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Abstract Given the advantages of being stable in the
ambient environment, being permeable to the blood–brain
and/or blood–eye barriers and being convenient for admin-
istration, naturopathic compounds have growingly become
promising therapeutic candidates for neural protection.
Extracted from one of the most common Chinese herbal
medicines, tetramethylpyrazine (TMP), also designated as
ligustrazine, has been suggested to be neuroprotective in the
central nervous system as well as the peripheral nerve network.
Although the detailedmolecular mechanisms of its efficacy for
neural protection are understood limitedly, accumulating
evidence suggests that antioxidative stress, antagonism for
calcium, and suppression of pro-inflammatory factors
contribute significantly to its neuroprotection. In animal
studies, systemic administration of TMP (subcutaneous
injection, 50 mg/kg) significantly blocked neuronal degen-
eration in hippocampus as well as the other vulnerable
regions in brains of Sprague–Dawley rats following kainate-
induced prolonged seizures. Results from us and others also
demonstrated potent neuroprotective efficacy of TMP for
retinal cells and robust benefits for brain in Alzheimer’s
disease or other brain injury. These results suggest a
promising prospect for TMP to be used as a treatment of
specific neurodegenerative diseases. Given the assessment
of the distribution, metabolism, excretion, and toxicity
information that is already available on most neuroprotective
naturopathic compounds such as TMP, it would not take
much preclinical data to justify bringing such therapeutic
compounds to clinical trials in humans.
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Introduction

Neuronal degeneration, i.e., neuronal cell death, underlies
the pathology and malfunction of many different neurolog-
ical diseases occurring in both animals and human beings.
Progressive and selective neuronal cell death in the central
nervous system (CNS) and/or the peripheral nerve network
has been profoundly implicated in the pathogenesis of
neurodegenerative disorders including Alzheimer’s disease
(AD), Parkinson’s disease, Huntington’s disease, Lou
Gehrig’s disease or amyotrophic lateral sclerosis, multiple
sclerosis, epilepsy, stroke, traumatic injury, age-related
macular degeneration, glaucoma, prion diseases, infections,
and so on [1, 2]. Evidence is rapidly accumulating to
suggest that selective neuronal cell death through necrosis
and/or apoptosis mechanisms contributes significantly to
the functional anomalies of specific neurologic disorders
[1]. Changes of genetic, epigenetic, metabolic, and envi-
ronmental factors might directly or indirectly cause (1)
massive DNA damage, (2) dysfunction of the ubiquitin-
proteasomal system, (3) disruption of the axonal transport
machinery, (4) abnormalities of mitochondrial structure and
function, (4) disturbance of intracellular ionic homeostasis
(particularly Ca2+ and Zn2+), and (5) accumulation of
reactive oxygen species (ROS) in the neuronal cells.
Accumulating intracellular stress subsequently results in
(1) loss of spines and synapses, (2) fragmentation of
neuronal processes and extended neuritic degeneration
following demyelination, (3) global neuronal cell death
following activation of signal transduction cascade for
programmed cell death, (4) anomalies of microvasculature,
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and (5) provocated neuroinflammatory response leading to
the destructive pathogenic changes (see several representa-
tive reviews) [1–4]. Accordingly, the main aim of neural
protection in neurodegenerative disorders is to retard
progression by blocking the mechanisms that lead to
neuronal cell death as well as associated neuroinflammatory
events. Therefore, considerable efforts have been made in
recent decades to discover new potential therapeutic
compounds that can help to prevent the onset or to slow
down the progression of such diseases. Equal attempts are
also made to improve the therapeutic efficacy of known
medications through chemical modification. Given the
evident advantages of being stable in the ambient environ-
ment, being permeable to the blood–brain and/or blood–eye
barriers, and being convenient for administration (Fig. 1),
naturopathic compounds have growingly become groups of
the best therapeutic candidates for neural protection from the
sensory system including retina to the central nervous system
(brain). Table 1 summarizes a group of selected herbal
extracts that have demonstrated significant neuroprotective
efficacy both in vivo and in vitro. Taking tetramethylpyr-
azine (TMP) as an example, the neuroprotective efficacy
and related issues are discussed here.

Tetramethylpyrazine, an herbal extract showing
multiple protective effects on cells and benefits
on physiological function

As listed in Table 1, TMP, also designated as ligustrazine, is
an alkaloid extracted from the Chinese herbal medicine,

Ligusticum wallichii Franchat (chuanxiong) [5]. For
hundreds of years, chuanxiong has been used as a
traditional Chinese medicine for heart, kidney, and brain
diseases [6, 7]. Experimental studies demonstrated that
TMP treatments significantly improved cardiac and cerebral
blood flow and elevated blood reperfusion as shown in the
nail microcirculation [8, 9]. In an ex vivo study, a semi-
synthetic form of TMP monomer induced a dose-dependent
relaxation of human pulmonary and bronchial arteries [10].
TMP also exhibited a calcium antagonist role in vascular
tissues [11]; functioned as a ROS scavenger to deactivate
cytotoxic ROS such as superoxide anion (O2−), hydroxyl
(OH−), and lipid peroxyl (LOO−) free radicals [12, 13];
and inhibited inflammatory events in vivo possibly through
modulating secretion of specific cytokines and nitric oxide-
related pathways [14–16].

About two decades ago, a study briefly reported that
TMP alleviated ischemic retinal degeneration in vivo [17].
Recently, a different group of researchers demonstrated that
systemic injection of TMP significantly protected retinal
photoreceptor from loss induced by N-methyl-N-nitrosourea
in rats [18]. Further, we demonstrated that TMP efficiently
enhanced in vitro survival of cultured rat retinal cells and
significantly attenuated cell damage in these cells exposed
to hydrogen peroxide [19].

In the CNS, TMP significantly suppressed oxidative stress
and attenuated neuronal cell death in neuronal cultures
following iron-mediated oxidative damage and glutamate-
mediated excitotoxicity [20–22]. Systemic administration of
TMP protected neuronal cells against ischemic or traumatic
brain or spinal cord injury and promoted functional recovery

Fig. 1 The conventional route
of most natural compounds from
herbs to target organs. In the
traditional Chinese medicine,
the herbal therapeutic
ingredients are extracted and
prepared as herbal tea or soup
with water through regular
cooking and taken orally. The
effective ingredients are
absorbed by the gastrointestinal
tract and successfully pass
through the blood–brain and/or
blood–eye barriers to reach the
targets, brain and/or retinas
(graphic clips were taken from
the Internet free sources)
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in rodents and rabbits [23, 24]. Interestingly, systemic
administration of TMP also attenuated impairment of
learning and memory performance in rodents following
D-galactose- or ischemia-induced brain injury [25, 26]. The
potential therapeutic efficacy of TMP for AD is further
supported by our recent observations about significant
improvement of cognitive function as well as cerebral
amyloid pathology in the demented Alzheimer’s triple
transgenic (3xTg-AD) mice (Tan et al., unpublished obser-
vations). These findings suggest that TMP has potent
neuroprotective efficacy.

TMP protects neuronal degeneration in rat brain
against excitotoxicity—an experimental study

Systemic administration of excitotoxin, kainic acid (KA), a
glutamate analog, causes striking neuronal cell death in rat
brain following prolonged seizures. To examine further
whether TMP protects brain cells from KA-induced
neuronal degeneration, which is one of the most common
animal models for excitotoxic neuronal cell death that is
apparently involved in the pathogenesis of multiple
neurodegenerative disorders [27–29], 1-month-old male
Sprague–Dawley rats were housed and treated according
to the National Institutes of Health guidelines for the care
and use of laboratory animals and a protocol approved by
the UCI Institutional Animal Care and Use Committee. One

hour after the onset of seizures following subcutaneous
(s.c.) injection of KA (10.5 mg/kg), rats received TMP
(50 mg/kg, s.c.) or equal volume of vehicle. Untreated
animals were used as blank controls. All the animals (N=6
each group) were decapitated 24 h after TMP or vehicle
injection under CO2 gas-induced deep anesthesia. The brain
was rapidly harvested, frozen, and cryosectioned in the
coronal plane at 10 µm. Adjacent sections from each brain
were stained with hematoxylin–eosin (H & E) and in situ cell
death assay kit for terminal deoxytransferase-mediated dUTP
nick end labeling (TUNEL; Roche, Indianapolis, IN, USA),
respectively, as described in our previous work [30, 31].

Systemic administration of KA resulted in a well-
described pattern of behavioral seizures including wet dog
shake at the beginning stage and progressed to tonic–clonic
activity [27]. Seizures typically occurred intermittently
during the first 6–8 h and yielded about 10% or less
mortality. As observed in this study, TMP treatments did
not alter the pattern and the severity of the seizures. Brain
sections from the animals that received “KA + vehicle”
demonstrated robust neuronal degeneration in KA-
vulnerable regions in brain as revealed by both H & E
staining and TUNEL labeling (Fig. 2a (f–j)) whereas the
controls showed no eosinophilic or TUNEL-positive
damaged cells (Fig. 2a (a–e)). In contrast, given 50 mg/kg
TMP following the onset of seizures, animals showed
markedly fewer damaged cells in the corresponding regions
in the brain (Fig. 2a (k–o)). Quantification of TUNEL-

Table 1 List of selected naturopathic compounds that have demonstrated neuroprotective efficacy in both retina and brain

Name Natural sources (selected) Structural classification Selected studies

Baicalein Radix scutellariae Alkaloids C [49, 50]; R [51, 52]; B [53, 54]

Chlorogenic acid Eucommia or other plants Polyphenolics C [55]; R [56]; B [57, 58]

Curcumin Curcuma longa Alkaloids C [59, 60]; R [59, 61]; B [60, 62, 63]

Emodin Leguminosae seed Alkaloids C [64, 65]; R [66]; B [65, 67]

Fisetin Rhus cotinus bark Polyphenolics C [68, 69]; R [70]; B [71]

Kaempferol Euonymus alatus or Impatiens balsamina Flavonoids C [72, 73]; R [70, 74]; B [75]

Ligustrazine Ligusticum wallichii roots Alkaloids C [19]; R [76]; B [23, 77]

Morin The Moraceae family, e.g., mulberry Flavonoids C [78]; R [79]; B [80, 81]

Myricetin Myrica rubra Flavonoids C [78]; R [74]; B [82]

Naringenin Satureja obovata Flavonoids C [83]; R [84]; B [85]

Paeoniflorin Paeony roots Polyphenolics C [86]; R [87]; B [88–90]

Puerarin Pueraria lobata roots Alkaloids C [91, 92]; R [93, 94]; B [95, 96]

Pycnogenol Pinus maritime bark Flavonoids C [97]; R [98, 99]; B [100]

Quercetin Euonymus alatus Flavonoids C [101, 102]; R [84, 103]; B [104, 105].

Resveratrol Grapes Flavonoids C [106, 107]; R [108]; B [108–110]

Rutin Buckwheat Flavonoids C [111]; R [84]; B [104]

Wogonin Scutellaria baicalensis Flavonoids C [112, 113]; R [114]; B [115, 116]

C, in vitro studies conducted in cultured cells; R, in vivo studies showing retinal protection; B, in vivo studies demonstrating neuroprotective
efficacy in the brain

j ocul biol dis inform (2009) 2:57–64 59



positive cells conducted as described in our previous work
[32, 33] revealed a statistically significant difference
between “KA + vehicle” and “KA + TMP”, suggesting
remarkable neuroprotective efficacy of TMP in the CNS
under excitotoxic attack.

In cultured neural cells, TMP treatments significantly
reduced generation of lipid peroxidation products, malon-
dialdehyde, induced by hydrogen peroxide [19, 20]. The
observations are also in agreement with an increase in

abundance of glutathione in 3xTg-AD mouse brains
following TMP treatments (data not shown). In addition,
the benefits of TMP treatments preserved abundance of
MAP2 and rattin, two molecules that play important roles
in cell growth and function [19, 34, 35]. Taken these
together, TMP may target multiple levels and cell signal
transduction pathways to contribute to the survival of
neural cells and the normal function of the nervous
system.

Fig. 2 Systemic administration
of TMP attenuates neuronal
degeneration in rat brains
following kainate-induced
seizures. a Both hematoxylin–
eosin (H & E) and TUNEL
staining demonstrate massive
neuronal damage shown as pink
in H & E staining (f, g) and
green in TUNEL (h, i, and j) in
both hippocampus (f, g, h, and i)
and piriform cortex (j) regions.
In contrast, the animals received
TMP only exhibited a few
sporadic eosinophilic (l) and
TUNEL-positive cells in the
corresponding regions (m, n,
and o). b Quantification of
TUNEL-positive cells according
to our previous methods reveals
a significant decrease in the
number of damaged neurons
in the hippocampal regions
with TMP treatment. Scale bar=
100 µm in b, d, e, g, i, j, l, n, and
o; and 400 µm in a, c, f, h, k,
and m
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How far is TMP from the next phase for clinical
applications?

As a naturopathic compound isolated from a Chinese
herbal medicine, TMP has been the subject of many
pharmacological and toxicological studies. The solubility
of purified TMP in crystal form is relatively low in neutral
aqueous solution (~10 µg/ml) and dramatically increases in
an acidic environment (>40 mg/ml, pH <4), in which TMP
is stable and active [36]. Preclinical assessment of the
distribution, metabolism, excretion, and toxicity (ADMET)
of TMP has been performed in animals and in vitro
since more than 20 years ago [37–41]. Without any
surprise, pharmacokinetic studies demonstrated that TMP
was efficiently permeable to the blood–brain barrier in
multiple animal models [39, 40]. Toxicity assays revealed
a very low level of toxicity in animals with an oral LD50

of about 1,910 mg/kg in rats and 1,436 mg/kg in mice
[42, 43]. Importantly, practitioners of traditional Chinese
medicine have continued to use TMP as a treatment for
inflammatory or degenerative diseases, usually in combi-
nation with other medications [6, 8, 44–46]. In this
regard, both TMP tablets and TMP–HCl injection solu-
tion are prescription-available for a treatment of cardio-
vascular diseases in China [47, 48]. Given the ADMET
information that is already available on TMP, it would not
take much preclinical data to justify bringing TMP to
clinical trials in humans. This proof-of-concept proposal
will provide sufficient preclinical evidence to justify
studying TMP in patients with neurodegenerative disor-
ders in a double-blind placebo-controlled manner. Never-
theless, our understanding of the molecular basis for
TMP-mediated pharmacological actions remains limiting.
Similarly, there is a lack of well-designed preclinical
studies of TMP efficacy for neurological disorders. Such
studies are critical prior to moving TMP to studies in
humans.

Summary

In addition to TMP, there are groups of naturopathic
compounds that have been purified from related herbal
medicines and identified as efficient neuroprotective ingre-
dients as mentioned. Resembling TMP, many of these
compounds have demonstrated remarkable neuroprotective
efficacy in experimental studies conducted in cell cultures
and/or live animals. Some of them are also used in clinics
as treatment for specific neurological disorders. Therefore,
once further studies are warranted to decipher the molecular
basis of related pharmacological efficacy, many of such
naturopathic molecules would move to clinical assessments
for neural protection in humans.
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