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Abstract: The amount of liquid water in snow characterizes the wetness of a snowpack. Its 

temporal evolution plays an important role for wet-snow avalanche prediction, as well as the 

onset of meltwater release and water availability estimations within a river basin. However, 

it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water 

content (LWC) in snow with conventional in situ and remote sensing techniques. We propose 

a new approach based on the attenuation of microwave radiation in the L-band emitted by 

the satellites of the Global Positioning System (GPS). For this purpose, we performed a 

continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in 

Switzerland, during the snow melt period in 2013. As a measure of signal strength, we 

analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to 

normalize these data. The bulk volumetric LWC was determined based on assumptions for 

attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as 

daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was 

closely related to the meteorological and snow-hydrological data. Due to its non-destructive 

setup, its cost-efficiency and global availability, this approach has the potential to be 

implemented in distributed sensor networks for avalanche prediction or basin-wide melt 

onset measurements. 
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1. Introduction 

Seasonal snow is a very important reservoir component in the hydrological cycle, which releases 

temporarily delayed fresh water to the forelands. Downstream water suppliers are highly dependent on 

snow meltwater release from the alpine head-watersheds, which provides drinking and irrigation water, 

especially when mostly needed during the summer time. The average snow water equivalent (SWE) 

describes the total amount of snow stored within a certain catchment. However, this measure does not 

provide information on the state of snow melting. The liquid water content (LWC) θw in snow describes 

the snow wetness of a snowpack. It is an indicator for snow melt and snow stability. A clear increase in 

liquid water leads to an onset of meltwater runoff within a catchment. This is relevant information, e.g., 

for flood predictions during intense melting due to intense solar radiation or rain-on-snow events. 

Temporal and quantitative meltwater delivery predictions are therefore highly demanded by decision 

makers in the field of water management dealing, e.g., with catchment runoff and flood forecasts [1–3], 

hydropower generation, as well as reservoir management [4,5] and, thereafter, optimization of 

hydropower production. Moreover, information on the LWC of a snowpack is important information for 

wet-snow avalanche forecasting, since infiltrating water affects the mechanical strength and hence the 

stability of the snowpack [6–8]. 

In general, snow wetness is difficult to measure in situ, as well as to derive from satellite-based remote 

sensing measurements. Moreover, to consider the spatiotemporal evolution of meltwater runoff and 

snow stability, there is a need for continuous, non-destructive monitoring of the LWC in snow. Changes 

in the LWC can quickly change snowpack properties and meltwater outflow [8,9]. They represent  

non-linear processes, which are difficult to detect or forecast. Manual snow wetness observations in 

snow pits only provide a rough estimate and are based on a wetness index [10]. An overview of several 

in situ snow wetness measurements is given by Boyne and Fisk [11] and Techel and Pielmeier [12]. 

Most in situ techniques are based on centrifugal, dielectric, dilution and calorimetric measurement 

methods. Instruments that measure the permittivity of wet snow are, e.g., the Denoth meter [13,14] and 

the Finnish Snow Fork [15]. They have in common that they are destructive, time consuming, laborious 

and can only be applied at accessible locations. Approaches of time-domain reflectometry (TDR)  

(e.g., [16]) were able to monitor the snow wetness continuously and non-invasively; however, this 

technique is also not applicable, e.g., in avalanche-prone areas. With upward-looking frequency 

modulated wave (upFMCW) and ground-penetrating radar (upGPR) systems, the bulk volumetric LWC 

can be derived also at avalanche starting zones (e.g., [17,18]). However, upward looking radar systems 

are limited in application to a single point and are expensive, power intensive and laborious to install.  

The radiative properties of a snowpack in the range of L-band microwave radiation are mainly 

determined by the dielectric constant. Due to the high dielectric constant of water compared to  

dry snow, wet snow causes characteristic changes in microwave backscattering and penetration depth or 

emission rate regarding active or passive microwaves, respectively. Several microwave remote sensing 

approaches and their combinations were investigated for snow wetness detection (e.g., [19–24]). 
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However, remote sensing applications are difficult to apply in alpine terrain, due to the low spatial 

resolution and complex topography (mountain shadowing and foreshortening effects). Because of the 

satellite’s long repetition times, snow wetness parameters can only be detected every few days, 

depending on the swath width. Consequently, satellite remote sensing can currently not observe daily 

melt-freeze cycles. Moreover, regarding contemporary passive microwave systems, spatial resolutions 

up to 25 km² are very coarse and not applicable for mountainous regions. In sum, microwave applications 

in alpine terrain lack the required temporal resolution to observe the spatiotemporal dynamics of 

important melt processes. Though various in situ measurements at the point scale and remote sensing 

approaches at a large scale have been investigated, it remains challenging to continuously and  

non-destructively determine LWC in snow with high spatial resolution.  

Due to its global and continuous availability, new remote sensing applications based on the Global 

Navigation Satellite System (GNSS), such as the American GPS, the Russian GLONASS, the future 

European Galileo and the Chinese Beidou/COMPASS systems, have become increasingly popular. 

Several investigations were undertaken to detect snow depth or snow water equivalent based on 

multipath analysis of the carrier-to-noise power density ratio or carrier phase data [25–29]. An overview 

is provided by Botteron et al. [30] and Jin et al. [31]. These GNSS reflectometry techniques are mainly 

based on the analysis of reflections at the Earth surface in comparison to direct signals received at an 

antenna above the ground. Changes in snow depth [25,32], vegetation [33] or soil moisture [34] lead to 

changes in the reflected signals and signal polarization. Besides observations in the microwave range, 

surface reflectivity for snow surface monitoring is also applied at other wavelength spectral domains, 

like the near-infrared [35,36]. A detailed study on the reflectivity and polarization of GNSS signals was 

carried out by Najibi and Jin [37]. Besides snow depth estimates, Jin and Najibi [32] found that snow 

surface temperatures are detectable with dual-frequency GPS signals on behalf of reflected signals from 

the pseudorange and carrier phase. In general, these methods describe in situ measurements on a small 

scale covering an area of the GPS footprint according to the Fresnel ellipsoids, which depend on the 

antenna installation height above the reflecting surface and the elevation angle. According to Larson and 

Nievinski [38], the footprint can be up to hundreds of square meters. Schleppe and Lachapelle [39] 

showed with low-cost GPS receivers a clear signal attenuation within avalanche deposited snow and a 

decrease in position accuracy and precision due to pseudorange quality deterioration. Besides, ice 

loading on GPS antennas [40] and the effect of vegetation water content [41] were observed by signal 

attenuation approaches. However, to our knowledge, the existing GNSS snow studies were limited to 

flat terrain, and no studies regarding the snow wetness (LWC) have been carried out to date. 

The aim of this study is to analyze whether the bulk volumetric LWC of an entire snowpack can be 

derived non-destructively at a high temporal resolution from GPS signal strength losses. We used  

low-cost GPS receivers and antennas, which are, in principle, globally applicable. The measurement 

devices are low power consuming; the data analysis is not time consuming and labor-intensive; and the 

measurements are taken in a continuous mode. After providing an overview of our new experimental 

low-cost GPS measurement setup at the Weissfluhjoch test site (2540 m a.s.l., Eastern Swiss Alps) 

(Section 2), we will describe the GPS data processing in Section 3. Signal changes due to atmospheric 

variability, reflection and refraction at the snow-atmosphere interface, as well as attenuation within the 

snowpack are considered in Section 4. In Section 5, the method to calculate the LWC based on signal 

attenuation is demonstrated and subsequently applied to the melt period in spring, 2013 (Section 6). The 
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GPS data are shown in comparison with single reference measurements, as well as continuous 

meteorological and snow-hydrological data. The results are discussed in Section 7, and finally,  

Section 8 provides the conclusions and an outlook.  

2. Measurement Setup 

The flat test site, Weissfluhjoch (46°49'47" N, 9°48'34" E), is located above Davos (Eastern Swiss 

Alps) at an elevation of 2540 m a.s.l in a small, south-west facing valley. The site is well-equipped with 

numerous sensors to continuously record meteorological and snow properties [42]. It is an ideal location 

for GPS applications in high alpine areas, as it has a high satellite coverage, due to its almost 

unobstructed line of sight between the GPS receivers and the GPS satellites.  

On 26 September 2012, before the first snowfall in autumn occurred, we installed three low-cost 

Fastrax IT430 GPS receivers with SiRF IV chips [43], named GPS1, GPS2 and GPS3 (Figure 1). Each 

of the receivers was connected with low-cost Hirschmann GPS7M magnetic mount antennas [44]. The 

cost of each receiver and antenna pair (without data logging, data transmission, power supply, etc.) is 

approximately 150 USD. The antenna of GPS1 was mounted facing-up at a 4-m high pole approximately 

in the middle of the test site, to always be situated above the snow cover. Due to its small size of  

3.9 cm × 3.9 cm and almost permanent wind influence at this exposed point, there was no or only 

negligible snow deposition on top of this antenna. Because GPS1 stayed snow-free, it delivered 

information on atmospheric influences on the GPS signals. The antennas GPS2 and GPS3 were installed 

also facing-up on the ground nearby GPS1. They stayed buried underneath the snowpack during the 

entire snow-covered period. The horizontal distance between GPS2 and GPS3 was approximately 1 m. 

The cable length between the receivers and the antennas was 3 m. Figure 1 illustrates the location of all 

three GPS antennas at the test site Weissfluhjoch on a snow-free day. The GPS antennas were connected 

to the receivers, which were stored in a weather-proof box, via 3-m coax cables. Between the  

weather-proof box and the data acquisition on a PC in the nearby hut, 70 m of power and data cable were 

installed. The GPS receivers recorded the raw data each second, which resulted in a total data volume of 

approximately 700 MB/day.  

For validation, continuously measured meteorological and snow-hydrological data were analyzed, 

including air and snow surface temperature, snow depth measurements from a laser sensor and meltwater 

outflow at a snow lysimeter. The comprehensive set of meteorological and snow-hydrological 

measurements was aggregated to a resolution of half an hour. On eleven days, conventional manual snow 

profiles according to Fierz et al. [10] were recorded near the GPS system setup. In addition, the LWC 

was measured using the dielectric devices, Denoth meter and Snow Fork. The Denoth meter data were 

collected on six and the Snow Fork data on four dates during the considered spring period, on some days 

even at two different times. Both measurements were taken in the snow pit for each layer, and for 

analysis, the weighted mean for the entire snow depth was calculated. The snow profiles included an 

estimate of snow wetness for each layer (Wetness Index 1 to 5). To make this information comparable 

to the bulk volumetric LWC derived from the GPS recordings, we converted the wetness index of each 

layer to an approximate volumetric LWC (Wetness Index 1 to 5 corresponding to ߠ௪ of 0, 1.5, 5.5, 11.5 

and >15%, respectively). The bulk volumetric LWC for the entire snowpack was calculated as the 

weighted mean of the LWC of each layer. The test site was continuously covered with snow from  
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27 October 2012, to 11 July 2013; the snow cover remained predominantly dry until mid-April. For the 

derivation of liquid water in snow, a three-months spring period (7 April–6 July 2013) was chosen as a 

representative demonstration period. The first week of this period is one week before the snow melt 

started and represents almost dry conditions, whereas during the rest of this period, the snowpack was 

mainly moist or wet.  

Figure 1. Overview of the location of the water-proof box with the Fastrax IT430 receivers, 

the hut where the PC was located and the Hirschmann GPS7M antennas of GPS1, GPS2 and 

GPS3 at the Weissfluhjoch test site on a snow-free reference day (26 September 2012). 

 

3. GPS Raw Data and Processing of Normalized C/N0 Values 

3.1. GPS Raw Data 

The applied low-cost Fastrax IT430 GPS receivers track the L1 C/A code only. The freely available 

GPS broadcast is transmitted via microwaves at the L1-band at a frequency f of 1.57542 GHz [45]. The 

main field of application for low-cost GPS L1-band receivers is navigation, with its focus on positioning 

data. However, for deriving the LWC in snow, the received signal strength is of interest. As a  

measure, the signal strength is expressed as the carrier-to-noise power density ratio (C/N0). C/N0 is a 

bandwidth-independent index and is used for assessing signal quality. It quantifies the signal power of 

the received signal of tracked satellites [45]. 

Daily variations of the receiver noise due to temperature changes at the receiver and the cables were 

neglected, and the receiver noise was kept constant for the further modeling of the GPS input data. 

During the measurement period, GPS2 and GPS3 were always underneath the snow cover with a snow 

temperature at the bottom of the snowpack constantly at about 0 °C. At the upper antenna (GPS1), slight 
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daily variations might occur, which were, however, neglected for the scope of this study. The ratio C/N0 

is determined for each satellite that is in sight of the receiver at a certain time. At the Weissfluhjoch test 

site eleven GPS satellites can be tracked on average with the applied Fastrax IT430 receivers.  

In total, the system operates 32 GPS satellites grouped in six orbits with an equatorial inclination of  

55 degrees. During a sidereal day (~23 h 56 min), all GPS satellites can be tracked for several hours at 

the test site, Weissfluhjoch. 

For the study period (7 April–6 July 2013), the C/N0 data, logged in a receiver-dependent raw data 

protocol, were extracted for each of the 32 satellites at each time step of one second; in addition, the 

corresponding satellite number expressed as pseudo random noise (PRN), the time, as well as the satellite 

elevation and azimuth information were recorded. Due to a failure of GPS satellite PRN 27, there were 

no data available from this satellite during the observation period. The sky plot in Figure 2 displays the 

trajectory of all GPS satellites on their sky paths and illustrates the hemispherical coverage during one 

sidereal day at the test site, Weissfluhjoch. This pattern of trajectories is repeated every sidereal day and 

is identical for GPS1, GPS2 and GPS3. Due to the orbital arrangement of the satellite tracks, the northern 

azimuth angles have less coverage, because the test site is situated at northern latitudes. For further data 

processing, C/N0 values below an elevation angle of 10 degrees were masked out, because only weak 

signals were recorded below this elevation angle, or no signals were received, due to a slight 

hemispherical obstruction of the GPS satellites by surrounding slopes. The location of the flat hut (see 

Figure 1) in the north-eastern sector at an approximate distance of 40 m from the GPS receivers had 

negligible influence on the line of sight between GPS receivers and GPS satellites. All three receivers 

maintained lock on all GPS satellites (except PRN 27) every day, even when the maximum snow depth 

and LWC values were reached. 

Figure 2. Sky plot as a polar plot of all GPS satellites recorded simultaneously by the three 

GPS receivers at the Weissfluhjoch test site for one sidereal day. The angular coordinates 

describe the azimuth angle and the polar axis the elevation angle. C/N0 values below an 

elevation angle of 10° were masked out for the calculation (these areas are marked grey). 
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3.2. Normalized C/N0 Values 

Besides environmental and atmospheric influences and the characteristics of receiver and antenna, 

the value of the recorded carrier-to-noise power density ratio (C/N0) depends on the elevation and 

azimuth angles of the received signals, as well as on the specific GPS satellite that emitted them. Due to 

different GPS satellite ages and other satellite characteristics, the peak field strength and, thereafter, also, 

the magnitude of the received C/N0 values differ slightly for each GPS satellite. Due to angle-dependent 

antenna sensitivity patterns, the received signal varies with different azimuth and elevation angles. 

Furthermore, multipath effects can cause changes in the received signals, especially at near grazing 

incidence. To account for all of these influences, several azimuth and elevation classes were defined to 

normalize the C/N0 values for each time step with respect to elevation- and azimuth-angle and satellite 

characteristics. In total, 16 elevation angle classes (in steps of five degrees between 10 and 90 degrees) 

and 16 azimuth angle classes for the entire azimuth range (in steps of 22.5 degrees) for all 32 GPS 

satellites were assigned, accounting for a total of 8192 classes. However, due to the hemispherical 

satellite distribution with less satellite tracks in the northern direction (see Figure 2), not all classes are 

covered by C/N0 values. Figure 3 shows exemplarily the C/N0 class distribution for GPS satellite  

PRN 1 for one sidereal day. One single class is covered only once by approximately 10 min. The mean 

class value is represented by the mean of all C/N0 values recorded during the satellite passage over  

this class. 

Figure 3. Sky plot as a polar plot for the GPS satellite PRN 1 for one sidereal day with the 

classification of the C/N0 values with 16 elevation and 16 azimuth classes. The classes 

assigned with values for PRN 1 are colored blue. C/N0 values below an elevation angle of 

10° were masked out for the calculation (these areas are marked grey). 

 

To make the C/N0 values comparable individually for each GPS antenna, it was necessary to define 

a snow-free reference day encompassing the period of a sidereal day. Therefore, a representative sidereal 

reference day without a snow cover and stable and dry tropospheric conditions was chosen, which is, for 
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this study, the UTC time period 09:00, 21 July 2013–08:56, 22 July 2013. It is assumed that for this time 

period, all C/N0 values were influenced by low atmospheric attenuation and ionospheric fluctuations. 

This means that all recorded C/N0 values during the entire time period theoretically represent the same 

signal strength. Thereafter, all values in each of the 8192 classes for this reference day express the 

normalized GPS C/N0 value 1.0. Then, all C/N0 values at each time step of each class were compared to 

the reference C/N0 value in the corresponding class. With this approach, also sub-daily variations of the 

C/N0 pattern, which are repeated every sidereal day, are considered and normalized. The data of all 

normalized C/N0 values calculated for each class with one-second resolution were aggregated to 30 min. 

Besides the temporal aggregation, the normalized GPS C/N0 values express also a spatial aggregation of 

GPS data recorded from different satellites at different elevation and azimuth angles covering different 

Fresnel zones around the antennas.  

GPS1 as a snow-free reference measurement showed slight temporal fluctuations due to different 

atmospheric conditions for each time step, which impact also GPS2 and GPS3. During the snow-covered 

period, GPS2 and GPS3 were also influenced by the snow cover. The normalized half-hourly GPS C/N0 

data of GPS1, GPS2 and GPS3 served as input for the further calculation of the LWC. Due to their 

almost identical location, GPS2 and GPS3 recorded the C/N0 values in parallel. For the observed  

three-month spring period, the coefficient of determination (R²) and the Nash-Sutcliffe efficiency 

coefficient (NSE) showed a very good agreement, with R² = 0.96 and NSE = 1.00. For further data 

processing, for each time step, the average of the normalized GPS C/N0 from GPS2 and GPS3 was taken. 

The normalized C/N0 of GPS1 is denoted as Im1, and the normalized C/N0 of the mean of GPS2 and 

GPS3 is denoted as Im2,3. 

4. Interaction of GPS Signals with the Snowpack 

4.1. Overview of Processes and Influences on GPS Signals 

Several processes influence the GPS L1-band microwave signals on their way from the GPS satellites 

to the GPS receivers underneath the snow cover. These include reflection and refraction at the  

snow-air interface, as well as attenuation within the snowpack, which encompasses absorption and 

scattering [46,47]. These processes are mainly dependent on changes of the complex permittivity of a 

medium. For this study, ε௦ describes the complex relative permittivity of snow, which is given as: 

ε௦ ൌ ε௦ᇱ  ݅ ε௦ᇱᇱ (1) 

where ε௦ᇱ  is the real part and ε௦ᇱᇱ the imaginary part of the permittivity. An overview of received intensity 

and signal strength losses, as well as angle changes due to reflection, refraction and attenuation processes 
is given in Figure 4. The measured intensity ܫଶ,ଷ underneath the snow cover at GPS2 and GPS3 can 

be described with: 

ଶ,ଷܫ ൌ ௧ܫ െ ܫ ൌ ଵܫ െ ܫ െ   (2)ܫ

where ܫଵ is the received intensity at GPS1 above the snow cover, ܫ is the reflected intensity at the 

snow-air interface, ܫ௧ is the transmitted intensity into the snowpack and ܫ is the intensity loss due to 

signal attenuation within the snowpack.  
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Figure 4. Overview of influences on the measured GPS intensity and radiation path length 

through snow, as well as the angle changes due to the reflection, refraction and attenuation 

processes. Only the direct signal paths are shown (in red); several multipath effects at and 

multiple bounces between the air/snow and snow/ground interfaces are neglected. 

 

In general, signal losses in the atmosphere are much smaller than signal influences at the  

snow-atmosphere interface and within the snowpack. Comparing dry and wet snowpack conditions, a 

dry snowpack has less influence on the signals than wet snow. According to Mätzler [48], the penetration 

depth, defined as the distance at which the power is reduced to 1/e of its original value [47], of L-band 

microwaves in dry snow is up to 400 m, whereas at an LWC of approximately 1%, it decreases to ~2.5 m 

and at approximately 5% to ~0.5 m. The main reason is signal attenuation within the snowpack due to 

liquid water [19]. Due to the fact that water has a high complex permittivity compared to air and  

ice [46,49], the received signal power is remarkably lower for wet than for dry snow. The degree of 

refraction and reflection at the snow-atmosphere interface is also influenced by the LWC, but has a lower 

effect than losses due to attenuation within the snowpack. Due to a longer wavelength of GPS microwave 

radiation (L1-band: λ = 19 cm) compared to the approximately 10- to 20-times smaller size of snow 

grains, the effects of snow microstructure can be neglected in the range of L-band microwaves. In the 

following, the consideration of signal attenuation (including scattering and absorption), refraction and 

reflection in the processing chain are shortly described.  

For the sake of simplicity, we neglected within our low-cost approach several multipath effects with 

coherent reflections at and bounces between the air/snow and snow/ground interfaces, which have only 

minor effects on the calculation of the LWC, as the latter is mainly based on the signal attenuation within 

the snowpack. 

4.2. Atmospheric Influence and Variability 

The incident radiation, also called peak intensity ܫ, which is sent directly from the GPS satellites, 

first undergoes losses by passing the atmosphere. These losses occur because of signal attenuation, 

reflection and refraction processes, e.g., at electrons, small particles and water vapor molecules in the 

ionosphere and troposphere, and can vary from day to day, due to different atmospheric and ionospheric 
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conditions. These processes affect the incoming radiation at all three GPS receivers above and 

underneath the snow cover in the same way. For each time step, the intensity ܫଵ derived from GPS1 

represents theoretically also the intensity that would be measured at GPS2 und GPS3 without the 

influence of the snowpack.  

The normalized GPS C/N0 values received at GPS1 contain information about these atmospheric 

signal strength variations for each time step compared to the chosen reference day with good weather 

and stable ionospheric conditions. For all further calculations, the normalized GPS C/N0 values derived 

from GPS1 with its atmospheric variability information were used as input values to calculate the 

reflection, refraction and attenuation processes within the snowpack and at its surface.  

4.3. Refraction and Snow Depth Correction 

The calculation of the refraction influence on the GPS signals, expressed as the angle of refraction 
  and the refraction coefficient ݊s, depends on the angle of incidence and the snow wetness. Theߴ

mean angle of incidence at the GPS antennas at the Weissfluhjoch test site received from all GPS 

satellites considering all possible elevation angles between 10° and 90° is ߴ = 48° (which corresponds 

to a GPS elevation angle of ߴ௩ = 42°). Due to:  

݀௦ ൌ
݀

cos ߴ
 (3) 

this oblique incident radiation travels a longer distance ݀௦ through the snow than the vertical distance 

that represents the snow depth ݀ measured with the laser sensor. Refraction due to a change from one 

to another medium, such as at the snow-atmosphere interface, causes a change of the angle of incidence 

and, thereafter, also in ݀௦. The refraction coefficient ݊s of snow is described with: 

݊s ൌ ඥε௦ᇱ  (4) 

Because the refraction coefficient of the atmosphere can be approximated with 1.0, the angle of 
refraction ߴ at the snow-atmosphere interface is expressed using Snell’s Law as: 

sin ߴ ൌ
sin ߴ
݊s

 (5) 

The wetter the snow, the larger the value of ε௦ᇱ  and, consequently, the higher the refraction. As a 

result, this means that ݀௦ decreases and gets closer to the measured snow depth ݀. 

4.4. Reflection at the Snow Surface 

Due to reflection at the snow-atmosphere interface, less than the entire intensity ܫଵ penetrates into 

the snowpack. As the incident radiation is circular polarized, the mean reflected intensity ܫ  at one 

circumference (ߙ ൌ ሾ0	2ߨሿ) is given by: 

ܫ ൌ
 ටሺୄݎ ඥܫଵ sin ሻଶߙ  ሺݎ∥ඥܫଵ cos ሻଶߙ

ଶ

ߙ݀
ଶగ


ߨ2
ൌ
ଶݎୄ 	ݎ∥

ଶ

2
 ଵܫ	

(6) 

with ୄݎ  and ݎ∥ as the perpendicular and parallel reflection coefficients, respectively:  
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ݎୄ ൌ
ୄܧ


ୄܧ
 ൌ

ܼ௦ cos ߴ െ ܼ௩ cos ߴ
ܼ௦ cos ߴ  ܼ௩ cos ߴ

 (7) 

∥ݎ ൌ
∥ܧ


∥ܧ
 ൌ

ܼ௩ ݏܿ ߴ െ ܼ௦ ݏܿ ߴ
ܼ௩ ݏܿ ߴ  ܼ௦ ݏܿ ߴ

(8) 

with: 

ܼ௦ ൌ ඨ
ߤ

ሺε௦ᇱߝ  ݅ ε௦ᇱᇱሻ
 (9) 

as the wave impedance for snow and: 

ܼ௩ ൌ ඨ
ߤ
ߝ

 (10) 

as the free-space wave impedance (approximately corresponding to the wave impedance of the 
atmosphere), where ߤ is the magnetic constant and ߝ the electric field constant. ୄܧ

  and ܧ∥
 are the 

field components of the incident wave perpendicular and parallel to the plane of incidence, respectively, 
and ୄܧ

 and ܧ∥
 the field components of the reflected wave perpendicular and parallel to the plane of 

incidence, respectively. 

4.5. Attenuation within the Snowpack 

The attenuation coefficient ߙ of a medium like snow is defined as: 

ߙ ൌ ඨ
ߤ
ε௦ᇱ ε

ε௦ᇱᇱߝ2(11) ݂ߨ 

and can additionally be described for a homogenous medium, as we assumed it for snow, by applying 

Beer-Lambert’s law [50]: 

ߙ ൌ െ
ln ቀ

ܫ௧ିܫ
௧ܫ

ቁ

݀௦
ൌ െ

ln ൬
ଶ,ଷܫ

ଵܫ െ ܫ
൰

݀௦
 (12) 

with ܫଵ and ܫଶ,ଷ as input data and ݀௦ and ܫ calculated with Equations (3) and (6), respectively. The 

attenuation within the snowpack increases with increasing snow wetness. 

5. Calculation of Liquid Water Content Based on the Complex Permittivity 

5.1. Real and Imaginary Part of the Complex Permittivity 

Considering reflection, refraction and attenuation processes in the atmosphere, at the  

snow-atmosphere interface and within the snowpack, the bulk volumetric LWC based on the complex 

permittivity can be calculated by mixing formulas for wet snow. The complex permittivity of wet snow 

as a three-phase mixture of air, ice and water is dominated by its volumetric LWC. In general, wet snow 

has a significantly higher complex permittivity than dry snow [49,51]. Permittivity can either be 
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estimated with an empirical relation [13,51] or three-phase mixing models (e.g., [52,53]). Most formulas 

for wet snow determination are valid within the pendular regime with an LWC below 8% to 10%.  

Real part: Three approaches exist to determine the real part of the complex permittivity for wet  

snow [54] in the frequency range of the GPS signals: the empirical equations of Sihvola and Tiuri [15] 

and Denoth [13] and the three-phase mixing formula from Roth et al. [52]. With regard to the latter, 

Lundberg and Thunehed [54] found an empirical relationship for their measurements and showed  

similar results in calculating the LWC. The real part depends on both the snow wetness and the dry snow 

density [15,54]. The liquid water content (LWC) ߠ௪ is given as percent per volume. 

(1) Empirical formula from Sihvola and Tiuri [15] after Tiuri et al. [51]: 

 ε௦ᇱ ൌ 1  1.7 ൈ 10ିଷ	ߩௗ௦  7.0 ൈ 10ି ௗ௦ߩ
ଶ  8.7 ൈ 10ିଶߠ௪  7.0 ൈ 10ିଷߠ௪ଶ  (13) 

with ߩௗ௦ as the dry-snow density in kg/m³. 

(2) Empirical formula from Denoth [13]: 

ε௦ᇱ ൌ 1  1.92 ൈ 10ିଷߩ௪௦  4.4 ൈ 10ିߩ௪௦ଶ  1.87 ൈ 10ିଵߠ௪  4.5	 ൈ 10ିଷߠ௪ଶ  (14) 

with ߩ௪௦ as the wet-snow density defined as: 

௪௦ߩ ൌ ௗ௦ߩ  0.01  ௪ (15)ߩ௪ߠ

with ߩ௪ = 1000 kg/m³ as the density of water. 

(3) Three-phase mixing formula from Roth et al. [52]: 

ε௦ᇱ ൌ ሺ0.01	ߠ௪ε௪ᇱ
.ହ 

ௗ௦ߩ
ߩ

ε
ᇱ.ହሺ1‐

ௗ௦ߩ
ߩ

௪ሻεᇱߠ	0.01‐
.ହሻଶ (16) 

with the permittivity of air εᇱ  = 1.0, of ice ε
ᇱ = 3.18 and of water ε௪ᇱ  = 88 at 0 °C and a frequency of 

1 GHz [8,54]. For this study, the dry-snow density was assumed with ߩௗ௦ = 370 kg/m³, which was the 

bulk dry-snow density just before the first melting in the measurement period in spring, 2013, at the test 

site, Weissfluhjoch; the density of ice is ߩ = 917 kg/m³. 

Imaginary part: The imaginary part ε௦ᇱᇱ of the complex permittivity for wet snow is directly related 

to the snow wetness and can be given according to Sihvola and Tiuri [15] after Tiuri et al. [51] and 

Bradford et al. [55] as: 

ε௦ᇱᇱ ൌ
݂

10ଽHz
ሺ1.0 ൈ 10ିଷߠ௪  8.0 ൈ 10ିହߠ௪ଶሻε௪ᇱᇱ  (17) 

with ε௪ᇱᇱ  = 9.8 as the imaginary part of the complex permittivity of water at 0 °C and a frequency of  

1 GHz [15]. 

In the range of microwave radiation from 1 MHz–2 GHz [44], the real part of the complex permittivity 

of wet snow is frequency independent, so that these equations can be applied without corrections. 

However, the imaginary part depends on frequency in this microwave range. Figure 5 illustrates the 

dependence of the permittivity on the LWC for the different formulations (Equations (13), (14), (16) and 

(17)). The higher the LWC, the higher is the deviation between the different formulations.  
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Figure 5. Permittivity vs. liquid water content (LWC) calculated with the three formulations 

and their mean for (a) the real part ε௦ᇱ  and (b) the imaginary part ε௦ᇱᇱ. The dry snow density 

was set to 370 kg/m³. 

(a) (b) 

5.2. Retrieval Algorithm 

The input data for Equations (2)–(17) are the normalized GPS C/N0 data ܫଵ and ܫଶ,ଷ and the snow 

depth ݀  measured by a laser sensor nearby the GPS receivers every 30 min. With a root-finding 

algorithm, the two attenuation Equations (11) and (12) were set equal under consideration of the  

three different cases for the equations for the real part ε௦ᇱ  of the complex permittivity of snow  

(Equations (13), (14) and (16)). The imaginary part ε௦ᇱᇱ  was calculated after Equation (17). The 

permittivity was assumed to be temperature-independent, so no external temperature measurement was 

required as input. In summary, the only unknown of this approach is the LWC, which can be calculated 

as described above by the externally measured snow depth and the recorded GPS data for each time step 

assuming a constant value of the dry snow density (370 kg/m³), which means that it was held fixed at 

this nominal value. Table 1 illustrates how the reflectivity and the attenuation coefficient increase with 

increasing LWC; in particular, the attenuation coefficient strongly increases.  

Table 1. Real ε௦ᇱ  and imaginary part ε௦ᇱᇱ of the complex permittivity of snow, corresponding 

reflectivity r² and the attenuation coefficients α for varying values of LWC; LWC is the 

mean of the three approaches for the real part (Equations (13), (14) and (16)). 

Volumetric Liquid 
Water Content θ 

Permittivity, 
Real Part εs' 

Permittivity, 
Imaginary Part εs'' 

Reflectivity r² 
Attenuation 
Coefficient α 

0% 1.74 0.00 0.03 0.01 
2% 2.10 0.04 0.05 0.83 
4% 2.50 0.08 0.07 1.79 
6% 2.96 0.14 0.09 2.75 
8% 3.46 0.21 0.11 3.79 
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6. Results 

The LWC of the snowpack covering the antennas GPS2 and GPS3 at the Weissfluhjoch test site was 

calculated for the three-months spring period (7 April–6 July 2013) in half-hourly temporal resolution. 

The system worked well apart from one break-down of 50 h from 19–21 June due to a power failure at 

the test site. 

6.1. Bulk Volumetric Liquid Water Content Derived with the Three Different Formulations  

Figure 6 shows the evolution of the normalized GPS C/N0 values in decibels taken as the mean of 

GPS2 and GPS3, which were buried under the snowpack during the entire spring period. These values 

serve besides the snow depth as main input data for the calculation of the LWC. Higher normalized GPS 

C/N0 (~ −1 dB) values represent dry snow, whereas lower values (< −3 dB) represent moist to wet snow. 

A value of about 0 dB would represent snow-free conditions. The LWC was calculated as described 

above with the snow depth and the normalized GPS C/N0 values as input for each time step of 30 min. 

For the real part of the complex permittivity, the three approaches, in the following named Tiuri 

(Equation (13)), Denoth (Equation (14)) and Roth (Equation (16)), as well as their mean value were 

applied for each time step.  

Figure 6. Normalized GPS C/N0 values (dB) taken as the mean of the two GPS receivers 

under the snow cover (GPS2 and GPS3) at the Weissfluhjoch test site for the period  

7 April–6 July 2013. 

 

The bulk volumetric LWC calculated as the mean of all three equations for the entire observation 

period covered a range from 0% to 6.3%. The minimum LWC determined with the three equations was 

0%, and the maximum varied between 6% and 6.9%, with the lowest values calculated with Tiuri and 

the highest with Roth. In general, the differences in LWC between the different approaches increase with 

increasing LWC. The largest difference between the three mixing formulas was 0.9 percent points (pp). 

Figure 7 illustrates the temporal evolution of the bulk volumetric LWC calculated with the three mixing 

formulas for wet snow for the real part, as well as their mean value during the study period. In general, 

the evolution is fairly similar. At the beginning of the period, the snow was almost dry with a bulk 

volumetric LWC clearly below 0.5%. Around mid-April, the LWC started to increase and reached a first 

maximum of approximately 4% in the first week of May. Until the beginning of June, the values 

decreased to approximately 1.7% with a sharp increase in the first week of June up to a second peak, 
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comparable to the level of the first maximum, i.e., approximately 4%. The further increase until the 

beginning of July up to the maximum values was interrupted by three smaller minima around 2.5% to 

3%. Moreover, all curves show small daily fluctuations of the bulk volumetric LWC indicating daily  

melt-freeze cycles, which we will focus on in more detail later. The differences due to the different 

formulations for calculating the LWC were quite small. In the following, to simplify comparisons, we 

will refer to the mean of the bulk volumetric LWC calculated from the three different formulations. 

Figure 7. Bulk volumetric LWC of the snowpack above the antennas of GPS2 and GPS3 at 

the Weissfluhjoch test site for the period 7 April–6 July 2013, calculated with the normalized 

GPS C/N0 data. The LWC was calculated with three different formulations (Roth, Denoth 

and Tiuri). Furthermore, the mean of the three curves, as well as reference measurements 

with the Snow Fork, the Denoth meter and the estimate from manually observed snow 

profiles are shown. 

 

6.2. Comparison with Reference Measurements in Snow Pits 

In addition to the GPS-derived LWC, Figure 7 includes single destructive reference measurements 

taken in snow pits nearby. These include measurements with a Denoth meter, a Snow Fork and wetness 

estimates for each stratigraphic layer according to Fierz et al. [10]. The wetness values determined with 

the Denoth meter and the Snow Fork did not match well with the GPS measurements. The under- and 

over-estimation compared to GPS-derived values was up to 2 pp. Moreover, values obtained with the 

Snow Fork were up to 3 pp higher than with the Denoth meter for the same date. However, this 

discrepancy is in accordance with previous findings by Techel and Pielmeier [12], Mitterer et al. [8] and 

Schmid et al. [18]. Overall, Figure 7 suggests that the values of the bulk volumetric LWC derived from 

the normalized GPS C/N0 data are approximately within the range of the values measured with the 

Denoth meter and the Snow Fork. During the first four weeks of the study period when the LWC was 

below 2%, the bulk values derived from the manually observed wetness index were slightly below the 
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normalized GPS C/N0 curves. They agreed quite well at the end of the study period, but they clearly 

deviated in mid-May and at the beginning of June, when the LWC was generally high.  

Table 2. Difference between the GPS-derived LWC and reference measurements (Denoth 

meter, Snow Fork and snow profile estimates). The absolute mean difference and the 

adjusted correlation coefficient are given. 

 Denoth Meter Snow Fork Snow Profile 

number of 
measurements 

9 6 11 

RMSD (pp) 1.0 1.2 1.2 
adjusted R² 0.90 0.91 0.55 

The root-mean-square deviation (RMSD) between the GPS-derived LWC and the reference 

measurements was about 1 pp (Table 2). The correlation between GPS-derived LWC and reference 

measurements was lowest for the snow profile estimates (adjusted R² = 0.55). 

6.3. Comparison with Meteorological and Snow-Hydrological Data 

Figure 8 shows the evolution of the measured snow depth, air and snow surface temperatures and the 

meltwater outflow for a 5 m² lysimeter, as well as the bulk volumetric LWC derived from the normalized 

GPS C/N0 measurements (only the mean is shown) at the Weissfluhjoch test site for the entire study 

period. In the following, the evolution is described by considering six sub-periods with different snow 

melt conditions. 

Sub-period I (7–13 April 2013): This sub-period is characterized by almost dry-snow conditions. Due 

to cold air and snow surface temperatures, no discharge was registered at the lysimeter, and the bulk 

volumetric LWC was between 0 and 0.5%.  

Sub-period II (14 April–8 May 2013): Due to melting, the snow depth decreased from 1.9 to 1.4 m. 

The air temperature, especially during mid-day, was mostly above 0 °C, and the snow surface 

temperature reached mostly 0 °C at its daily maximum, indicating snow melting processes. The LWC 

started to increase markedly on 14 April, one day before the start of the first lysimeter meltwater outflow, 

which indicates that the wetting front arrived at the bottom of the snowpack. The bulk volumetric LWC 

increased to approximately 4%, and the maximum daily discharge amounted to 1 to 2 L/(m²h). 

Sub-period III (9 May–4 June 2013): Temperatures below 0 °C and several snowfalls causing the 

snow depth to increase to almost 2 m again characterized the third sub-period. These conditions resulted 

in an absence of meltwater outflow and a clear decrease in the bulk volumetric LWC. However, even 

though meltwater outflow stopped, the GPS-derived measurements suggested that approximately 2% of 

liquid water was still present in the snowpack at the end of this sub-period. 

Sub-period IV (5–22 June 2013): The air temperature was almost always above 0 °C, reaching a 

maximum of up to 15 °C. Consequently, the snow surface temperature ranged, especially in the second 

week, around 0 °C. These melting conditions led to a strong decrease in snow depth and to an increase 

of the LWC of up to 5.5% and a peak discharge of up to 6.5 L/(m²h). The increase in discharge was 

temporally highly correlated with the increase in air temperature and LWC.  
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Sub-period V (23–29 June 2013): In contrast to the previous sub-period, temperatures were lower and 

no meltwater-outflow was registered. This sub-period was characterized by two small snowfalls, which 

resulted in a significant decrease in the bulk volumetric LWC, in particular during the snowfalls. 

Sub-period VI (30 June–6 July 2013): Temperatures rose again, leading to a clear decrease in snow 

depth and an increase in meltwater outflow. The bulk volumetric LWC increased in parallel. After  

6 July, the snow depth was spatially too variable to calculate reliable values of LWC. Furthermore, the 

snow wetness reached a higher bulk volumetric LWC than expected within the pendular regime, for 

which the applied mixing formulas are valid. The snow finally disappeared on 11 July, only five days 

after the end of this sub-period. 

From the above descriptions, it becomes clear that the meteorological and snow-hydrological 

evolution had a great influence on the evolution of both the measured LWC and the lysimeter meltwater 

outflow; and that, in general, the temporal evolution of GPS-derived LWC agreed well qualitatively with 

meteorological, as well as the snow-hydrological data. 

Figure 8. (a) Snow depth; (b) air and snow surface temperature and (c) lysimeter meltwater 

outflow, as well as the bulk volumetric LWC (mean of the three approaches, as in Figure 7) 

derived from normalized GPS C/N0 measurements at the Weissfluhjoch test site during  

the time period 7 April–6 July 2013. Vertical dashed lines between six sub-periods  

(denoted I to VI). 
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Figure 9. (a) Snow depth; (b) air and snow surface temperature and (c) lysimeter meltwater 

outflow, as well as the bulk volumetric LWC derived from normalized GPS C/N0 

measurements at the Weissfluhjoch test site during the time period 14–21 April 2013. Daily 

peaks of the lysimeter outflow and the LWC are marked with the dashed lines in 

corresponding colors.  

 

The daily evolution of GPS-derived LWC clearly showed the daily melt-freeze cycles typically 

observed during the snowmelt period. Figure 9 exemplarily shows the temporal evolution of measured 

snow depth, air and snow surface temperature and lysimeter meltwater outflow, as well as the LWC 

derived from the normalized GPS C/N0 measurements for eight days (14–21 April). During this period, 

the snow depth decreased in the first six days from 1.89 to 1.65 m. On the seventh day, it increased to 

1.85 m during a snowfall and decreased again to 1.68 m on the eighth day. Snow depth decreased 

especially during mid-day when the snow surface temperature reached 0 °C and was stable at nighttime, 

in accordance with temperatures below 0 °C. During the first six days, the air temperature was almost 

always above 0 °C, and the snow surface temperature reached 0 °C during the daytime. During these 

days with melt activity, the bulk volumetric LWC showed a daily course, reaching a maximum in the 

afternoon. Furthermore, a time-lagged daily discharge maximum was observed. While reaching the 

maximum LWC, also the maximum percolation rate was reached within the snowpack. After the 

meltwater passed through the entire snowpack, it arrived at the bottom of the snowpack at the lysimeter 

with a delay of approximately 0.5 to 1.5 h after the daily LWC maximum was reached. During the end 
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of the night and the early morning, the minima were reached due to refreezing processes. On 20 April, 

a dry snowfall was recorded, and the temperatures dropped to approximately 0 °C. Subsequently, no 

discharge was registered, and the LWC decreased. On the last day, a clear daily melt-freeze cycle can 

be observed again.  

7. Discussion 

7.1. Advantages and Limits 

This new experimental low-cost GPS measurement system is capable of detecting bulk volumetric 

LWC continuously and non-destructively over an entire melting period. This means changes in the LWC, 

such as daily melt-freeze cycles, can be traced with half-hourly resolution. This highly temporally 

resolved and non-destructive information on the evolution of the LWC was so far only reached with 

radar systems [17,18]. Other in situ measurements, like dielectric probes or manual measurements, are 

all labor-intense, time consuming and invasive, which means that snow profiles have to be dug to derive 

snow pit information. Even though the LWC derived by GPS sensors can only deliver bulk values 

without information on the snow stratigraphy, the GPS data provide valuable information for 

hydrological applications, e.g., to detect the melt-onset with high temporal resolution. These GPS 

measurement systems have the clear advantage that they can be installed at large numbers, due to their 

cost efficiency, with low-cost devices and freely available GPS raw data. Sensor networks with large 

numbers of sensor members could be installed, monitoring on a large scale, e.g., melting processes of 

an entire hydrological catchment, or on a small scale, e.g., an avalanche prone slope, which is 

heterogeneously covered by snow. Nevertheless, for the LWC calculations, additional snow depth 

measurements are necessary. This could probably be overcome in the future by determining the snow 

depth by applying additional GPS measurements and algorithms (e.g., [25,27]). 

7.2. Uncertainty Estimates for the Calculation of the Bulk Volumetric Liquid Water Content 

For the GPS-derived LWC based on intensity losses, three common approaches exist to determine 

the real part of the complex permittivity for wet snow in the frequency range of the GPS signals. 

However, Figure 7 does not give an answer to which of the applied equations after Sihvola and  

Tiuri [15] (Equation (13)), Denoth [13] (Equation (14)) and Roth et al. [52] (Equation (16)) is the most 

realistic, though this is not subject of this study. Even if the curves of the bulk volumetric LWC lay close 

together, the choice of the mixing formula for wet snow may carry uncertainties in the derivation, 

especially if the wetness is high. For comparison with other data, the mean of the three quite common 

approaches was taken. 

Besides differences in the results by applying the different empirical mixing formulas, further 

uncertainties remain. In addition to the normalized GPS C/N0 data, snow depth and the dry snow density 

are input parameters that may also be erroneous, e.g., due to spatial variations in snow depth, which may 

have implications on different Fresnel zones around the GPS antenna. Though the laser sensor is installed 

quite close to the GPS measurement setup, snow depth at the location of the GPS receivers can certainly 

deviate by a few centimeters. An overestimation in snow depth leads to an underestimation of the LWC 

and vice versa; the higher this error is, the lower is the snow depth. If, for example, the LWC is 4%, an 
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overestimation of 10 cm in snow depth leads to ߠ௪ = 3.8% (i.e., an underestimation by 5.6%) at a 

measured snow depth of 1.54 m at the laser sensor; if the measured snow depth is only 0.64 m, the same 

error in snow depth results in an underestimation of ߠ௪  by 13%. A possible effect of snow depth 

variability could, e.g., be reduced if the snow depth sensor would have been directly mounted above the 

GPS instruments, which was technically not feasible. However, errors in snow depth larger than  

about ±10 cm are rather unlikely at the test field, as further snow depth sensors and manual  

measurements showed. 

The dry snow density was 370 kg/m³ before the snow became wet and was held constant over the 

entire melting period, as suggested by Mitterer et al. [8]. Deviations in dry snow density, for example 

due to settling during the melting period, have little effect on the calculation of the LWC. For example, 

for an LWC of 4.0%, a deviation in snow density of 20% leads to an increase or decrease of the LWC 

to only 4.1 or 3.9%, respectively. To avoid uncertainties caused by the density assumption, it would only 

be possible to continuously derive the wet snow density, e.g., using independent measurements, which, 

however, could cause further measurement uncertainties.  

Moreover, additional uncertainties may occur due to multiple reflection paths at and between the 

air/snow and snow/ground interfaces or at the flat hut or other poles at the test site and, in particular, 

affect the GPS antenna above the snow cover (GPS1). However, these effects are minor, compared to 

the considered reflection, refraction and attenuation processes at and within the snowpack, and these are 

neglected within this simple low-cost approach. 

7.3. Comparison with Other Measurements 

Few quantitative reference measurements were available. The bulk volumetric LWC derived by the 

non-destructive normalized GPS C/N0 measurements could only be compared to the few destructive 

measurements conducted with either the Denoth meter [13] or the Snow Fork [15] or to the wetness 

estimates for each stratigraphic layer according to Fierz et al. [10]. First, the destructive methods cannot 

be carried out at exactly the same location, including the problem that the snow wetness can spatially be 

variable. Second, they are all destructive methods, and due to the fact that the snow pit wall is exposed 

to atmospheric influences, the snow wetness can change rapidly and, hence, influence the measurements. 

Third, these reference measurements are quite labor-intense and, due to their destructiveness, were only 

performed on a few dates, so they are only a snapshot without showing the temporal evolution of the 

LWC. Forth, the manual measurements and observations within the snow pit are often subjective and 

can only be interpolated with limited accuracy for the entire snowpack. Fifth, the two dielectric methods 

show large discrepancies, which was already observed by Techel and Pielmeier [12], Mitterer et al. [8] 

and Schmid et al. [18]. 

Overall, we showed that the bulk volumetric LWC derived from GPS data was highly sensitive to the 

daily meteorological and snow-hydrological evolution and can plausibly be explained by them. Due to 

their frequent repetition and sensitivity, the measured C/N0 values from GPS signals can be used to 

resolve the evolution of the entire period and daily melt-freeze cycles and their impact on snow LWC. 

The daily evolution of the LWC derived from the GPS measurements was in good qualitative agreement 

with the daily evolution of the meteorological and snow-hydrological data, but we were at this point of 



Sensors 2014, 14 20995 

 

 

our research unable to provide a proper quantitative validation, as appropriate in situ or remote sensing 

methods were not readily available. 

8. Conclusion and Outlook 

We presented a new approach to continuously determine snow liquid water content (LWC) with 

simple low-cost GPS receivers based on the attenuation in wet snow of the GPS signal strength 

broadcasted via L1-band microwaves. With this new experimental measurement approach, it was 

possible to directly derive from measured normalized GPS C/N0 data the bulk volumetric LWC of a 

seasonal snowpack continuously and non-destructively. Intensity losses due to reflection, refraction and 

attenuation processes within the atmosphere and the snowpack, as well as at the snow-atmosphere 

interface were considered.  

The LWC was calculated with three common and plausible mixing formulas based on the real 

permittivity of wet snow at the high elevation Weissfluhjoch test site above Davos, Switzerland, over an 

entire melt period in spring, 2013. The GPS-derived temporal evolution of LWC was compared with 

single destructive reference measurements and continuous meteorological and snow-hydrological data. 

The LWC showed qualitatively a high temporal coincidence with the evolution of air and snow surface 

temperatures, snow depth and meltwater outflow during the entire observation period. Furthermore, the 

melt onset and daily melt-freeze cycles were clearly detected.  

In summary, the comparison of the evolution of the meteorological and snow-hydrological data with 

the bulk volumetric LWC derived with GPS data showed that a wealth of information on the dynamics 

of snow LWC is contained in the measurements. The normalized GPS C/N0 values reacted very 

sensitively to an increase or decrease of the LWC within the snowpack, e.g., during melting and 

refreezing conditions, and provide an indication for meltwater outflow. However, it has to be clearly 

stated that with the available in situ reference measurements, it was not possible to quantitatively  

validate the measured snow LWC. Therefore, in a next step, the bulk volumetric LWC derived by 

normalized GPS C/N0 data should be compared with other continuous and non-destructive measurement 

methods for the same time period. A promising method for this task may be an upward-looking  

ground-penetrating radar system.  

The main advantages of this approach are that the measurement devices are low cost and low power 

consuming and that data analysis is not time consuming and labor intensive. The GPS signals are freely, 

globally and continuously available, and through the development of dedicated GPS receivers for smart 

internet appliances, like smartphones, the market offers a wide range of highly-sensitive, cheap, small, 

robust and low-power devices. This means that the measurement principle can be applied on a global 

basis (provided power and telemetry is available) to acquire information on LWC at a high temporal 

resolution without destroying the snow cover. It is possible to join large numbers of these receivers to 

sensor networks, which, once installed within a hydrological catchment, could be used, e.g., to deliver 

data for predicting snow melt and runoff in their spatial distribution and at different elevation levels. 

This could help to validate and temporally complement remote sensing applications supporting 

continuous runoff predictions for flood or hydropower services. Moreover, due to the small size of the 

instruments and the non-destructive measurement setup, it is possible to install the GPS antennas also  

in steep slopes. This has the potential to, e.g., support avalanche forecasting through continuous 
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information on snow wetness directly from avalanche-prone slopes, where, to date, this information is 

hardly available. Analyzing signal strength losses of normalized GPS C/N0 data caused by wet snow has 

therefore a high potential for continuously monitoring the LWC, e.g., in basin-wide sensor networks for 

hydrological applications or for avalanche predictions.  
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