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Purpose: To analyze the conjunctival sac microbial communities in patients

with Sjögren’s syndrome-associated dry eyes (SSDE) and non-Sjögren’s

syndrome-associated dry eyes (NSSDE), compared with normal controls (NC).

Methods: Conjunctival sac swab samples from 23 eyes of SSDE, 36 eyes of NSSDE,

and 39 eyes of NC were collected. The V3–V4 region of the 16S ribosomal RNA (rRNA)

gene high-throughput sequencing was performed on an Illumina MiSeq platform and

analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Alpha diversity was

employed to analyze microbiome diversity through Chao1 and Shannon indexes. Beta

diversity was demonstrated by the principal coordinates analysis (PCoA) and Partial Least

Squares Discrimination Analysis (PLS-DA). The relative abundance was bioinformatically

analyzed at the phylum and genus levels.

Results: The alpha diversity was lower in patients with dry eye disease

(Shannon index: NC vs. SSDE: P= 0.020, NC vs. NSSDE: P= 0.029). The beta diversity

showed divergent microbiome composition in different groups (NC vs. SSDE: P= 0.001,

NC vs. NSSDE: P = 0.001, NSSDE vs. SSDE: P = 0.005). The top 5 abundant phyla

were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Cyanobacteria in

all three groups. The top five abundant genera included Acinetobacter, Staphylococcus,

Bacillus, Corynebacterium, and Clostridium_sensu_stricto_1. The relative microbiome

abundance was different between groups. The Firmicutes/Bacteroidetes (F/B) ratio was

6.42, 7.31, and 9.71 in the NC, NSSDE, and SSDE groups, respectively (NC vs.

SSDE: P = 0.038, NC vs. NSSDE: P = 0.991, SSDE vs. NSSDE: P = 0.048).

Conclusion: The diversity of conjunctival sac microbiome in patients with NSSDE and

SSDE was diminished compared with NC. The main microbiome at the phylum and

genus level were similar between groups, but the relative abundance had variations. The

Firmicutes/Bacteroidetes ratio was higher in the SSDE group.
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INTRODUCTION

Dry eye disease (DED) is a multifactorial inflammatory ocular
disease featured by tear film instability and hyperosmolarity,
inflammation, and neurosensory abnormalities (1, 2). Symptoms
include burning, foreign body sensation, photophobia, and
blurred vision, which would adversely affect daily lives (3).
Autoimmune disease-associated dry eye is one of the most
important types of DED (4). Sjögren’s syndrome (SS) is a
chronic autoimmune disease featured by dry mucosal surfaces
and other systemic muscular pain, and dry eye is one of the
most discomforting symptoms that patients with SS complain
about (5, 6). The lacrimal gland becomes infiltrated with activated
CD4+ T cells and B cells, and ocular surface diseases develop
from reduced lubrication, as well as from cytokines produced by
activated epithelial cells and infiltrating inflammatory cells (7, 8).

Recently, mounting evidence shows that microbial imbalance
changes the immunity toward an increased inflammatory
response, which is closely associated with the occurrence of
multiple chronic inflammatory diseases (9, 10). Hence, it is
hypothesized that similar mechanisms are also active on the
ocular surface and are involved in the pathophysiology of DED
including SS. The production of lipases and toxins by different
proportions of colonizing bacteria may destabilize the lipid
layer of the tear film, interact with the conjunctival mucins
(11, 12) and cause ocular surface cellular damage. Thus, dysbiosis
might be associated with tear film instability, inflammation, and
ocular irritation.

The purpose of the study was to explore the potential changes
in the conjunctival sac microbiome in dry eye patients with
and without SS, compared with healthy subjects. This may
help to better understand its pathophysiology and provide more
evidence to develop new treatment strategies.

METHODS

Sample Collection
Patients were recruited from the regular outpatient clinic,
Department of Ophthalmology, Peking Union Medical College
Hospital, between September 1 and October 30, 2021. Patients
with SS-associated dry eyes (SSDE), non-SS-associated dry eyes
(NSSDE), and normal controls (NC) with healthy ocular surface
conditions were recruited. Dry eye was diagnosed based on the
Chinese Expert Consensus on dry eyes (13) as follows: patients
presenting with dry eye symptoms, such as burning, foreign
body sensation, blurred vision, and photophobia; Ocular surface
disease index (OSDI) ≥13; Fluorescein breakup time (FBUT)
≤5 s or Schirmer’s test (without local anesthesia) ≤5 mm/5min.
If 5 s <FBUT test ≤10 s and 5 mm/5min <Schirmer’s test
(without local anesthesia) ≤10 mm/5min, patients with cornea
staining score ≥5 were also diagnosed with dry eye. The cornea
staining was scored by dividing the corneal surface into five areas
as proposed by the US National Eye Institute (14), the punctate
staining in each area was recorded as a score of 0–3, with 0:
no staining; 1: <15 dots; 2: 16–20 dots; 3: >30 dots, strip/bulk
staining or corneal filaments. The final score is the sum of the
scores from the five areas. All patients with SS had a complete

ocular, oral, and rheumatologic evaluation, including the panel
of serum autoantibodies, and met the SS classification criteria
made by the American College of Rheumatology/European
League Against Rheumatism (ACR-EULAR) (15). Patients with
healthy ocular surface conditions were included as the NC
group after ruling out dry eyes on a slit-lamp examination. The
exclusion criteria included a history of uveitis, glaucoma, retinal
disease, ocular trauma/transplantation in the previous 4 weeks,
application of antibiotic or immunomodulatory eyedrops in the
previous 4 weeks, and eye surgeries within 3 months. A sterile
cotton swab was used to collect specimens by rubbing the swab
from the medial to the lateral side of the inferior fornix of the
conjunctival sac of each right eye without anesthesia. The swabs
were then placed in sterile tubes and stored in a refrigerator
(at −20◦C) before further experiments. The study adhered to
the tenets of the Declaration of Helsinki and was approved by
the Institutional Review Board of Peking Union Medical College
Hospital (ZS-3092). Informed consent forms were obtained from
all patients.

DNA Extraction, PCR Amplification, and
16S rRNA Gene Amplicon Sequencing
Deoxyribonucleic acid (DNA) was extracted using the
MicroElute Genomic DNA Kit (D3096, Omega, MA, USA)
according to the manufacturer’s instructions. The concentration
of DNA was measured using a NanoDrop 2000 ultramicro-
spectrophotometer (Thermo Scientific, Waltham, MA, USA).
The V3–V4 region of the 16S ribosomal RNA (rRNA) gene
was amplified from tue extracted genomic DNA samples with

primers (319 F: 5
′

-ACTCCTACGGGAGGCAGCAG-3
′

and 806
R: 5

′

-GGACTACHVGGGTWTCTAAT-3
′

) manufactured by
Sangon Biotech (Shanghai) Co., Ltd. PCR was carried out on
a Mastercycler Gradient (Eppendorf, Germany) using 25 µl
reaction volumes, containing 12.5 µl 2× Taq PCR MasterMixII
(Vazyme Biotech Co., Ltd, China), 3 µl BSA (2 ng/µl), 1 µl
Forward Primer (5µM), 1 µl Reverse Primer (5µM), 2 µl
template DNA, and 5.5 µl ddH2O. The PCR amplification
products were purified with Agencourt AMPure XP magnetic
beads (Fisher Scientific, Hampton, NH, USA), dissolved in an
elution buffer, and then labeled. The fragment range and the
concentration of the library were detected using the Agilent 2100
Bioanalyzer (Agilent, Santa Clara, CA, USA). Qualified libraries
were selected for sequencing on the MiSeq PE300 platform based
on the size of the inserted fragments.

Bioinformatic Analysis
Samples were sequenced on an Illumina MiSeq platform
(Illumina, Inc., San Diego, CA, USA) according to the
manufacturer’s instructions. Qualified paired-end reads were
separated using the sample-specific barcode sequences and
trimmed with the Illumina Analysis Pipeline Version 2.6
(Illumina, Inc., San Diego, CA, USA). Then, the dataset was
analyzed using the Quantitative Insights Into Microbial Ecology
(QIIME) (Version 1.8.0; Boulder, USA). The sequences were
clustered into operational taxonomic units (OTUs) at a similarity
≥97%, to generate rarefaction curves and to calculate the richness
and diversity indices. The Ribosomal Database Project (RDP)
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TABLE 1 | Demographic characteristics and basic clinical parameters.

SSDE NSSDE NC P-value

Sex Male/female 0/23 9/27 12/27 P = 0.001

Age Mean ± SD (years) 48.09 ± 9.01 39.89 ± 13.45 35.61 ± 11.03 P = 0.008 SSDE vs. NSSDE, P = 0.007 NC

vs. NSSDE, P < 0.001, NC vs. SSDE

Schirmer Mean ± SD (mm) 5.72 ± 6.25 6.68 ± 8.63 ≥10 P = 0.018 (NNSDE vs. NSSDE)

FBUT Mean ± SD (s) 2.32 ± 1.34 4.71 ± 2.79 ≥10 P < 0.001, SSDE vs. NSSDE

Cornea staining score Mean ± SD 6.67 ± 3.32 2.32 ± 1.03 0 P < 0.001, SSDE vs. NSSDE

Classifier tool was used to classify all sequences into different
taxonomic groups.

Alpha diversity was employed to analyze the complexity
of species diversity for each sample through Chao1, Shannon
indexes generated by QIIME. Beta diversity was demonstrated
by the principal coordinates analysis (PCoA) and Partial Least
Squares Discrimination Analysis (PLS-DA) to evaluate the
microbiome complexity between samples. The taxonomy and
relative abundance were bioinformatically analyzed at phylum
and genus levels.

Statistical Analysis
The R software (Version 3.2.5; New Zealand) and GraphPad
Prism 5.0 (GraphPad Software, San Diego, CA, USA) were
used for the statistical analyses. Tukey test was used to identify
significant between-group differences for alpha-diversity. The
divergence between the two groups was compared by Analysis
of Similarity (ANOSIM). The relative abundance of bacteria
was compared by one-way ANOVA. The demographic and
clinical data are expressed as mean ± SD. A P-value <0.05 was
considered statistically significant.

RESULTS

Demographic Characteristics of Patients
Samples were collected from 23 eyes of SSDE, 36 eyes of NSSDE,
and 39 eyes of NC. The mean age was 48.09, 39.89, and 35.61
years old in the SSDE, NSSDE, and NC groups, respectively
(Table 1). The average length of Schirmer’s test was 5.72 ± 6.25
(mm/5min) in the SSDE group and 6.68 ± 8.63 (mm/5min) in
the NSSDE group. The average FBUT was 2.32 ± 1.34 (s) in the
SSDE group and 4.71± 2.79 (s) in the NSSDE group. The average
cornea staining score was 6.67± 3.32 in the SSDE group and 2.32
± 1.03 in the NSSDE group (Table 1).

Next Generation Sequencing (NGS) Data
A total of 5,368,240 high-quality sequences were generated from
the 98 samples of conjunctival sac swabs, with an average
of 54,778 sequences per sample. High-quality sequences were
clustered into 5,031 OTUs at 97% sequence identity. A modified
OTU table was obtained consisting of 4,904 OTUs (ranging from
36 to 693 per sample), corresponding to 51 phyla, 142 classes, 315
orders, 523 families, and 1,028 genera.

The OTUs were compared with a Venn diagram
(Supplementary Figure S1) and 811 common OTUs were
identified. There were 60 (2,090/3,512), 22 (544/2,442), and 17%

(306/1,816) OTUs that were unique in the NC group, NSSDE
group, and SSDE group, respectively.

Alpha and Beta Diversity Analysis
The goods coverage values were all ≥0.99, indicating
that the 16S rRNA sequencing results from each library
represented the majority of bacterial species present within
test samples. The species accumulation curves flattened
(Supplementary Figure S2), demonstrating that the sample size
is adequate to represent the overall bacterial diversity in the
target population.

The alpha diversity was analyzed by the Shannon and chao1
indexes. The Shannon index was significantly lower in the SSDE
(P = 0.020) and NSSDE (P = 0.029) groups compared with the
NC group but did not show a statistically significant difference
between the NSSDE group and the SSDE group (P = 0.089)
(Figure 1A). The chao1 index showed the same tendency as the
Shannon index (NC vs. SSDE: P = 0.003, NC vs. NSSDE: P =

0.091, NSSDE vs. SSDE: P= 0.036) (Figure 1B).
There was significant divergence in beta diversity between

each group as demonstrated by PCoA (Figure 2A) and PLS-
DA (Figure 2B). The samples in the control group were
more centralized and resembled each other in the bacterial
composition, while the samples in the NSSDE and SSDE groups
were more acentric and disperse. This differentiation was further
confirmed by ANOSIM analysis, which showed the difference
between the groups was greater than the difference within the
group (NC vs. SSDE: P = 0.001, NC vs. NSSDE: P = 0.001,
NSSDE vs. SSDE: P = 0.005) (Table 2).

Bacterial Relative Predominance
We summarized the relative abundances of the dominant
bacterial community in each group. At the phylum level, 38
phyla were detected from the 23 eyes of the SSDE group, 36
phyla from the 36 eyes of the NSSDE group, and 48 phyla
from the 39 eyes of the NC group. The top 5 abundant phyla
were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota,
and Cyanobacteria in all three groups (Figure 3A). The relative
percentage of each predominant phylum was demonstrated in
Table 3. The Firmicutes/Bacteroidetes (F/B) ratio, which was
correlated with inflammation in gut microbiome studies, was
calculated. The F/B ratio was 6.42, 7.31, and 9.71 in the NC,
NSSDE, and SSDE groups, respectively (P = 0.038, SSDE vs. NC,
P = 0.991, NSSDE vs. NC, P = 0.048, SSDE vs. NSSDE).
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FIGURE 1 | Alpha analysis by Shannon (A) and Chao1 (B) indexes demonstrating that patients with dry eyes have diminished ocular surface microbiome diversity

compared with patients with healthy ocular surfaces.

FIGURE 2 | Beta diversity demonstrated by principal coordinates analysis (PCoA) (A) and Partial Least Squares Discrimination Analysis (PLS-DA) (B) analysis.

Samples in the control group were more centralized and resembled each other in the bacterial composition, while samples in the non-Sjögren’s syndrome-associated

dry eyes (NSSDE) and Sjögren’s syndrome-associated dry eyes (SSDE) groups were more acentric and disperse.

Among the most abundant phyla, the relative abundance
was also different between groups (Figure 4A). The relative
abundance of Actinobacteriota was higher in the SSDE group (P
= 0.005, SSDE vs. NSSDE, P < 0.001, SSDE vs. NC), followed
by the NSSDE group (P = 0.020, NC vs. NSSDE) and NC group.
Cyanobacteria were more abundant in the NC group (P <0.001,
NC vs. NSSDE, P < 0.001, NV vs. SSDE), followed by the NSSDE
group and SSDE group (P = 0.680). Bacteroidota was higher

in abundance in the NC group than SSDE (P = 0.011), but
there was no statistical difference between NC and NSSDE (P =

0.110) or NSSDE and SSDE (P= 0.250). Proteobacteria was more
abundant in the NSSDE group than the SSDE group (P = 0.014)
and NC group (P= 0.042), but its relative abundance was similar
between the SSDE and NC group (P = 0.443).

At the genus level, 476 genera were detected in the SSDE
group, 615 genera in the NSSDE group, and 928 genera
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in the NC group. The top five common abundant genera
were Acinetobacter, Staphylococcus, Bacillus, Corynebacterium,
and Clostridium_sensu_stricto_1 (Figure 3B). And the relative
percentage of each predominant genera was demonstrated in
Table 4. Bacillus was significantly higher in the NC group
compared with the dry eye groups (P < 0.001, NC vs. NSSDE,
P < 0.001, NC vs. SSDE), whereas Acinetobacter was significantly
higher in the dry eye groups than the NC group (P < 0.001, NC
vs. NSSDE, P = 0.001, NC vs. SSDE). The relative abundance
of Acinetobacter and Bacillus was similar between the SSDE
and NSSDE groups (P = 0.096 for Acinetobacter, P = 0.727
for Bacillus). Corynebacterium, Clostridium_sensu_stricto_1, and
Geobacillus were more abundant in the DED groups than the NC
(Corynebacterium: P = 0.003, SSDE vs. NC, P < 0.001, NSSDE
vs. NC; Clostridium_sensu_stricto_1: P = 0.039, SSDE vs. NC, P
< 0.001, NSSDE vs. NC; Geobacillus: P < 0.001, SSDE vs. NC,
P < 0.001, NSSDE vs. NC). The top 20 genera with the most
significant differences were demonstrated in Figure 4B.

DISCUSSION

In recent years, the association of dysbiosis with inflammation
and infection has become increasingly recognized (16). On
the ocular surface, the antimicrobial activity of tears prevents
infection while maintaining a commensal bacterial population

TABLE 2 | Analysis of similarity (ANOSIM) for diversity between groups.

Group R statistic P-value

NC-NSSDE 0.5485 0.001

NC-SSDE 0.6064 0.001

NSSDE-SSDE 0.1195 0.005

all 0.4428 0.001

R value >0 means that differences between groups are greater than differences

within groups.

(17). In this study, we sampled the conjunctival sac to explore
the ocular surface microbiome composition and showed that dry
eyes with andwithout SS have lessmicrobiome diversity than eyes
with healthy ocular surface conditions, and have characteristic
microbiome composition.

In previous studies, the richness of the conjunctival sac
microbiome in patients with dry eyes was inconsistent. While
some studies revealed an increased number of bacteria (18, 19),
most studies were in accordance with our study that patients
with dry eyes have diminished ocular surface microbiome
diversity (20–23). In studies regarding SS, bacterial diversity
was diminished both for the oral mucosa (24) and the ocular
surface (23). The exact mechanism is still unclear but might be
an interaction between the mucosa and the commensal bacteria.
The microbiome on the ocular surface degrades intracellular
mucins, which in turn inhibit bacterial growth, contributing
to homeostasis between the ocular microenvironment and
commensal bacteria (17). Disruption of either the two ends
of homeostasis might cause unbalanced growth of bacteria.
In this study, while the major microbiome was stable, the
diversity was severely diminished and an aberrant bacterial
composition in dry eye patients was demonstrated by the
observed clustering and separation demonstrated by the PCoA
and PLS-DA analysis.

At the phylum level, Firmicutes, Proteobacteria,
Actinobacteriota, Bacteroidota, and Cyanobacteria were the
top five phyla in all three groups. These results were consistent
with other studies that collect samples from the conjunctival sac
(22, 25–27), indicating a relative stable predominant phylum
composition of the ocular surface even in different disease
status. However, there was a common issue that needs to
be addressed in these studies, including ours, that there was
no blank control to rule out environmental contamination.
Cyanobacteria is photosynthetic and was not supposed to be
found in the conjunctival sac which has no sun exposure. One
possible explanation was that there might be Cyanobacteria on
the ocular surface and dropped into the conjunctival sac. The
16srRNA method could also identify dead microbiomes as well.

FIGURE 3 | The top five abundant microbiomes at the phylum (A) and genus (B) level showed similar major components of bacteria in each group, but the relative

abundance was different.
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TABLE 3 | Percentage of the top five phyla in each group.

Phylum NC (%) NSSDE (%) SSDE (%) P-value

NC vs. NSSDE NC vs. SSDE NSSDE vs. SSDE

Firmicutes 43.89 37.97 40.52 0.155 0.288 0.706

Proteobacteria 34.78 43.61 33.04 0.014 0.396 0.014

Actinobacteriota 6.60 8.24 15.89 0.020 0.281 0.005

Bacteroidota 6.84 5.19 4.17 0.110 0.027 0.250

Cyanobacteria 4.35 1.51 0.96 <0.001 0.005 0.680

FIGURE 4 | The top 20 significantly different microbiomes at the phylum (A) and genus (B) level.

TABLE 4 | Percentage of the top five genus in each group.

Genus NC (%) NSSDE (%) SSDE (%) P-value

NC vs. NSSDE NC vs. SSDE NSSDE vs. SSDE

Acinetobacter 5.34 20.58 13.05 <0.001 0.001 0.096

Staphylococcus 7.14 11.43 13.55 0.316 0.543 0.859

Bacillus 22.26 3.26 2.09 <0.001 <0.001 0.727

Corynebacterium 3.82 4.15 8.62 0.076 0.003 0.050

Clostridium_sensu_stricto_1 0.61 9.38 4.80 <0.001 0.003 0.019

Thus, Cyanobacteria might also be detected. Supplementary
experiments in further studies are needed to give a more
pronounced answer.

The relative abundance at the phylum level was different
in different groups. Actinobacteriota was more predominant
in patients with dry eyes, while Cyanobacteria was less
predominant, compared with healthy eyes. These differentiations
were further magnified by the etiology of dry eyes. Patients

with SSDE had more abundant Actinobacteriota and less
Cyanobacteria comparedwith patients withNSSDE.We assumed
that this might be associated with the severity of dry eye, as
Schirmer’s test, FBUT test, and cornea staining all showed a
more severe degree of dry eye damage to the ocular surface.
Proteobacteria was markedly higher in the NSSDE group
compared with the SSDE group, and this was in accordance
with the other study addressing the different microbiome
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compositions in DED with and without the autoimmune
disease (23).

Although the relative abundance of Firmicutes and
Bacteroides were similar in these three groups, we calculated
the F/B ratio, inspired by the fact that a lower F/B ratio in the
gut was associated with the inflammation status in the intestine
such as in inflammatory bowel disease (28) and other systemic
diseases such as systemic lupus erythematosus (29), while a
higher F/B ratio in the gut was associated with obesity (28).
Previous studies also showed that the F/B ratio in the gut was
lower in patients with SSDE than in NC (30). However, in this
study, we showed that the F/B ratio of the conjunctival sac
was higher in the SSDE group compared with NC and NSSDE
groups, in contrast with the gut F/B ratio. The F/B ratio change
in both directions is a sign of dysbiosis (28). It is hypothesized
that disrupted microbiome composition might activate distinct
immunomodulatory and inflammatory pathways, which result
in the instability of tear film and ocular damage. But we have to
acknowledge that the gut has a large amount of microbial load
while the ocular surface microbiome is paucibacterial. Thus, the
effect of microbiome dysbiosis on the ocular surface might be
less predominant. Further studies are needed to provide more
evidence on the F/B ratio change and its relationship with SSDE
and NSSDE.

At the gene level, patients with dry eyes had less genus
variety. The most common five abundant genera were
Acinetobacter, Staphylococcus, Bacillus, Corynebacterium,
and Clostridium_sensu_stricto_1 (Figure 3B), similar to the
results of other studies concerning the ocular surface bacteria
(22, 23, 25–27, 31). Compared with the NC group, patients
with dry eyes had more abundant Acinetobacter but less
Bacillus. Acinetobacter was commonly detected on the ocular
surface of critically ill patients, who were always sedated
and had unhealthy ocular surface function (32). However,
previous studies showed that Bacilli are prominent in patients
with dry eye disease, in contrast with the decreased Bacilli
in DED groups in our study. Certain Bacillus species can
synthesize and secrete lipopeptides, in particular, surfactins
and mycosubtilins (33, 34), which might affect tear film
stability. Further research needs to be done to explain the
Bacillus variation in different studies and its role in dry
eye disease.

Corynebacterium was significantly higher in abundance in
the SSDE group than the NSSDE group, which was in line
with the study that compares bacteria composition in patients
with dry eyes with and without autoimmune diseases (23).
This provided further evidence that Corynebacterium might be
associated with autoimmunity, as mycolic acids and the cell
wall architecture of Corynebacterium can affect macrophage
function (35). However, there was also a study demonstrating
that a decreased amount of Corynebacterium in patients with
meibomian gland dysfunction (MGD) type of dry eye (36),
supported by evidence that Corynebacterium elicited interleukin
17 response from γδ T cells in the ocular mucosa, driving
neutrophil recruitment and antimicrobials release into the tears
(37). These pieces of evidence were not contradictory, as the
former one was a comparison between the etiology of dye eye

disease, while the latter focuses on the inflammation status of
MGD. Clostridium_sensu_stricto_1 and Geobacillus were also
higher in the dry eye groups in our study, but the association
with functional microbiology and clinical significance need to be
further addressed.

In previous studies regarding MGD, the overgrowth of
Staphylococcus and Sphingomonaswere detected (36), however, in
this study, the amount of Staphylococcus was similar in the three
groups; Sphingomonas was more abundant in the NC group. The
different findings might be caused by different diagnostic criteria
for DED, sampling methods (25), as well as different seasonal
regions patients come from (38).

This study has several limitations. First, the F/B ratio at
the phylum level was proposed for the first time in our study
regarding the field of conjunctival sac microbiome. Although
patients in the SSDE group have significantly higher F/B, the
intrinsic association with SSDE and its opposite change in the gut
of patients with SSDE need to be further investigated. Secondly,
this was a single-center study that recruits patients from a certain
area with a small sample size. The enrolled population was
also homogeneous (mainly Han Chinese) to provide generalized
conclusions. Further studies involving more diverse populations
are expected. Thirdly, as SSDE more commonly affects mid-aged
women, it was hard to have SSDE samples from male patients to
match the sex and age balance. The influence of age and sex on
microbiome composition was controversial (22, 36, 39). Further
studies were expected to address this issue.

CONCLUSIONS

In conclusion, we identified that the diversity of ocular surface
microbiome in patients with NSSDE and SSDE was diminished
compared with NC. The main microbiome at the phylum
and genus level was similar between groups, but the relative
abundance of the top five phyla and genera had variations. F/B
ratio was significantly higher in the SSDE group compared with
NC and NSSDE group.
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