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Background. After curative surgical resection, about 30-75% lung adenocarcinoma (LUAD) patients suffer from recurrence with
dismal survival outcomes. Identification of patients with high risk of recurrence to impose intense therapy is urgently needed.
Materials and Methods. Gene expression data of LUAD were obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) were calculated by comparing the recurrent and
primary tissues. Prognostic genes associated with the recurrence-free survival (RFS) of LUAD patients were identified using
univariate analysis. LASSO Cox regression and multivariate Cox analysis were applied to extract key genes and establish the
prediction model. Results. We detected 37 DEGs between primary and recurrent LUAD tumors. Using univariate analysis, 31
DEGs were found to be significantly associated with RFS. We established the RFS prediction model including thirteen genes
using the LASSO Cox regression. In the training cohort, we classified patients into high- and low-risk groups and found that
patients in the high-risk group suffered from worse RFS compared to those in the low-risk group (P < 0:01). Concordant results
were confirmed in the internal and external validation cohort. The efficiency of the prediction model was also confirmed under
different clinical subgroups. The high-risk group was significantly identified as the risk factor of recurrence in LUAD by the
multivariate Cox analysis (HR = 13:37, P = 0:01). Compared to clinicopathological features, our prediction model possessed
higher accuracy to identify patients with high risk of recurrence (AUC = 96:3%). Finally, we found that the G2M checkpoint
pathway was enriched both in recurrent tumors and primary tumors of high-risk patients. Conclusions. Our recurrence-specific
gene-based prognostic prediction model provides extra information about the risk of recurrence in LUAD, which is conducive
for clinicians to conduct individualized therapy in clinic.

1. Introduction

Lung cancer, the 5-year overall survival (OS) rate of which is
as low as 23% [1], is the leading cancer threatening people’s
health worldwide [2]. Lung cancer contains two major histo-
logical types: non-small-cell lung cancer (approximately
83%) and small-cell lung cancer [1]. According to the Cancer
Statistics Review 2012 [3], lung adenocarcinoma (LUAD)
accounts for 43.3% of all lung cancers, replacing squamous
cell lung carcinoma as the most common type of lung cancer.
For early-stage LUAD patients, surgical resection is recom-
mended [4]. However, after curative surgical resection, about

30-75% patents suffer from recurrence [5–7]. Once recur-
rence happens, survival outcomes are dismal, with a range
of 8-14 months of postrecurrence survival (PRS) [8] and 1-
year mortality as high as 48.3%-80.6% depending on the
tumor stage [9, 10].

Identifying patients with high probability of submitting
to recurrence and imposing intense therapy might tremen-
dously improve the survival outcomes of LUAD. Clinical
decisions for LUAD patients were mainly based on clinico-
pathological features like TNM stage, surgical margins, dif-
ferentiation, vascular invasion, or single gene mutation
status like the epidermal growth factor receptor (EGFR)
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mutation and the BRAF V600E mutation [11, 12]. However,
these clinicopathological features fail to clearly identify
patients with high risk of recurrence. Since tumorigenesis is
complicated with numerous pathways regulated, researchers
hypothesize that multigene profiles are capable of discrimi-
nating patients with heterogeneity survival outcomes [13].
Several groups have developed gene expression-based predic-
tion model that successfully stratified LUAD patients into
high- and low-risk groups [13–18]. Based on quantitative-
PCR assay, Prof. David M Jablons developed a 14-gene
expression prediction model, which stratified patients into
low-risk, intermediate-risk, and high-risk groups. And the
5-year OS were 71.4%, 58.3%, and 49.2% for low-risk, inter-
mediate-risk, and high-risk patients, respectively [19].
Benefiting from the accumulated public expression database
like The Cancer Genome Atlas (TCGA) and Gene expression
Omnibus (GEO), Prof. Chun-lai Lu built a risk model by
screening prognostic-related genes using expression data
from TCGA [20]. Many of these gene signatures are based
on literature review or roughly screening survival-related
genes using the Cox regression, which makes them not stable
enough to be generalized in clinic.

It is rationally hypothesized that building a prediction
model on the basis of recurrence-specific genes would better
distinguish high-risk patients of recurrence. Therefore, aim-
ing to identify high-risk LUAD patients of recurrence, we
explored the recurrence-associated genes using the public
GEO dataset and established a recurrence-free survival
(RFS) prediction model using the expression data of LUAD
patients from TCGA and validated its accuracy and feasibil-
ity in an external dataset.

2. Methods

2.1. Dataset Description. Gene expression profiles of primary
and recurrent LUAD (GSE7880) and the external validation
cohort (GSE68465) were downloaded from the Gene Expres-
sion Omnibus (GEO) website (https://www.ncbi.nlm. http://
nih.gov/geo). The expression matrix of The Cancer Genome
Atlas (TCGA) cohort was downloaded from the TCGA web-
site (https://xenabrowser.net/datapages/), along with the
matched clinical records. Patients without clear RFS were fil-
tered out. Patients with sufficient RFS obtained from the
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Figure 1: Differentially expressed genes between recurrent and primary LUAD: (a) the volcano plot displaying DEGs between recurrent and
primary LUAD samples in the GSE7880 cohort; (b, c) bar plot showing the G2M checkpoint pathway (b) and KRAS signaling pathway (c)
enriched in recurrent tumors using the gene set enrichment analysis.
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TCGA database were randomly divided into the training and
testing subsets, with a ratio of 7 : 3.

2.2. Identification of Differentially Expressed Genes (DEGs).
The differentially expressed genes (DEGs) of the
microarray-based data (GSE7880) were identified using the
“limma” package [21] while the DEGs of sequencing-based
data (TCGA) were identified using the “DESeq2” package
[22]. DEGs of both datasets were determined based on an
absolute log2 ðfold changeÞ > 1 and a P value less than 0.05.

The GSEA [23] software was used to calculate the normalized
enrichment scores (NES) and false discovery rate (FDR)
values for the Hallmark gene sets [24]. The genes were pre-
ranked according to the log fold change values. NES corre-
sponds to the enrichment score (ES), which reflects the
degree to which a gene set is overrepresented at the top or
bottom of a ranked list of genes. The normalization is based
on the gene set enrichment scores for all dataset
permutations.

2.3. Development of Prediction Model. All data analyses were
calculated using the related R packages on the R platform
(https://cran.r-project.org/src/base/R-3/) (version 3.6.2).
The univariate and multivariate Cox regression analyses were
carried out using the “survival” package (v3.1-8). We nor-
malized TCGA gene expression value into log2 ðTPM + 1Þ
and performed the univariate Cox regression analysis to find
out the RFS-related gene candidates (P < 0:05) using the
DEGs (note: TPM, transcripts per kilobase of exon model
per million mapped reads). Then, the LASSO Cox regression
analysis was carried out to select features (gene signature)
with the best prediction power. The multivariate Cox regres-
sion analysis was performed to construct the prognostic
model using the selected features, by which we calculated
the risk scores of each patient and separated them into low-
(risk score < 0) and high-risk (risk score > 0) subgroups.
The survival plot was calculated with the “rms” package
(v5.1-4), which were used to detect the significant difference
of RFS risks between these two subgroups, and the logrank
test was performed to state the differential significance
between the two subgroups. Besides, the receiver operating
characteristic (ROC) curve was employed to test the stability
and sensitivity of this prognostic model using the R package
“pROC” (v1.16.1) [25].

3. Results

3.1. Identification of LUAD Recurrence Specific Genes. Aim-
ing to identify genes associated with LUAD recurrence, we
collected an expression microarray dataset containing pri-
mary and recurrent LUAD samples from GEO (GSE7880).
We detected the DEGs between primary and recurrent
LUAD using the “limma” package. Genes with absolute log
2 ðfold changeÞ > 1 and P value < 0.05 were considered statis-
tically significant DEGs. In all, we identified 37 DEGs,
including 19 upregulated genes and 18 downregulated genes
in recurrent tumors (Figure 1(a); Table S1). Gene set
enrichment analysis (GSEA) indicated that recurrent
LUAD was associated with the activity of the G2M
checkpoint pathway (NES = 1:88; FDR = 0:01) and KRAS
signaling pathway (NES = 1:66; FDR = 0:04) (Figures 1(b)
and 1(c)).

3.2. Establishment of Recurrence-Specific Gene-Based RFS
Predicting Model. In order to develop a robust RFS predicting
model for LUAD, we collected the expression data of 426
LUAD patients from TCGA with available clear RFS. We
extracted the 37 DEGs’ expression profile from TCGA data-
sets and performed the univariate Cox regression analysis to

Table 1: Clinical characteristics of included patients for survival
model construction and validation.

TCGA training
cohort (288)

TCGA testing
cohort (128)

External
validation cohort

(335)

Sex P = 0:30 P = 0:99
Female 167 (56.04%) 64 (50%) 189 (56.42%)

Male 131 (43.96%) 64 (50%) 146 (43.58%)

Age P = 0:33 P = 1:00
≥60 201 (67.45%) 95 (74.22%) 234 (69.85%)

<60 88 (29.53%) 32 (25%) 101 (30.15%)

Unknown
9 (3.02%) 1 (0.78%) 0 (0%)

Pathologic
T

P = 0:27 P = 0:32

T1 109 (36.58%) 41 (32.03%) 110 (32.84%)

T2 160 (53.69%) 67 (52.34%) 202 (60.29%)

T3 21 (7.05%) 13 (10.16%) 16 (4.78%)

T4 6 (2.01%) 6 (4.69%) 5 (1.49%)

Unknown
2 (0.67%) 1 (0.78%) 2 (0.60%)

Pathologic
N

P = 0:66 P = 0:31

N0 201 (67.45%) 80 (62.50%) 299 (89.25%)

N1 52 (17.45%) 26 (20.31%) 88 (26.27%)

N2 38 (12.75%) 17 (13.28%) 53 (14.93%)

N3 2 (0.67%) 0 (0%) 0 (0%)

Unknown
5 (1.68%) 5 (3.91%) 0 (0%)

Pathologic
M

P = 1:00 NA

M0 192 (64.43%) 83 (64.84%) 0 (0%)

M1 12 (4.03%) 5 (3.91%) 0 (0%)

Unknown
94 (31.54%) 40 (31.25%) 335 (100%)

Tumor
stage

P = 0:70 P < 0:01

I 171 (57.38%) 64 (50.00%) 150 (33.86%)

II 69 (23.15%) 33 (25.78%) 252 (56.88%)

III 43 (14.43%) 21 (16.41%) 29 (6.55%)

IV 12 (4.03%) 6 (4.69%) 12 (2.71%)

Unknown
3 (1.01%) 4 (3.13%) 0 (0%)
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identify RFS-related gene candidates. As a result, 31 genes
were found significantly associated with the RFS of LUAD
patients (P < 0:05, logrank test; Figure S1). Then, we
randomly selected 70% of patients from TCGA dataset as
the training cohort (298 samples) and the rest as testing
cohort (128 samples) (Table 1). The LASSO Cox regression
analysis was applied to extract key genes with most RFS
prediction power in training cohort. Finally, thirteen key
genes including ACTR2, ALDH2, FBP1, HIRA, ITGB2,
MLF1, P4HA1, S100A10, S100B, SARS, SCGB1A1,
SERPIND1, and VSIG4 were extracted to establish the RFS
prediction model. We established a RFS predicting model
referring to the gene expression using the multivariate Cox
regression: Risk score = 0:469 × expression ðACTR2Þ − 0:210
× expression ðALDH2Þ − 0:081 × expression ðFBP1Þ − 0:328
× expression ðHIRAÞ + 0:012 × expression ðITGB2Þ − 0:203
× expression ðMLF1Þ + 0:135 × expression ðP4HA1Þ +
0:181 × expression ðS100A10Þ − 0:074 × expression ðS100BÞ
− 0:189 × expression ðSARSÞ − 0:044 × expression ðSCGB1A
1Þ − 0:050 × expression ðSERPIND1Þ − 0:137 × expression ð
VSIG4Þ (Figure 2). Risk score < 0 infers patients with low
risk of recurrence, while risk score > 0 infers patients with
high risk of recurrence.

3.3. Efficiency of the RFS Prediction Model. Using the RFS
prediction model, 48.66% and 49.22% of patients were classi-
fied into the high-risk group in the training and validation
cohort, respectively. We found that patients with high risk
suffered from worse RFS compared to patients with low risk
in the training cohort (median RFS: 795 days vs. 3521 days;
P < 0:01, logrank test; Figure 3(a)). Concordantly, similar
result was further confirmed in the validation cohort
(median RFS: 1084 days vs. 2701 days; P = 0:03, logrank test;
Figure 3(b)). Furthermore, we validated the efficiency of the
prediction model using an external validation cohort (443

patients) reported by Prof. David G Beer [26] from the
GEO database (GSE68465; Table 1). After extracting the
expression data of thirteen key genes, we categorize patients
into high-risk and low-risk groups as previously elaborated.
As expected, patients with high risk suffered from worse
RFS compared to patients with low risk (median RFS: 31.50
months vs. 59.17 months; P = 0:01, logrank test;
Figure 3(c)). Furthermore, we evaluated the efficiency of
our prediction model in clinicopathological subgroups. In
subgroup of age, gender, pathologic stage, smoking history,
and location in lung parenchyma, better RFS happened in
patients of the low-risk group compared to those of the
high-risk group (Figures 3(d)–3(g); Figure S2A–F).

Combining the clinicopathological features including
patient age, gender, pathologic stage, smoking history, loca-
tion in lung parenchyma, and expression subtype [27] with
our prediction signature, we performed the multivariate
Cox regression analysis. Except our prediction signature,
none of the clinicopathological signatures was related to the
risk of RFS (HR = 13:37, CI: 1.75-99.10, P = 0:01, logrank
test; Figure 3(h)). Also, we wonder whether the efficiency of
the DEG-based signature is better than other clinicopatho-
logical signatures, so we compared the stability and sensitiv-
ity of the RFS prediction model using the ROC curve
(Figure 3(i)). Compared to other clinicopathological features,
the RFS prediction model achieved the supreme efficiency of
predicting RFS (AUC = 96:3%; Figure 3(i)). Taken together,
the recurrence-specific gene-based signature is capable of
better stratifying LUAD patients into high- and low-risk
groups compared to other clinicopathological features.

3.4. Key Pathways Associated with the High Risk of
Recurrence in LUAD. In order to figure out the key molecular
pathways associated with the recurrence of LUAD, we
detected the DEGs between patients with high risk and those
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Figure 2: Development of recurrence-specific gene-based RFS predicting model. (a) Coefficient profile plot was produced against the log
lambda sequence. (b) Tuning parameter (lambda) selection in the LASSO model used 10-fold cross-validation via minimum criteria.
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Figure 3: Continued.
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with low risk in the entire TCGA LUAD cohort. In all, we
detected 2216 significant DEGs, which consist of 994 upreg-
ulated genes and 1222 downregulated genes in the high-risk
group (Figure 4(a); Table S3). Then, GSEA found that the
MYC target pathway (NES = 2:12; FDR < 0:01), mTORC1
signaling pathway (NES = 1:69; FDR = 0:004), epithelial
mesenchymal transition (EMT) pathway (NES = 1:62; FDR
= 0:01), and cell cycle-related pathway like the G2M
checkpoint pathway (NES = 2:377; FDR < 0:01), E2F target
pathway (NES = 2:33; FDR < 0:01), and mitotic spindle
pathway (NES = 1:72; FDR < 0:01) were enriched in high-
risk patients (Figures 4(b)–4(h)). As previously reported, all

these pathways were associated with tumor progression
[28–33]. It is noted that the G2M checkpoint pathway was
the only pathway that was enriched in both recurrent
tumors and primary tumor with high risk of recurrence
(Figures 1(b) and 4(f)), which indicates its potential as
treatment targets for patients prone to recurrence.

4. Discussion

With the aim of identifying LUAD patients with heterogene-
ity RFS, we detected the DEGs between primary and recur-
rent LUAD tumors, extracted RFS-associated genes, and
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Figure 3: Efficiency of RFS prediction model. (a) The Kaplan-Meier (K-M) curve confirmed that the signature could significantly distinguish
low- and high-risk groups in the training cohort. (b) The K-M curve confirmed that the signature could significantly distinguish low- and
high-risk groups in the internal validation cohort. (c) The K-M curve confirmed that the signature could significantly distinguish low- and
high-risk groups in the external validation cohort (GSE68465). (d–g) The K-M curve confirmed that the prediction model could
distinguish low- and high-risk groups in the pathological subgroups (d, e) and smoking history subgroups (f, g). (h) Forest plot showed
results of multivariate cox analysis. (i) Receiver operating characteristic curve showed the prediction model obtained good predictive effect
compared to other clinicopathological features.
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Figure 4: Key pathways associated with high risk of recurrence in LUAD. (a) The volcano plot displaying DEGs between high- and low-risk
LUAD in the entire TCGA cohort. (b–h) Gene set enrichment analysis shows the Hallmark pathways enriched in high-risk patients.
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established the RFS prediction model using a machine learn-
ing algorithm based on a large cohort. Using the prediction
model, we classified the patients into high- and low-risk
groups and found that patients in the high-risk group suf-
fered from worse RFS compared to those in the low-risk
group. Concordant results were confirmed in the internal
and external validation cohort. Compared to clinicopatho-
logical features, our prediction model possessed higher accu-
racy to identify patients with high risk of recurrence. Finally,
we found that the G2M checkpoint pathway was enriched in
both recurrent tumors and primary tumors of high-risk
patients.

Due to the high proportion of recurrence that occurred in
LUAD, more and more researchers realize the importance of
identification of patients with high risk of recurrence. Con-
sidering the limitations of clinicopathological features, com-
bination of multisurvival-associated genes might be an ideal
way to solve this problem, and pilot studies achieved signifi-
cant progress [13–15, 19, 20, 26]. Instead of extracting genes
merely associated with survival outcomes using the Cox
regression analysis, we developed our prediction model based
on recurrence-specific genes using the machine learning
algorithm. Most genes included in our final prediction model
were reported to be related to survival in lung cancer or other
cancers [34–42], which indicates the rationality of our pre-
diction model. For example, high expression of P4HA1 and
S100A10 was reported to be associated with dismal survival
outcomes in LUAD [36, 38]. Prof. Xiao-jingWang found that
MLF1 promotes the proliferation and colony-forming abili-
ties of lung adenocarcinoma cells and significantly decreases
apoptosis in vitro [39]. Since we reported the conduction of
our prediction model clearly, it is feasible and convenient
for clinicians to design the specific target panel and apply it
in clinic to evaluate the risk of recurrence for each patient.
Our prediction model provides extra information about the
risk of recurrence, which is conducive for clinicians to iden-
tify high-risk patients and impose intense therapy like adju-
vant chemotherapy.

The G2M checkpoint pathway was found to be enriched
both in recurrent tumors and primary tumors of high-risk
patients, which infers its important association with recur-
rence. G2M checkpoint is an essential process of cell cycle
which ensures that cells do not initiate mitosis until damaged
or incompletely replicated DNA is sufficiently repaired.
Thus, cell cycle checkpoint is the critical barrier to preserve
genome integrity and chromosomal stability and prevent
progression of tumors from early stages to malignant inva-
sive lesions [29]. Expression of genes involved in cell cycle
checkpoint pathway has been reported to be related to the
survival outcomes in lung cancer [29, 43]. For example, over-
expression of PLK1, an early trigger for G2/M transition, is a
negative prognostic factor in non-small-cell lung cancer
patients [44]. Due to its critical role in tumorigenesis and
progression, inhibitors of cell cycle regulators have attracted
intense research interests [29]. As an example, MK-0457
(VX-680) blocks tumor xenograft growth and induces tumor
regression in preclinical models [45]. Since the G2M check-
point pathway was significantly enriched in recurrent and
high-risk patients, combination of inhibitors of cell cycle reg-

ulators and traditional chemotherapy or radiotherapy might
achieve improved efficacy in patients with high risk of
recurrence.

In conclusion, the signature we developed using the
recurrence-specific genes is robust in predicting RFS out-
comes of LUAD. Our prediction model provides extra infor-
mation about the risk of recurrence, which is conducive for
clinicians to conduct individualized therapy in clinic. To fur-
ther apply in clinic, multicenter-based large-scale studies are
warranted to verify the feasibility and stability of the model.
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