and sequencing’ to detect whether these two hap-
lotypes were also present in other individuals). As a result,
both haplotypes could be identified in some individuals of
the three treatment groups. Therefore, the occurrence of these
two unique haplotypes was only due to the strict screening
threshold, which likewise suggested that starvation might
increase the abundance of these two haplotype sequences,
making them easier to be screened out in the individuals of
the starved group. Of course, it was worth mentioning that
the contingency caused by the PCR process was also a factor
that cannot be ruled out.

We further explored the association between the levels of
ROS and the increased mitochondrial heteroplasmy by star-
vation in fruit flies. However, the ROS levels showed a
pattern completely different from previous studies [8,9]. This
apparently different association between ROS levels and star-
vation detected in our and previous studies may come from
the different sample handling strategies. In the previous
studies, levels of ROS in the dorsal fan-shaped body of the
brain [8] or the gut [9] were measured separately, while here
used the whole-body homogenates. The reason we chose this
process was that the mitochondrial heteroplasmy data we
obtained came from the whole body, so the ROS levels
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should also be measured for the whole body. Although star-
vation may result in lower ROS levels in the whole body, it
could still cause damage to mtDNA given the elevated ROS
levels in some tissues. Consequently, in the future, we will
focus more on the relationship between starvation and levels
of ROS and mitochondrial heteroplasmy in different tissues.
lishing.org/journal/rsob
Open
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4. Materials and methods
4.1. Breeding of the fruit flies and sample preparation
The D. melanogaster population (which was kindly donated
by Prof. Hu Haoyuan in Anhui Normal University) used in
this experiment had already been reared in our laboratory
for at least 50 generations after tetracycline treatment to
remove Wolbachia infection [58]. The third instar pupae
were placed in transparent plastic cups, covered with gauze
at the rims for ventilation and reared in an artificial climate
box (26°C±1°C, 60% humidity, 7000 lx of light, and 14 : 10 h
light: dark cycle). Pupal hatching was observed daily and
when the first adult emerged, the adults were collected
once a day, then randomly and equally transferred to three
plastic cups configured with different food: (i) normal feed-
ing group—standard corn flour medium for fruit flies were
provided; (ii) water supply group—only distilled water
were provided; (iii) starved group—no food and water was
provided. The individuals that had been placed in different
food configurations for 2 days were taken out and put in
absolute ethanol separately and stored at −20°C.

4.2. DNA extraction, PCR and sequencing
Ten males and 10 females were randomly selected from each
treatment group and washed twice with distilled water to
remove the absolute ethanol. According to the instructions,
the total DNA of each specimen was extracted from the
whole body using EasyPure® Genomic DNA Kit (TransGen,
Beijing, China) and stored at −20°C after quality inspection
by using NanoDrop (Thermo Fisher Scientific).

For standard Sanger sequencing, the PCR reaction
mixture was 25 µl for the amplification of cox1 gene per
specimen, consisting of 0.5 µl (10 µM) each of forward
(MiniLepF1, 50-GCTTTCCCACGAATAAATAATA-30) [59]
and reverse (HCO2198, 50-TAAACTTCAGGGTGACC
AAAAAATCA-30) [37] primers, 2.5 µl 10 ×TransTaq HiFi
buffer, 2 µl dNTP, 0.25 µl TransTaq DNA polymerase high
fidelity (TransGen, Beijing, China), 1 µl template and
18.25 µl PCR water, with thermocycling profiles as follows:
94°C for 5 min; 35 cycles of 94°C for 30 s, 51°C for 30 s, and
72°C for 45 s; and 72°C for 7 min. A 3.5 µl of PCR products
were used for electrophoresis on 1% agarose gel and the posi-
tive PCR products were bi-direction sequenced (Songon
Biotech, China).

For amplicon sequencing, an additional 6 bp barcode
sequence was added to the 50 end of both primers (MniLepF1 &
HCO2198). Each individual was set-up with three PCR
replicates and the PCR reaction mixture was 25 µl, including
3 ng of total DNA, 12.5 µl 2× Q5 High-Fidelity Master Mix
(New England Biolabs, Ipswich, MA, USA), 1.25 µl (10 µM)
of both forward and reverse primers and the rest sup-
plemented with PCR water. The thermocycling profiles
were 98°C for 30 s; 35 cycles of 98°C for 30 s, 51°C for 30 s,
and 72°C for 30 s; and 72°C for 2 min. A 3.5 µl of PCR pro-
ducts was used for electrophoresis on 1% agarose gel, and
the three positive PCR products of the same specimen were
mixed and purified using MagicPure Size Selection DNA
Beads II (TransGen, Beijing, China). A DNA library was con-
structed by mixing PCR products of 10 specimens and
performed VAHTS Universal Pro DNA Library Prep Kit of
pair-end Illumina Miseq (2 × 300) sequencing (Genewiz,
Suzhou, China).
4.3. Data analysis
Sanger sequences for the cox1 gene were aligned and
trimmed by BioEdit using the ClustalW algorithm [60] with
default parameters to a final length of 407 bp, and frameshifts
or nonsense mutations were then checked using EditSeq to
exclude numts. For high-throughput data processing, nine
steps were performed (electronic supplementary material,
S1), obtaining haplotypes after removing sequences with fre-
quencies lower than 0.5% of the total reads, and in each
individual, the haplotype with the largest number of reads
was called major haplotype, while all of the rest haplotypes
were called minor haplotypes [45].

The average genetic distance of haplotypes within each
specimen was calculated by MEGA 10 [61]. We used all hap-
lotype sequences within each individual to analyse the
heteroplasmic sites, by setting the major haplotype as the
reference sequence to search for the differential sites between
major and minor haplotypes. DnaSP 6.0 [62] was used to
identify the same haplotypes among different specimens.
The effect of non-synonymous substitution on protein func-
tion was predicted by the online program PROVEN Protein
(http://provean.jcvi.org/seq_submit.php). A median-joining
network was constructed based on the haplotype sequences
of Hap1-Hap24 using Network 5.0.1.0 [63]. The SPSS v20
was used to analyse the statistical differences in the data,
and the independent samples t-test was performed for data
that met the normal distribution; those data that did not
meet the normal distribution were examined using the
Mann–Whitney U-test.

Data accessibility. The high-throughput sequencing data of all individ-
uals in the three treatment groups have been deposited in GenBank
under the accession ID of BioProject PRJNA761665.

The data are provided in the electronic supplementary material [64].
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