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Abstract: Mango peels are usually discarded as waste; however, they contain phytochemicals and
could provide functional properties to food and promote human health. This study aimed to
determine the optimal lactic acid bacteria for fermentation of mango peel and evaluate the effect
of mango peel on neuronal protection in Neuron-2A cells against amyloid beta (Aβ) treatment
(50 µM). Mango peel can be fermented by different lactic acid bacteria species. Lactobacillus acidophilus
(BCRC14079)-fermented mango peel produced the highest concentration of lactic acid bacteria
(exceeding 108 CFU/mL). Mango peel and fermented mango peel extracts upregulated brain-derived
neurotrophic factor (BDNF) expression for 1.74-fold in Neuron-2A cells. Furthermore, mango
peel fermented products attenuated oxidative stress in Aβ-treated neural cells by 27%. Extracts
of L. acidophilus (BCRC14079)-fermented mango peel treatment decreased Aβ accumulation and
attenuated the increase of subG1 caused by Aβ induction in Neuron-2A cells. In conclusion, L.
acidophilus (BCRC14079)-fermented mango peel acts as a novel neuronal protective product by
inhibiting oxidative stress and increasing BDNF expression in neural cells.

Keywords: mango peel; Neuron-2A cells; amyloid beta; Lactobacillus acidophilus; brain-derived
neurotrophic factor

1. Introduction

Mango (Mangifera indica L.) is consumed as a dried fruit, as well as in juice, ice cream,
and wine. Mango peel is usually discarded, resulting in environmental pollution caused
by the carbohydrate (pectin, sucrose, and insoluble and soluble fiber), protein, and phyto-
chemical (carotenoids and phenolic acid) content. Among these compounds, mangiferin
is a functional antioxidant found in mango peel that promotes health. Mangiferin is a
xanthone and is present in high levels in different parts (peel, leaves, and kernel). It is an
antioxidant that has been demonstrated to protect cultured cortical neurons and organ-
otypic slices against Aβ oligomers, attenuate oxidative stress and prevent mitochondrial
dysfunction and neuronal injury [1]. Most importantly, mangiferin enhances hippocam-
pal brain-derived neurotrophic factor (BDNF) levels and prevents cognitive deficits and
hippocampal BDNF depletion related to neurotoxic agents [2,3].

Therefore, mango peel could be used to improve the functional properties of food.
Mango peel powder has been used in biscuits, bread and several other types of foods [4].
Recently, mango has been used in lactic acid bacteria-fermented products [5,6], as well as
fermentation with yeasts [7–9]. During gastrointestinal digestion and colonic fermentation,
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mango peel is able to increase polyphenolic compounds, leading to the transformation of
mangiferin to norathyriol, mediated by microbiota [10,11]. Moreover, mango peel regu-
lates gut microbiota, including promotion of Faecalibacterium, Roseburia, Eubacterium,
Fusicatenibacter, Holdemanella, Catenibacterium, Phascolarctobacterium, Bifidobacterium,
Collinsella, Prevotella and Bacteroides [12]. Various studies have demonstrated that the
gut and central nervous system engage in crosstalk and that regulation of gut commensal
flora could be a promising therapy for neurodegenerative diseases [13]. An increase in
gastric vagus nerve activity by Lactobacillus johnsonii has been reported [14]. Moreover,
the Lactobacillus rhamnosus-derived metabolites have potentials for ameliorating neuronal
inflammation [15]. In this study, the optimal lactic acid bacteria for fermentation in mango
peel was determined, and neuronal protection in Neuron-2A cells against amyloid beta
(Aβ) induction was evaluated.

2. Results and Discussion
2.1. Mango Peel Fermentation by Lactic Acid Bacteria

Lactobacillus acidophilus (BCRC10695), Lactiplantibacillus plantarum subsp. plantarum
NTU102, and Lacticaseibacillus paracasei subsp. paracasei NTU101 have been used in
plant fermentation to increase antioxidative, anti-inflammatory, atherosclerosis-preventing,
and antiobesity capabilities, to regulate lipid metabolism and to prevent acute gastric
ulcers [16–22]. Moreover, some active ingredients have been found in lactic acid bacteria-
fermented products, such as GABA and ACEI [23]. The mango peel fermentation process is
shown in Figure 1. After mashing and freeze-drying, mango peel powder was dissolved to
25, 30, and 35% and fermented with different lactic acid bacteria species. After fermentation,
the supernatant of fermented products was collected for treating Neuron-2A cells.
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Figure 1. The fermented-process of mango peel by L. acidophilus (BCRC14079), L. plantarum subsp.
plantarum (BCRC10367), and L. paracasei subsup. paracasei (BCRC80062).

Titratable acid and pH value were determined in fermented-mango peel (30%) by
different lactic acid bacteria species, including L. acidophilus (BCRC14079), L. plantarum
subsp. plantarum (BCRC10367) and L. paracasei subsp. paracasei (BCRC80062).

pH decreased as fermentation time advanced (p < 0.05): the drop in pH and increase in
titratable acid is due to the lactic acid bacteria and release of lactic acid. On the fifth day, the
pH decreased from 6.55 ± 0.03 to 4.03 ± 006, 4.71 ± 005, and 4.33 ± 0.03 in L. acidophilus,
L. planatrum, and L. paracasei, respectively (Table 1). The pH value in the L. acidophilus-
fermented mango peel group dropped the fastest and decreased the most during the
fermentation process. Figure 2 shows the experimental data of lactic acid bacteria species
cell growth on medium with mango peel. The number of lactic acid bacteria increased
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after fermenting with mango peel for five days. L. acidophilus (BCRC14079) was the fastest
growing strain, and reached the highest number of bacteria on the third day of fermentation.
The number of viable lactic acid bacteria was significantly higher than the other two strains,
exceeding 108 CFU/mL. Differences in pH and titratable acid value were determined in L.
acidophilus in solution with 25, 30, and 35% mango peel. After fermenting for five days, the
pH value of L. acidophilus (BCRC14079)-fermented mango peel decreased and the titratable
acid increased (Table 2). The 35% mango peel group had the lowest pH value (3.89 ± 0.02)
and the highest titratable acid percentage (0.85 ± 0.09) during the fermentation process.
Cell growth in L. acidophilus (BCRC14079)-fermented mango peel is shown in Figure 3. The
results indicate that the number of viable lactic acid bacteria was similar in all three groups
(25, 30, and 35% mango peel), which was near 108 CFU/mL.

Table 1. The changes of pH and titratable acidity in fermented-mango peel (30%) by various lactic acid bacteria over the
fermentation period.

Fermentation Time (Day)
L. acidophilus
(BCRC14079)

L. planatrum Subsp.
plantarum (BCRC10367)

L. paracasei Subsp.
paracasei (BCRC80062)

pH

0 6.55 ± 0.03 a 6.55 ± 0.03 a 6.55 ± 0.03 a

1 5.13 ± 0.07 b 5.74 ± 0.04 a,b 5.48 ± 0.05 b

3 4.45 ± 0.11 b 5.06 ± 0.06 b 4.89 ± 0.03 c

5 4.03 ± 0.06 c 4.71 ± 0.05 c 4.33 ± 0.03 c

Fermentation Time (Day) Titratable Acid (%)

0 0.07 ± 0.01 c 0.07 ± 0.01 c 0.07 ± 0.01 c

1 0.13 ± 0.01 c 0.09 ± 0.01 c 0.11 ± 0.02 c

3 0.43 ± 0.02 b 0.23 ± 0.01 b 0.27 ± 0.02 b

5 0.56 ± 0.03 a 0.37 ± 0.01 a 0.42 ± 0.01 a

Data are shown as means ± SD (n = 3). Significant differences are shown by various letters (p < 0.05).
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Figure 2. The change of bacterial number of lactic acid bacteria-fermented mango peel. Data are
shown as means ± SD (n = 3). Significant differences are shown by various letters (p < 0.05).

Table 2. The changes of pH and titratable acid in L. acidophilus (BCRC14079)-fermented-mango
peel products.

Mango Peel pH Titratable Acid (%)

25% 4.53 ± 0.05 a 0.41 ± 0.02 c

30% 4.11 ± 0.03 a,b 0.68 ± 0.03 b

35% 3.89 ± 0.02 b 0.85 ± 0.09 a

Data are shown as means ± SD (n = 3). Significant difference is shown by various letters (p < 0.05).



Molecules 2021, 26, 3503 4 of 11

Molecules 2021, 26, 3503 4 of 11 
 

 

Table 2. The changes of pH and titratable acid in L. acidophilus (BCRC14079)-fermented-mango peel 
products. 

Mango Peel pH Titratable Acid (%) 
25% 4.53 ± 0.05 a 0.41 ± 0.02 c 
30% 4.11 ± 0.03 a,b 0.68 ± 0.03 b 
35% 3.89 ± 0.02 b 0.85 ± 0.09 a 

Data are shown as means ± SD (n = 3). Significant difference is shown by various letters (p < 0.05). 

 
Figure 3. The change of bacterial number of L. acidophilus (BCRC14079)-fermented mango peel (var-
ious rations). Data are shown as means ± SD (n = 3). Significant differences are shown by various 
letters (p < 0.05). 

2.2. The Neuronal Protection of L. acidophilus (BCRC14079)-Fermented Mango Peel against 
Neuron-2A Cells Dysfunction Caused by Aβ Induction 

The damaging effects of Aβ in Neuron-2A cells have been demonstrated in recent 
studies, including oxidative stress [24], mitochondrial function [25] and BDNF expression 
[26]. Both mango peel and fermented-mango peel extracts significantly promoted BDNF 
expression in Neuron-2A cells (Figure 4A), but this effect was not time-dependent (Figure 
4B). BDNF expression was also analyzed by paired Student’s t-test, and there were signif-
icantly differences in the mango peel-treated group and fermented-mango peel extracts-
treated group when using t-test to calculate the statistics. 

 
Figure 4. (A) The effects of mango peel and L. acidophilus (BCRC14079) fermented-mango peel ex-
tracts (100 μg/mL) on upregulation of BDNF in Neuron-2A cells after 36 h treatment. (B) The pro-
motion of BDNF expression in Neuron-2A cells treated with L. acidophilus (BCRC14079) fermented-
mango peel for 24 h and 36 h. Data are shown as means ± SD (n = 3). Significant differences are 
shown by various letters (p < 0.05). p values were also determined by Student’s t-test (*, p < 0.05). 

Figure 3. The change of bacterial number of L. acidophilus (BCRC14079)-fermented mango peel
(various rations). Data are shown as means ± SD (n = 3). Significant differences are shown by various
letters (p < 0.05).

2.2. The Neuronal Protection of L. acidophilus (BCRC14079)-Fermented Mango Peel against
Neuron-2A Cells Dysfunction Caused by Aβ Induction

The damaging effects of Aβ in Neuron-2A cells have been demonstrated in recent
studies, including oxidative stress [24], mitochondrial function [25] and BDNF expres-
sion [26]. Both mango peel and fermented-mango peel extracts significantly promoted
BDNF expression in Neuron-2A cells (Figure 4A), but this effect was not time-dependent
(Figure 4B). BDNF expression was also analyzed by paired Student’s t-test, and there
were significantly differences in the mango peel-treated group and fermented-mango peel
extracts-treated group when using t-test to calculate the statistics.
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Figure 4. (A) The effects of mango peel and L. acidophilus (BCRC14079) fermented-mango peel extracts
(100 µg/mL) on upregulation of BDNF in Neuron-2A cells after 36 h treatment. (B) The promotion
of BDNF expression in Neuron-2A cells treated with L. acidophilus (BCRC14079) fermented-mango
peel for 24 h and 36 h. Data are shown as means ± SD (n = 3). Significant differences are shown by
various letters (p < 0.05). p values were also determined by Student’s t-test (*, p < 0.05).

The Neuron-2A cells were treated by 5, 25, and 50 µM Aβ for 36 h, and the BDNF
level was evaluated using Western blot analysis. As shown in Figure 5, only 50 µM Aβ

significantly inhibited BDNF expression compared to the control group. The Aβ peptide
generates free radicals and leads to cell toxicity, such as protein and lipid oxidation, chro-
mosomal damage and neuronal destruction [27]. Therefore, decreasing or scavenging the
production of reactive oxygen species (ROS) is an important strategy to prevent Aβ-induced
neurotoxicity in brain cells. Mitochondria are the main sources of ROS, and fluorogenic
dye MitoSox could be an indicator for highly and selective detecting mitochondrial super-
oxide of live cells. MitoSox red stain revealed increased superoxide anion accumulation
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in Neuron-2A cells after treatment with Aβ for 36 h. However, this oxidative stress was
attenuated by fermented-mango peel extract (100 µg/mL) treatment in Aβ-stimulated
Neuron-2A cells (Figure 6). The inhibition of cell viability can result from the induction of
apoptosis or cell growth suppression. Therefore, to clarify the cellular processes probably
affected by L. acidophilus (BCRC14079)-fermented mango peel, the effect on the cell cycle
was investigated using flow cytometry with propidium iodide (PI) staining. The results
revealed that Aβ treatment did not affect the cell cycle at G0/G1, S, and G2/M phases,
but weakly increased the subG1 level of Neuron-2A cells. Shanmuganathan et al. [24] and
Sun et al. [26] reported that Aβ treatment (50 and 40 µM, respectively) induced cell death in
Neuron-2A cells; however, significant toxic cellular effects were not found in Aβ treatment
in Neuron-2A cells in this study (Figure 7A). In addition, treatment with L. acidophilus
(BCRC14079)-fermented mango peel extracts (100 µg/mL) for 36 h suppressed an increase
in subG1 caused by Aβ induction in Neuron-2A cells (Figure 7B).
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The amyloid precursor protein (APP) in neuron cells is hydrolyzed by β- and γ-
secretase to form Aβ [28]. Overexpression of APP led to Aβ accumulation and was related
to AD occurrence [29,30]. Recently, L. helveticus NS8 has been found to improve behavioral,
cognitive and biochemical aberrations [31], and L. fermentum NS9 has been indicated to
restores physiological and psychological abnormalities [32]. Moreover, Bifidobacterium
longum 1714 has also been evaluated for the potential of protecting against Alzheimer’s
disease [33]. In this study, we further investigated the regulation of L. acidophilus-fermented
mango peel extracts on BDNF expression in Aβ-induced Neuron-2A cells. Results are
shown in Figure 8. L. acidophilus (BCRC14079)-fermented mango peel extracts significantly
suppressed Aβ accumulation in vitro. A study found that Lactobacillus and Bifidobacteria
both have ability to accelerate Aβ clearance through degrading enzymes [34]. We noticed a
significant accumulation of Aβ and a downregulation of BDNF expression in Neuron-2A
cells treated with Aβ for 36 h, as identified using ICC staining. This effect was attenuated by
treatment with L. acidophilus (BCRC14079)-fermented mango peel extract, which helped the
BDNF levels to recover (Figure 8). The mechanism of BDNF elevation was demonstrated
in Neuron-2A cells treated with extracellular vesicles obtained from L. plantarum [35].
Collectively, L. acidophilus-fermented mango peel extracts alleviated Aβ deposition and
protected Neuron-2A cells against toxic peptides.

The effects of mango peel on microbiota shape in colon after anaerobic digestion
were investigated. Results demonstrated that Faecalibacterium, Roseburia, Eubacterium,
Fusicatenibacter, Holdemanella, Catenibacterium, Phascolarctobacterium, Buttiauxella,
Bifidobacterium, Collinsella, Prevotella and Bacteroides genera were increased [12]. These
bacteria have ability for generation of short-chain fatty acids in the colon, e.g., Faecalibac-
terium prausnitzii produces butyrate. Previous studies found that polyphenol of mango peel
was bioconverted by gut microbiota, and mango peel could increase short-chain fatty acid
level via predigestion in the human colon [36,37]. Moreover, butyrate is a neuron-protective
agent against neuroinflammation in Alzheimer’s disease [38]. Taken together, lactic acid
bacteria-fermented mango peel may be developed in functional products for improving
neurodegenerative disorders in the future.
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3. Materials and Methods
3.1. Chemicals

Fetal bovine serum (FBS) was purchased from Life Technologies (Auckland, New
Zealand). Dimethyl sulfoxide (DMSO) was purchased from Wako Pure Chemical Industries
(Saitama, Japan). Sodium dodecyl sulfate (SDS), Triton X-100, and trypsin were purchased
from Sigma Chemical Co. (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium
(DMEM), penicillin and streptomycin were purchased from HyClone Laboratories (Lo-
gan, UT, USA). MitoSoxTM-Red mitochondrial superoxide indicator was purchased from
Thermo Fisher Scientific Inc. (Waltham, MA, USA). Lactobacilli MRS broth was purchased
from Difco Laboratories (Detroit, MI, USA).

3.2. Treatment and Fermentation of Mango Peel

Mango peel was made into a puree with a homogenizer and then freeze-dried to
powder and stored at −80 ◦C. Next, the mango peel powder was formulated into differ-
ent proportions (25, 30, and 35%) and fermented with lactic acid bacteria (L. acidophilus
BCRC14079, L. plantarum subsp. plantarum BCRC10367, or L. paracasei subsp. paracasei
BCRC80062) for five days. Lactic acid bacteria were subcultured with 1% inoculum in
10 mL sterilized MRS broth and subsequently inoculated into 400 mL mango peel solution
in a triangle bottle. Counts of lactic acid bacteria, pH, and titratable acid were measured
on the first, third, and fifth days. The three lactic acid bacteria strains were inoculated in
MRS broth and grown under anaerobic conditions at 37 ◦C. The lactobacilli levels were
measured by anaerobic cultivation on MRS plates. The fermented products were cen-
trifuged to remove bacteria and mango peel residues. The supernatant was collected and
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filtered (0.22 µm), and the product was freeze-dried and stored at −80 ◦C until cellular and
microbial experiments

3.3. Cell Culture

Cell culture and treatment Neuro-2A neuroblastoma cell line were obtained from
the Bioresource Collection and Research Center (BCRC, Food Industry Research and
Development Institute, Hsin Chu, Taiwan). Cells were grown in DMEM medium and
supplemented with 10% heat-inactivated FBS, glutamine (2 mM), and L-glutamine (2 mM)
at 37 ◦C in a humidified atmosphere of 95% air and 5% CO2. Cells were treated with Aβ

(5, 25, and 50 µM) for 36 h or 48 h with or without L. acidophilus (BCRC14079)-fermented
mango peel extracts (100 µg/mL) [39]. For Aβ induction, Aβ fragment 1–42 was obtained
from Sigma Chemical Co. (CAT: A9810, St Louis, MO, USA) and preparation of Aβ

oligomers was done according to [40]. Briefly, the lyophilized Aβ fragment was dissolved
in dimethyl sulfoxide (DMSO) to 0.5 mM, and this solution was diluted to 50 µM using
20 mM HEPES buffer and incubated at 4 ◦C for 48 h, resulting in oligomer formation.
The Aβ oligomers were observed by transmission electron microscopy (TEM) and used in
cellular experiments.

3.4. Western Blot

Cells were lysed in ice-cold lysis buffer containing 20 mM Tris-HCl (pH 7.4), 1% Triton-
X-100, 0.1% SDS, 2 mM EDTA, 10 mM NaF, 1 mM phenyl-methanesulfonyl fluoride, 500 mM
sodium vanadate and 10 mg/mL aprotinin overnight. The cell extract was centrifuged
(12,000× g, 10 min) to obtain the supernatant. The supernatant was taken as the cell extract.
The cell proteins were resolved on 10% SDS-PAGE and transferred to a polyvinylidene
fluoride membrane. Membranes were blocked with 5% nonfat milk for 1 h and incubated
with primary antibodies for 4 h. The membrane was then washed three times, each for
5 min, in PBS with Tween 20 (PBST), shaken in a solution of horseradish peroxidase-linked
secondary antibody for 1 h, and washed three more times, each for 5 min, in PBST. Proteins
were detected by enhanced chemiluminescent reagent (Millipore, Billerica, MA, USA).

3.5. MitoSOX-Red Stain

The assumption that mitochondria serve as the major intracellular source of ROS was
based on experiments with isolated mitochondria, rather than on direct measurements in
living cells. The MitoSOX™ Red mitochondrial superoxide indicator is a novel fluorogenic
dye for the highly selective detection of superoxide in the mitochondria of viable cells.
The MitoSOX™ Red reagent is a viable-cell permeant that rapidly and selectively targets
the mitochondria. Once in the mitochondria, the reagent is oxidized by superoxide and
exhibits red fluorescence. The reagent is readily oxidized by superoxide, but not by other
ROS or reactive nitrogen species-generating systems, and the oxidation of the probe is
prevented by superoxide dismutase. The oxidation product becomes highly fluorescent
upon binding to nucleic acids. Mitochondrial superoxide is generated as a byproduct of
oxidative phosphorylation. Briefly, cells were stained by MitoSOX™ Red reagent (5 µM) at
37 ◦C for 30 min, and the fluorescence intensity was measured using a confocal microscope
(Leica Microsystems, Mannheim, Germany) [41].

3.6. Cell Cycle

Neuron-2A cells were PI stained for fluorescence-activated cell sorting (FACS) analysis.
Cells (3 × 105 cells/well) were seeded into sterile six-well plates. After 12 h incubation
with Aβ, and with or without L. acidophilus (BCRC14079)-fermented mango peel extracts,
the cells were detached using trypsin-EDTA, washed with PBS, collected through centrifu-
gation (450× g, 10 min), and stained with the PI staining solution containing 50 µg/mL PI,
0.5% (w/v) RNase A, and 0.1% (v/v) Triton-X-100. After incubation for 30 min at 4 ◦C in
the dark, the cell cycle distribution was analyzed using flow cytometry on a FACS flow
cytometer (Becton Dickinson & Co., Mountain View, CA, USA). A total of 100,000 events in
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each sample were acquired. The cell cycle distribution was determined using CellQuest
Pro software (Becton Dickinson & Co., Franklin Lakes, NJ, USA) [42].

3.7. Immunocytochemistry Stain

Cells were stained with hoestest 33,342 for 30 min. After being rinsed twice with PBS,
the cells were fixed with formaldehyde (3.7%) for 10 min, and the primary monoclonal
antibody for 12 h at 4 ◦C. The sections were then washed with PBS and incubated with
the secondary antibody (labeled with fluorescein isothiocyanate or rhodamine) in PBS for
1 h. The sections were then rinsed twice with PBS and cells were observed by confocal
microscopy [43].

3.8. Statistical Analysis

Results were expressed as means ± SD. Comparisons among groups were made using
one-way ANOVA. The differences between mean values in all groups were tested through
Duncan’s multiple-range test (SPSS statistical software package, version 17.0, SPSS, Chicago,
IL, USA). A p-value less than 0.05 was considered as a significant difference between means.
BDNF levels were compared using two-tailed Student’s t test, and differences with a
p value <0.05 were considered as statistically significant.

4. Conclusions

Many chemicals have been used in neurodegeneration diseases, but they also ex-
hibit side-effects. This study found a potential neuronal-protection effect of L. acidophilus
(BCRC14079)-fermented mango peel mediated by inhibiting oxidative stress and promoting
BDNF expression, with potential for development of pharmaceutical for neuronal protection.
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