

Contents lists available at ScienceDirect

IJC Heart & Vasculature

journal homepage: www.sciencedirect.com/journal/ijc-heart-and-vasculature

Subclinical myocardial injury, coagulopathy, and inflammation in COVID-19: A meta-analysis of 41,013 hospitalized patients

Oluwabunmi Ogungbe^{a,*}, Baridosia Kumbe^a, Oluwadamilola Agnes Fadodun^b, T. Latha^c, Diane Meyer^{a,d}, Adetoun Faith Asala^e, Patricia M. Davidson^{a,f}, Cheryl R. Dennison Himmelfarb^{a,d,g}, Wendy S. Post^{d,g}, Yvonne Commodore-Mensah^{a,d,g}

^a Johns Hopkins University School of Nursing, Baltimore, MD, USA

^b The University of Lethbridge, Lethbridge, Alberta, Canada

^c Manipal Academy of Higher Education, Manipal, India

^d Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA

^e Jackson State University, Jackson, MS, USA

^f University of Wollongong, Wollongong, Australia

^g Johns Hopkins University School of Medicine, Baltimore, MD, USA

ARTICLE INFO

Keywords:

COVID-19

SARS-CoV-2

Inflammation

Meta-analysis

Troponin

Myocardial injury

ABSTRACT

Background: Infection with the SARS-CoV-2 virus can lead to myocardial injury, evidenced by increases in specific biomarkers and imaging.

Objective: To quantify the association between biomarkers of myocardial injury, coagulation, and severe COVID-19 and death in hospitalized patients.

Methods: Studies were identified through a systematic search of indexed articles in PubMed, Embase, CINAHL, Cochrane, Web of Science, and Scopus, published between December 2019 to August 2021. Effect estimates from individual studies for association between markers of myocardial injury (Troponin), myocardial stretch (N-terminal-pro hormone BNP, NT-proBNP), and coagulopathy (D-Dimer) and death or severe/critical COVID-19 were pooled using inverse variance weighted random-effects model. Odds Ratios (OR), Hazard Ratios (HR), and 95% Confidence Intervals (CI) were pooled separately and reported by outcomes of critical/severe COVID-19 and death. A *meta*-analysis of proportions was also performed to summarize the pooled prevalence of co-morbidities in patients hospitalized with COVID-19.

Results: We included 62 articles, with a total of 41,013 patients. The pooled proportion of patients with history of hypertension was 39% (95% CI: 34–44%); diabetes, 21% (95% CI: 18%–24%); coronary artery disease, 13% (95% CI: 10–16%); chronic obstructive pulmonary disease, 7% (95% CI: 5–8%); and history of cancer, 5% (95% CI: 4–7%). Elevated troponin was associated with higher pooled odds of critical/severe COVID-19 and death [Odds Ratio (OR: 1.76, 95% CI: 1.42–2.16)]; and also separately for death (OR: 1.72, 95% CI: 1.32–2.25), and critical/severe COVID-1919 (OR: 1.93, 95% CI: 1.45–2.40). Elevations in NT-proBNP were also associated with higher severe COVID-19 and death (OR: 3.00, 95% CI: 1.58–5.70). Increases in D-dimer levels was also significantly associated with critical/severe COVID-19 and death (pooled OR: 1.38, 95% CI: 1.07–1.79).

Conclusions: This meta-analysis synthesizes existing evidence showing that myocardial injury, and coagulopathy are complications of COVID-19. The durability of these complications and their contributions to long-term cardiac implications of the disease is still being investigated. Patients who have recovered from COVID-19 may benefit from minimally invasive assessment for markers of myocardial injury, stretch and coagulopathy for early risk stratification purposes.

* Corresponding author at: Johns Hopkins School of Nursing, 525 N. Wolfe St., Baltimore, MD 21205, USA. *E-mail address:* oogungb3@jh.edu (O. Ogungbe).

https://doi.org/10.1016/j.ijcha.2021.100950

Received 23 October 2021; Received in revised form 8 December 2021; Accepted 29 December 2021 Available online 4 January 2022 2352-9067/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

2352-9067/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background

While COVID-19 may begin as a respiratory disease, sometimes causing pneumonitis and severe acute respiratory distress syndrome (ARDS), other major organs may also be affected, particularly the cardiovascular system, kidneys, and brain [1]. COVID-19 is associated with a wide range of symptoms, and a spectrum of clinical illnesses characteristic of multisystem disease with cardiovascular consequences [2,3]. The characteristic of immune system activation may result in cytokine storm with the release of massive amounts of cytokines, causing both local and systemic inflammatory response, which contributes to disarray in immune, cardiac and inflammatory biomarkers [4,5].

Infection with SARS-CoV-2 virus can lead to elevations in cardiac biomarkers and electrocardiographic changes that are associated with poorer clinical outcomes, including ICU admission, mechanical ventilation and death [6-8]. These cardiac biomarkers include troponin (cTnI), n-terminal pro-b-type natriuretic peptide (NT-proBNP), galectin-3, d-dimer, interleukin-6 (IL-6), and c-reactive protein (CRP) [9-11]. In one study of 2,736 patients hospitalized for COVID-19 in New York City, small elevations in cTnI laboratory values were associated with increased mortality. NT-proBNP, a hormone that is predominantly produced by ventricular myocytes in response to increased ventricular wall stress, is an established biomarker for diagnosis and prognosis of heart failure [12]. Elevated NT-proBNP is associated with increased risk of cardiogenic shock [13], acute heart failure [14,15], myocardial infarction [14], right ventricular dysfunctions, left ventricular dysfunction [16,17], stress cardiomyopathy [16,17], arrhythmias [13-15], and venous and arterial thrombosis [18,19] among hospitalized COVID-19 patients [20]. According to the American College of Cardiology (ACC), based on case reports from China, US, and Europe, about 40% of hospitalized COVID-19 patients have cardiovascular or cerebrovascular disease, 16.7% of them developed arrhythmias, and 7.2% developed acute cardiac injury [21-23].

Understanding accumulating evidence on the cardiac consequences of infection with SARS-CoV-2 virus is critical to better understanding biomarkers that may indicate poorer clinical outcomes. Thus, we conducted a systematic review and meta-analysis to quantify the association between biomarkers of myocardial injury (troponin), myocardial stretch (NT-proBNP, Gal-3), coagulation (D-Dimer), inflammation (CRP, IL-6) and severe COVID-19 or death in hospitalized patients. We also calculated pooled proportions of underlying co-morbidities (hypertension, CAD, diabetes, COPD, and cancer) from the articles reviewed.

2. Methods

2.1. Search strategy

This systematic review and meta-analysis followed recommendations from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (eTable 1 in the Supplement). A detailed literature search was conducted in relevant scientific databases, including MEDLINE (PubMed), Embase, CINAHL, Cochrane, Web of Science, and Scopus. Search terms and strategy were developed with the help of an informationist to search for studies conducted between December 2019 and January 2021. An updated search was conducted for articles between January and August 2021. The complete search strategy for each database is available in eTable 2 in the Supplement. This review was registered in the PROSPERO database with registration number CRD42021229341.

2.2. Study selection and eligibility criteria

All studies identified via databases searches were imported into Covidence [24]. Three reviewers (O.O., B.K., O.A.F.) independently screened identified studies for title and abstract eligibility. Discrepancies and divergencies were discussed and adjudicated with the help of two independent reviewers (L.T. and A.F.A.). The following criteria fulltext review inclusion were: 1) study type: retrospective, prospective, observational, or case-control studies, reporting on cardiac biomarkers (specifically Troponin I or T, NT-proBNP, CRP, IL-6, and Gal-3); 2) population: adult patients diagnosed with COVID-19; 3) exposure/ intervention: confirmed COVID 19 infection; 4) outcome indicators: myocardial injury, severe or critical clinical status, and death. Studies excluded include case reports, editorials, letters to the editor and correspondence, and conference abstracts that did not contain primary data. Preprints and non-peer reviewed articles, other review articles, and articles not published in English were also excluded.

2.3. Data extraction

Following title/abstract screening, three reviewers (O.O., B.K., O.A. F.) worked in pairs to independently assess the studies for full-text eligibility. A third and fourth reviewer performed conflict resolution, one adjudicator per article, to reach a consensus (L.T., and A.F.A.). After full-text eligibility screening, data were extracted independently by a total of five reviewers (O.O., B.K., O.A.F., L.T., and D.M.); for each article, there were two primary independent reviewers and one adjudicator. Discrepancies for extracted data were resolved by consensus. results adjudicated where applicable and confirmation checks were done. A predesigned and piloted data template in Covidence was used for data extraction. Data extracted included author, publication year, study design, sample size, participant characteristics, proportion of comorbidities in the sampled population, median or mean levels of cardiac biomarkers and their cut-off points, outcomes of interest (COVID-19 severity, death, ICU admission, etc.), and reported measures of association.

2.4. Definitions

For this review, data on severe COVID-19 was abstracted based on the definition and categories as reported in the reviewed articles. Studies conducted in China defined severity of COVID-19 according to the Chinese guideline for COVID-19 management; [25] severe cases were defined as the presence of at least one of the following: (i) respiratory rate > 30 breaths per minute; (ii) oxygen saturation (SpO2) \leq 93%; and (iii) PaO2/FiO2 ratio \leq 300 mmHg. Critical cases were defined as those including at least one of the following: (i) respiratory failure requiring mechanical ventilation; (ii) shock; (iii) presence of other organ damage apart from respiratory; and (iv) admission to intensive care unit. Other studies used the World Health Organization definitions of severe pneumonia (Adolescent or adult: fever or suspected respiratory infection, plus one of respiratory rate > 30 breaths/min, severe respiratory distress, or SpO2 < 90% on room air) or ARDS (Onset: new or worsening respiratory symptoms within one week of known clinical insult; Chest imaging (radiograph, CT scan, or lung ultrasound): bilateral opacities, not fully explained by effusions, lobar or lung collapse, or nodules; Origin of edema: respiratory failure not fully explained by cardiac failure or fluid overload; o exclude hydrostatic cause of edema if no risk factor present; Oxygenation (adults): PaO2/FiO2 \leq 100 mmHg with PEEP \geq 5 cmH2O, or non-ventilated) [26]. Majority of the articles defined myocardial injury as hs-Troponin I (hs-TnI) ≥ 99th percentile of the upper reference limit, regardless of new abnormalities in electrocardiography and echocardiography [27].

2.5. Quality assessment

Quality Assessment was conducted using the Newcastle Ottawa Quality Assessment Scale (NOS) [28] which assesses design quality of non-randomized, cohort and case-control studies. A maximum score of 9 was aggregated across three domains of the NOS scale: selection of study groups (4 possible points), comparability of groups (2 possible points), and ascertainment of outcomes (3 possible points). The overall risk of bias was classified as either "high", "some concern", or "low" based on the cumulative NOS scores. The risk-of-bias assessment summary table and plots were created using the *robvis* application [29].

2.6. Data synthesis and statistical analysis

Analysis was conducted using the meta commands in Stata/IC 16.1 [30]. All reported medians or mean values for biomarkers: Troponin I or T, NT-proBNP, Gal-3, IL-6, D-Dimer, and CRP were summarized in the original unit measured in the studies. When studies did not report mean and standard deviations, reported sample sizes, median and interquartile ranges were abstracted. Measures of associations reported in relevant studies (odds or hazard ratios) and the primary outcomes were summarized. For the meta-analysis, unadjusted hazard ratios (HR) and odds ratios (OR) and their 95% confidence intervals (CI), reported from each study were natural log-transformed [31]. OR, HRs and 95% CIs were pooled separately and reported by outcomes of death or critical/ severe COVID-19. Random effect models with the inverse variance method were used to derive pooled measures of association, and the 95% CI and p-values to quantify the associations between elevated biomarkers and cardiovascular complications, and COVID-19 severity and death.

The pooled effect sizes were represented as forest plots. Heterogeneity of study estimates was assessed by Hedge's I² statistic, which was interpreted as I² < 25%, 25–50%, 50–75%, and > 75%, which indicates no, low, moderate, and high between-study heterogeneity [32]. The risk of publication bias was assessed using funnel plots. Egger's meta-regression was performed to assess for small-study effects. We visually inspected the distribution of relevant studies for asymmetry or by p-value < 0.1, indicating possible publication bias [33].

To calculate pooled proportions from the reported underlying comorbidities (hypertension, CAD, diabetes, COPD, and cancer) from each article, we performed a meta-analysis of proportions of this binomial data, using the *metaprop* package in Stata [34]. Using a randomeffects model, we calculated 95% exact confidence intervals for each study and the overall pooled estimate for each comorbidity. We reported the measure of heterogeneity (I^2) and displayed the outputs using forest plots.

3. Results

Fig. 1 shows the PRISMA flow chart for study selection. A total of 3,106 records were identified through the databases on initial search, and 2,032 records from the updated search; 2,454 duplicates were removed, and 2,684 titles and abstracts were screened for inclusion. Following title and abstract screening, 2,274 articles were excluded leaving 410 articles for full-text retrieval, 58 of which full-text versions were unretrievable or conference abstracts. Upon screening, a total of 290 articles were further excluded, leaving 62 articles that met the inclusion criteria and were included in the review and meta-analysis for this study. The PRISMA flowchart was completed according to the updated 2020 guideline [35], and generated using an available online Shiny App [36].

4. Study characteristics

The characteristics of the 62 studies included are presented in Table 1. Most studies were conducted in China (50%), Italy (14%), the United States (12%), Turkey (3%), Spain (3%), the United Kingdom (2%), France (2%), Iran (2%), Korea (2%), Mexico (2%), Morocco (2%),

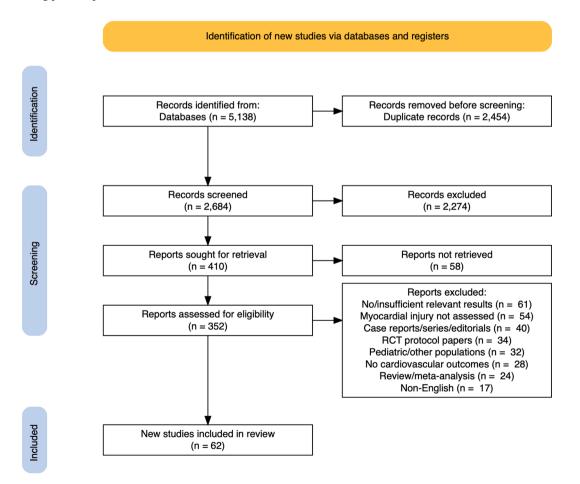


Fig. 1. PRISMA flowchart showing study search and selection.

Table 1

Characteristics of studies examining cardiac biomarkers and COVID-19 outcomes, N = 62.

First Author, Year	Country	Sample size	Sex		Study Design	Mean Age, (±SD); Median Age (IQR)	Population	Main Cardiovascular Outcome/biomarker assessed	Primary Outcome assessed	
			Female, n (%)	Male, n (%)		(
Abdeladim 2020 [51]	Morocco	73	45 (61.6)	28 (38.4)	Retrospective	54.6 (±17.6)	Hospitalized COVID- 19 patients with Mild, Severe and Critical cases	Myocardial Injury (cTnI)	Death, severe COVID-19	
Cao I 2020 [52]	China	244	111 (45.5)	_	Retrospective	62.6 (±13.4)	Hospitalized COVID- 19 patients with no preexisting cardiovascular disease or renal dysfunction	Myocardial Injury (hs- cTnI)	Death (Non- survivors)	
Cao II 2020 [53]	China	100	55 (55)	45 (45)	Retrospective	71.1 (±14.5)	Critically ill COVID-19 patients on ICU admission	Myocardial Injury (MYO, CK-MB and hs- cTnI)	Death	
Bardaji 2020 [54]	Spain	433	174 (40.3)	259 (59.7)	Retrospective	67.5 (52.5–77.5)	Consecutive hospitalized patients treated for suspected SARS-CoV-2 infection	Myocardial Injury (cTnl)	30-day mortality	
Deng I 2020 [55]	China	264	-	130 (49.2)	Retrospective	64.5 (53.3–74.0)	Inpatients who had a COVID-19 diagnosis.	Cardiac biomarkers (cTnI-ultra, CKMB, MYO, NT-proBNP)	In-hospital death	
Deng II 2020 [56]	China	112	55 (49.1)	57 (50.9)	Retrospective	65 (49–70.8)	Diagnosed hospitalized COVID- 19 Patients	Myocardial injury, myocarditis ^a and cardiac dysfunction	Composite endpoint of ICU admission, MV, ECMO, or death	
Chen I 2020 [57]	US	143	_	89 (62)	Retrospective	67 (±16)	Laboratory confirmed hospitalized COVID- 19 patients	Cardiac function (cTnI & Echocardiograms)	In-hospital death	
Chen II 2020 [58]	China	54	18 (33.3)	36 (66.7)	Retrospective	57.6 (44.9–70.3)	Hospitalized COVID- 19 patients	Myocardial Injury (TnI)	Severe COVID-19 (ARDS, Pneumonia)	
Doyen 2020 [59]	France	43	7 (16)	36 (84)	Prospective	60 (±13)	COVID-19 patients on ICU admission	Cardiac functioning (ECG, hs-TnI, TTE)	ICU discharge or death	
Fan I 2020 [60]	China	73	24 (32.9)	49 (67.1)	Retrospective	58.4 (±14.3)	ICU admitted COVID- 19 patients	Myocardial Injury (cTnI)	Death	
Fan II 2020 [61]	China	353	-	186 (52.7)	Retrospective	60.5 (±10.1)	Hospitalized patients with confirmed COVID-19 diagnosis,	Myocardial Injury (cTnI)	Severity of myocardial injury	
Ferrante 2020 [62]	Italy	332	95 (28.6)	(71.4)	Retrospective	66.9 (55.4–75.5)	Patients on ICU admission with COVID-19	Myocardial Injury (hs- cTnI)	Death, duration o Hospital and admission into IC	
Gao 2020 [20]	China	54	30 (55.6)	24 (44.4)	Retrospective	60.4 (±16.1)	Patients with severe COVID-19	In-hospital death	Death	
Ghio 2020 [63]	Italy	340	107 (31.4)	233 (68.6)	Retrospective	69.8 (58.6–78.3)	Adult patients admitted with the suspected diagnosis of COVID-19	Myocardial injury (hs- TnI)	Death and/or ICU admission, MV	
Giustino 2020 [64]	US and Italy	305	100 (32.8)	205 (67.2)	Retrospective	63 (53–73)	Hospitalized patients with COVID-19	Myocardial Injury (hs- TnI), TTE abnormalities	Death	
Guo I 2020 [65]	China	74	25 (33.8)	49 (66.2)	Retrospective	67.2 (±14.6)	Patients on ICU admission with severe or critical COVID-19	Myocardial Injury (cTnI, NT-proBNP, CK- MB, MYO)	Death, MV time	
Guo II 2020 [66]	China	187	-	91 (48.7)	Retrospective	58.5 (±14.7)	Hospitalized patients with confirmed COVID-19	Myocardial Injury (TnT)	Death	
Lala 2020 [67]	US	2736	1,106 (40.4)	1630 (59.6)	Retrospective	66.4	Patients admitted with a laboratory- confirmed SARS-CoV- 2 infection	Myocardial Injury (TnI)	Death, intubation or hospital discharge	
Han 2020 [68]	China	273	176 (64.5)	97 (35.53)	Retrospective	58.9 (±10.8)	Hospitalized patients diagnosed with SARS- CoV-2 infection	Cardiac biomarkers (ultra-TnI, NT-proBNP, CK-MB, MYO)	COVID-19 severit	
He I 2020 [69]	China	1031	493 (47.8)	538 (52.2)	Retrospective	63 (52–70)	Inpatients with laboratory-confirmed COVID-19	Acute cardiac Injury (hs-TnI)	Severe COVID-19 (ARDS, Pneumonia)	
Heberto 2020 [70]	Mexico	254	87 (34.3)	167 (65.7)	Prospective	53.8 (±12.7)	Hospitalized patients, with and without myocardial injury, and a confirmed test result	Cardiac markers (hs- TnI, NT-proBNP)	COVID-19 complications: MV, Death	
	China	93			Retrospective		of COVID-19		-	

(continued on next page)

Table 1 (continued)

First Author, Year	Country	Sample size	Sex		Study Design	Mean Age, (±SD); Median Age (IQR)	Population	Main Cardiovascular Outcome/biomarker assessed	Primary Outcome assessed
			Female, n (%)	Male, n (%)		(121)			
Jin 2020			52	41		48.0	COVID-19 patients on	Myocardial Injury (hs-	
[71]			(55.9)	(44.1)		(35.5–62.5)	hospital admission	TnI, CK-MB, CMR)	
Almeida	Brazil	183	63	120	Retrospective	66.8 (±17)	Patients admitted for	Myocardial Injury	ICU admission,
Junior			(34.4)	(65.59)			COVID-19	(TnT-ultra, BNP)	MV, all-cause
2020 [72]									death
Maeda I	US	224	-	125	Retrospective	64.0 (±16.6)	Patients admitted with	Myocardial Injury	In-hospital death
2020 [73]				(55.8)			COVID-19	(cTnI), ECG	
Majure 2020	US	11,159	4464	6695	Dotrocpostivo	66 (56–77)	Hospitalized patients	abnormality Myocardial Injury	In-hospital death
[74]	03	11,139	(40)	(60)	Retrospective	00 (30-77)	diagnosed with COVID	(cTnI, TnT), ECG	in-nospital death
[7]			(40)	(00)			19	abnormality	
Kim 2020	Korea	38	16	22	Retrospective	69.6 (±14.9)	In-patients with	Myocardial Injury	_
[75]			(40.9)	(59.1)			confirmed COVID-19	(cTnI, CK-MB)	
Li I 2020	China	2,068	-	1,005	Retrospective	63 (51–70)	Critical and non-	Myocardial Injury (hs-	Death
[76]				(48.6)	1		critical hospitalized	cTnI)	
							COVID-19 patients		
Li II 2020	China	100	56 (56)	44 (44)	Retrospective	62.0	Patients admitted with	Myocardial Injury (hs-	Discharge, death
[77]						(51.0–70.8)	COVID-19	cTnI, CK-MB, MYO)	
Lombardi	Italy	614	179	435	Retrospective	67 (±13)	Hospitalized patients	Myocardial Injury (hs-	Discharge, death
2020 [78]			(29.2)	(70.8)			with laboratory-	TnI, TnT)	
							confirmed SARS-CoV-		
Mothrue 2020	110	242	05	140	Dotrocpostivo	62.9(114.0)	2 infection Intubated confirmed	Muccordial Injury (he	ARDS unrelated t
Metkus 2020 [79]	US	243	95 (39.1)	148 (60.9)	Retrospective	62.8 (±14.9)	COVID-19 patients	Myocardial Injury (hs- TnI, TnT)	COVID
[79]			(39.1)	(00.9)			who underwent	1111, 1111)	COVID
							troponin assessment		
							24hrs post intubation		
Mu 2020	China	113	51	62	Retrospective	63.00	Hospitalized patients	Myocardial Injury	Severe COVID-19
[80]			(45.1)	(54.9)		(49.5–70.0)	with confirmed	(cTnI)	(ARDS,
							COVID-19 diagnosis		Pneumonia)
Karbalai	Iran	386	58	-	Retrospective	59.5 (±15.8)	Hospitalized patients	Myocardial Injury (hs-	Death, ICU
Saleh 2020			(38.9)				withCOVID-19	TnI), ECG	admission
[81]								abnormalities	
Salvatici,	Italy	1,055	339	355	Retrospective	64.4 ± 14.2	Hospitalized patients	Myocardial Injury	Death
2020 [82]			(32.1)	(67.9)			with confirmed SARS- CoV-2	(cTnI)	
Schiavone	Italy	674	268	406	Retrospective	60.8 (±15.9)	Hospitalized COVID-	Myocardial Injury	Death
2020 [83]	italy	071	(39.8)	(60.2)	neuospeeuve	00.0 (±10.9)	19 patients, with or	(cTnI)	Death
							without chronic		
							coronary syndromes		
Qian 2020	China	77	24	53	Retrospective	65.5 (±12.2)	Newly admitted ICU	Myocardial Injury	ICU admission,
[84]			(31.2)	(68.8)			patients with COVID-	(cTnI)	Death
							19		
Qin 2020	China	6,033	3174	2859	Retrospective	57 (45–66)	Hospitalized COVID-	Myocardial Injury (hs-	28-day mortality,
[85]	110	1 000	(52.61)	(47.39)	Deterror		19 patients	TnI, CK-MB)	ICU admission, M
Raad 2020	US	1,020	511 (50)	509	Retrospective	63 (52–73)	Hospitalized adult	Myocardial Injury (hs-	Death and LOS
[86]				(50)			patients diagnosed with SARS-CoV-2	TnI)	
van den	Netherlands	51	10 (20)	41 (80)	Prospective	63 (51–68)	Hospitalized patients	Myocardial Injury (hs-	ICU admission
Heuvel		· ·	10 (20)	(00)	respective	00 (01 00)	with COVID-19	TnI), ventricular	100 0000000
2020 [87]								dysfunction (TTE)	
Wang I 2020	China	222	109	113	Retrospective	63.0	Hospitalized patients	Myocardial Injury (hs-	Death, recovery
[88]			(49.1)	(50.9)		(50.0–69.0)	with laboratory-	TnI)	
							confirmed COVID-19		
							infection		
Wei 2020	China	101	-	54	Prospective	49 (34–62)	Hospitalized patients	Myocardial Injury (hs-	ICU admission,
[89]				(53.5)			with laboratory	TnT)	MV, death
							confirmed SARS- CoV- 2 infection		
Shi I 2020	China	671	349 (52)	322	Retrospective	63 (50–72)	2 infection Hospitalized patients	Myocardial Injury	Death
[90]	Giiiia	0/1	JT7 (JZ)	322 (48)	Renospective	03 (30-72)	with laboratory-	(cTnI)	Deam
1-01				(.0)			confirmed COVID-19	()	
Shi II 2020	China	416	211	-	Retrospective	64 (21–95)	Hospitalized patients	Myocardial Injury (hs-	Death
[91]			(50.7)		-	-	with laboratory-	TnI, CK-MB, MYO)	
							confirmed COVID-19		
Yan 2020	China	119	66	52	Retrospective	69 (66–76)	Hospitalized patients	Cardiac markers (hs-	-
			(55.5)	(44.5)			over 60 years	TnI, CK-MB, MYO)	
[92]							diagnosed with		
[92]									
[92] Yang I 2021	China	357		185	Prospective	56.0	COVID-19 Hospitalized patients	Cardiac markers (hs-	Death

(continued on next page)

Table 1 (continued)

First Author, Year	Country	Sample size	Sex		Study Design	Mean Age, (±SD); Median Age	Population	Main Cardiovascular Outcome/biomarker assessed	Primary Outcome assessed
			Female, n (%)	Male, n (%)		(IQR)			
Yang II 2020 [94]	China	203	88(43.3)	115 (56.7)	Retrospective	62.0 (49.0–69.0)	Hospitalized patients with COVID-19	Myocardial Injury (TnI)	Death
Zaninotto 2020 [95]	Italy	113	33 (29)	80 (71)	Retrospective	65 (53–75)	Hospitalized patients with confirmed COVID-19	Myocardial Injury (hs- TnI)	_
Fan III 2020 [96]	China	89	-	49 (55.1)	Retrospective	61.8 (±16.1)	Hospitalized patients diagnosed with COVID-19	Myocardial Injury (TnI)	-
Zhou 2020 [97]	China	68	34 (50)	34 (50)	Retrospective	67 (30–86)	Hospitalized patients diagnosed with COVID-19	Myocardial Injury (hs- TnI)	Death
Barman 2020 [98]	Turkey	607	-	334 (55)	Retrospective	62.5 (±14.3)	Patients hospitalized for COVID-19	Myocardial Injury (hs- TnI)	Death
Chen III, 2021 [99]	China	726	-	392 (54.1)	Retrospective	68 (58–77) [§]	Patients hospitalized for COVID-19	Myocardial Injury (hs- TnI)	Death, severe COVID-19
De Marzo 2021 [100]	Italy	343	-	119 (34.7)	Retrospective	75 (68–83)	Patients \geq 60 years hospitalized with COVID-19	Myocardial Injury (cTnI)	Death
Demir 2021 [101]	UK	277	-	197 (71)	Retrospective	55.1 (±13.9)	Hospitalized patients with confirmed COVID-19	Myocardial Injury (hs- TnT)	Death
Guadiana- Romualdo 2021 [102]	Spain	2873	_	1699 (59.1)	Retrospective	66 (54–76)	Hospitalized patients with confirmed COVID-19	-	All-cause mortality
He II 2021 [103]	China	304	-	160 (52.6)	Retrospective	65 (54–74)	Hospitalized patients diagnosed with COVID-19	Myocardial Injury (hs- TnI)	Death
Liaqat 2021 [104]	Pakistan	201	82 (40.8)	119 (59.2)	Retrospective	44.6 (±15.2)	Hospitalized patients diagnosed with COVID-19	Myocardial Injury (TnI, CK-MB), Ventricular dysfunction (TTE), ECG abnormalities	COVID-19 severity, death
Lu 2021 [105]	China	77	-	50 (65)	Retrospective	59 (54–63)	Hospitalized patients diagnosed with COVID-19	Myocardial Injury (hs- TnI)	Death, COVID-19 severity
Maeda II 2021 [106]	US	181	-	100 (55.8)	Retrospective	64.0 (±16.6)	Patients admitted with COVID-19	Myocardial Injury (hs- TnI), ECG abnormalities	In-hospital death
Mengozzi 2021 [107]	Italy	266	_	180 (67.7)	Prospective	63 (±15)	Patients hospitalized for COVID-19	Myocardial Injury (hs- TnT)	ARD, MV, ICU admissionIn- hospital, all-cause death
Omar 2021 [108]	Turkey	355	-	172 (48.5)	Retrospective	58 (35.5–71)	Patients hospitalized for COVID-19	Myocardial Injury (hs- TnT), ECG abnormalities	Death
Selçuk 2021 [109]	Turkey	137	-	72 (52.5)	Retrospective	55 (±14)	Patients hospitalized for COVID-19	Cardiac markers (cTnI, NT-proBNP)	In-hospital death
Wang II 2021 [110]	China	242	-	151 (62.4)	Retrospective	68 (61–75)	Patients hospitalized for COVID-19	Myocardial Injury (cTnI)	ARDS, Death
Zhu 2021 [111]	China	499	-	253 (50)	Retrospective	59 (±15)	Hospitalized severe/ critically ill patients with COVID-19	Myocardial Injury (cTnI, MYO)	Death

ICU: Intensive Care Unit; MV: Mechanical Ventilation; ECMO: extracorporeal membrane oxygenation; LOS: Length of Stay; hs-cTnI: high-sensitivity cardiac troponin I; TnT; Troponin T; NT-proBNP: N-terminal pro-B-type natriuretic peptide; cTnI-ultra: cardiac troponin I-ultra; CK-MB: creatinine kinase-myocardial band; MYO: Myoglobin; CKMB: Creatinine kinase-myocardial band; ECG: Electrocardiogram; TTE: Transtheoracic Echocardiography; CMR: cardiac magnetic resonance.

^a Myocarditis related abnormalities defined as: triple elevation in hypersensitive cardiac Troponin I (over 0.12 ng/mL) plus abnormalities on echocardiography and/ or electrocardiogram; [§]Critical patients; [†]With cardiac injury.

Brazil (2%), Pakistan (2%), and the Netherlands (2%). Total sample size from the studies was 41,013, ranging from 38 to 11,159 patients, and median age of participants ranged from 44.6 to 75 years. The pooled proportion of participants who had severe COVID-19 or died during hospitalization was 16.8% (1,978/11,764).

4.1. Study quality

For the papers included in the meta-analysis, 24 were rated to have a low risk of bias, while 16 were rated to have a high risk of bias. Four were rated as unclear (**eFig. 1** in the **Supplement**). Those studies assessed to have a high risk of bias were primarily due to incomplete outcome reporting.

4.2. Underlying cardiovascular diseases and comorbidities

A majority of the studies reported history of comorbidities among patients included in the study. The pooled proportion of patients with hypertension was 39% (95% CI: 35–43%), ranging from 15 to 73% (Fig. 2). For history of diabetes, the pooled proportion was 21% (18%–

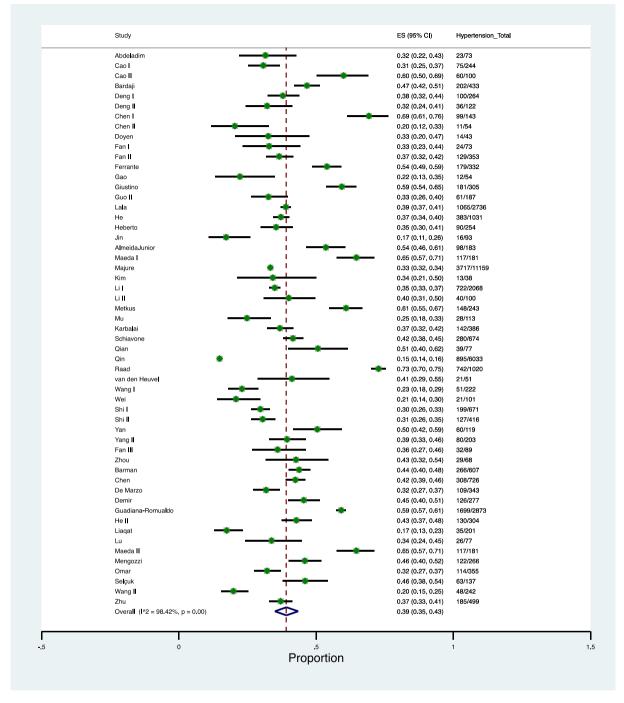


Fig. 2. Pooled proportion for history of hypertension.

23%), this ranged from 8% to 44%. The pooled proportion for history of CAD was 13% (95% CI: 11–16%), and this ranged from 1 to 49%. In the total sample, the pooled proportion of patients who had COPD was 7% (95% CI: 6–9%), which ranged from 2 to 23%, for history of cancer, the pooled proportion was 6% (95% CI: 5–7%) which also ranged from 2 to 16% (eFigs. 4–7 in the Supplement).

4.3. Biomarkers of myocardial injury, stretch, and coagulation

For studies that reported myocardial injury, the proportion of patients who developed myocardial injury was 18.5% (3,943/ 21,367) (**eTable 3 in the Supplement**). The overall pooled odds ratio for the association between elevated troponin levels and death and critical/ severe disease was 1.76 (95% CI: 1.42, 2.16); for the outcome of death, the pooled odds was OR: 1.72 (95% CI: 1.32, 2.25); and for the outcome of critical/severe COVID-19, the pooled odds ratio was 1.93 (95% CI: 1.45, 2.40) (Fig. 3). Similarly, the overall hazards ratio for elevated troponin and death and critical/severe disease was 1.55 (95% CI: 1.36, 1.77). The hazards for elevated troponin and death was 1.51 (95% CI 1.31, 1.75), and for critical or severe COVID-19 was 1.75 (95 %CI 1.48, 2.10).

Elevations in NT-proBNP were also associated with severe COVID-19 and death: OR: 3.00 (95% CI: 1.58–5.70). The hazards ratio associated with elevated NT-proBNP and death, or critical/severe COVID-19 was 1.65 (pooled HR: 1.65, 95 %CI: 0.88–3.10) (Fig. 3). Increased D-dimer levels were also significantly associated with death and severe disease,

	Troponin g (Odds Ratio)			BNP dds Ratio)		
EO	g (0000 millio)	log(OR) Weight	Eog (O		log(OR)	Weig
Study		with 95% Cl (%)	Study		with 95% Cl	(%)
Death			Critical/Severe			
Chen I		0.92[0.58, 1.27] 5.97	Guo	1.	.58 [0.46, 2.70]	15.0
Fan	+	0.08 [0.04, 0.12] 7.05	Wei		.03 [0.02, 2.04]	
He		1.12 [0.96, 1.28] 6.80	Heterogeneity: τ ² = 0.00, I ² = 0.00%, H ² = 1.00		.27 [0.53, 2.02]	
Heberto		0.00 [0.00, 0.00] 7.07	Test of $\theta_i = \theta_i$: Q(1) = 0.51, p = 0.47			
Lil	-	0.12[0.08, 0.16] 7.05				
Schiavone		0.40 [0.19, 0.60] 6.63	Death			
Yang II		1.17 [0.83, 1.50] 6.00	Yang II	1.	92 [0.98, 2.87]	17.3
Barman		0.90 [0.72, 1.08] 6.72	Lu		26 [0.72, 1.79]	
Chen		0.39 [0.12, 0.67] 6.31	Selçuk ·		.24 [0.15, 0.34]	27.7
Lu		- 1.22 [0.72, 1.72] 5.09	Heterogeneity: τ ² = 0.63, I ² = 91.43%, H ² = 11.67		.06 [0.10, 2.02]	
Omar		0.01 [0.00, 0.01] 7.06	Test of $\theta_i = \theta_j$: Q(2) = 24.75, p = 0.00			
Wang		0.49 [0.25, 0.73] 6.48				
Heterogeneity: τ ² = 0.21, I ² = 99.97%, H ² = 3762.56		0.54 [0.28, 0.81]	Overall		10 [0.46, 1.74]	
Test of $\theta_i = \theta_i$: Q(11) = 473.49, p = 0.00			Heterogeneity: $\tau^2 = 0.38$, $I^2 = 81.70\%$, $H^2 = 5.47$			
			Test of $\theta_i = \theta_j$: Q(4) = 31.82, p = 0.00			
Critical/Severe			Test of group differences: Q _b (1) = 0.12, p = 0.72			
Chen II	e	0.38 [0.21, 0.98] 4.55	0	1 2 3		
Wei		0.82 [0.44, 1.21] 5.73	Random-effects REML model			
Liagat		0.91 [0.44, 1.38] 5.26	E	BNP		
Maeda		0.51 [0.22, 0.80] 6.25		zard Ratio)		
Heterogeneity: τ² = 0.01, Ι² = 17.78%, Η² = 1.22	-	0.66 [0.43, 0.88]			log(HR)	Weig
Test of $\theta_i = \theta_i$: Q(3) = 3.59, p = 0.31	-		Study		with 95% CI	(%
			Death			
Overall	-	0.57 [0.35, 0.78]	Deng I			19.4
Heterogeneity: τ ² = 0.17, I ² = 99.96%, H ² = 2228.33	-		Deng II		18 [-0.57, 0.94]	
Test of $\theta_i = \theta_i$: Q(15) = 518.91, p = 0.00			Gao		31 [0.48, 1.11]	
Test of group differences: $Q_p(1) = 0.40$, $p = 0.53$			AlmeidaJunior -		05 [0.67, 0.77]	
Test of group differences: $Q_b(1) = 0.40$, p = 0.53		_	Lombardi			19.1
	0.5 1 1.5		Shi II		42[-0.97, 1.81]	10.7
andom-effects REML model			Heterogeneity: $\tau^2 = 0.47$, $l^2 = 78.53\%$, $H^2 = 4.66$		50 [-0.13, 1.13]	
			Test of $\theta_i = \theta_i$: Q(5) = 30.65, p = 0.00			
				0.0	50 [-0.13, 1.13]	
			Heterogeneity: $\tau^2 = 0.47, \ I^2 = 78.53\%, \ H^2 = 4.66$		50 [-0.13, 1.13]	
			Heterogeneity: $\tau^2 = 0.47$, $I^2 = 78.53\%$, $H^2 = 4.66$ Test of $\theta_i = \theta_i$: Q(5) = 30.65, p = 0.00	0.4	50[-0.13, 1.13]	
			$\begin{array}{l} \mbox{Heterogeneity: } \tau^2 = 0.47, \ \mbox{P} = 78.53\%, \ \mbox{H}^2 = 4.66\\ \mbox{Test of } \theta_i = \theta_i, \ \mbox{Q}(5) = 30.65, \ \mbox{p} = 0.00\\ \mbox{Test of group differences: } \Omega_0(0) = 0.00, \ \mbox{p} = . \end{array}$		50 [-0.13, 1.13]	
			Heterogeneity: $\tau^2 = 0.47$, $I^2 = 78.53\%$, $H^2 = 4.66$ Test of $\theta_i = \theta_i$: Q(5) = 30.65, p = 0.00	0.3 0 1 2	50 [-0.13, 1.13]	
			$\begin{array}{l} \mbox{Heterogeneity: } \tau^2 = 0.47, \ \mbox{P} = 78.53\%, \ \mbox{H}^2 = 4.66\\ \mbox{Test of } \theta_i = \theta_i, \ \mbox{Q}(5) = 30.65, \ \mbox{p} = 0.00\\ \mbox{Test of group differences: } \Omega_0(0) = 0.00, \ \mbox{p} = . \end{array}$		50 [-0.13, 1.13]	
			Heterogeneity: $\tau^2 = 0.47$, P = 78.53%, H ² = 4.66 Test of $\theta_1 = \theta_1$, Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = .	0 1 2	50 [-0.13, 1.13]	
	Troponin (Hazard Balio)		$\label{eq:constraint} \begin{array}{l} \text{Heterogeneity: } \tau^2 = 0.47, \ F = 78.53\%, \ H^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^- Q(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } Q_0(0) = 0.00, \ p = .\\ & 1\\ \text{Random-effects REML model} \end{array}$	0 1 2	50 [-0.13, 1.13]	
	Troponin (Hazard Ratio)	log(HR) Weiaht	$\label{eq:constraint} \begin{array}{l} \text{Heterogeneity: } \tau^2 = 0.47, \ P = 78.53\%, \ H^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ p = .\\ & 1\\ \text{Random-effects REML model}\\ \end{array}$	0 1 2	log(OR)	Wei
		log(HR) Weight with 95% CI (%)	Heterogeneity: τ ² = 0.47, P = 78.53%, H ² = 4.66 Test of θ ₁ = θ ₁ ⁻ Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = . Random-effects REML model D-f Log (O Study	0 1 2		
Log			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0 1 2 Dimer dds Ratio)	log(OR) with 95% Cl	(%
Log			$\begin{tabular}{ c c c c c } \hline Heterogeneity: $\tau^2 = 0.47, P = 78.53\%, H^2 = 4.66$ \\ \hline Test of $\theta_1 = \theta_1$, $Q(5) = 30.65, $p = 0.00$ \\ \hline Test of group differences: $Q_n(0) = 0.00, $p = $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	Dimer dds Ratio)	log(OR) with 95% Cl	(% 10.:
Log Study Death Cao I		with 95% CI (%)	Heterogeneity: τ ² = 0.47, P = 78.53%, H ² = 4.66 Test of θ ₁ = θ ₁ : Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = . Random-effects REML model D-f Log (O Study Death Chen I Heberto	Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01]	(% 10.: 10.
Log Study Death Cao I Deng I		with 95% Cl (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12	Heterogeneity: τ² = 0.47, F = 78.53%, H² = 4.66 Test of θ, = θ; Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = . Random-effects REML model D-f Log (O Study Death Chen I Heberto Li I	0 1 2 Dimer dds Ratic) • 0 • 0 • 0	bg(OR) with 95% Cl .02 [0.00, 0.04] 01 [-0.04, 0.01] .17 [0.10, 0.24]	(% 10.: 10. 10.
Log Study Death Cao I Deng I Deng II		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{F} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ & 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41]	(% 10.: 10. 10. 8.:
Log Study Death Cao I Deng I Deng II Fan II		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, P = 78.53\%, H^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, p = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, p = .\\ & 1\\ \text{Random-effects REML model}\\ \end{array}$	Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.73, 1.41] .07 [0.73, 1.41]	(% 10. 10. 10. 8. 9.
Log Study Death Cao I Deng I Deng II Fan II Gao		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65	Heterogeneity: τ ² = 0.47, P = 78.53%, H ² = 4.66 Test of θ ₁ = θ ₁ ⁻ Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = . -1 Random-effects REML model D-f Log (O Study Death Chen I Heberto Li I Yang II Barman Liaqat	0 1 2 Dimer dds Ratio) 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1	log(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44]	(% 10.: 10. 10. 8.: 9.: 4.:
Log Study Death Cao I Deng I Deng I Deng II Gao Ghio		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26	Heterogeneity: τ² = 0.47, P = 78.53%, H² = 4.66 Test of θ, = θ ₁ ⁻ Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = . Random-effects REML model D-f Log (O Study Death Chen I Heberto Li I Yang I Barman Liaqat Wang II	0 i 2 Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] 0.1 [-0.04, 0.01] 1.17 [0.10, 0.24] 0.7 [0.73, 1.41] 1.49 [0.29, 0.68] 5.5 [0.63, 2.44] 5.5 [0.28, 0.81]	(% 10.: 10. 10. 8.: 9.: 4.:
Log Study Death Cao I Deng I Deng II Fan II Gao Ghio Lala		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ P = 78.53\%, \ H^2 = 4.66\\ \text{Test of } \theta_i = \theta_i, \ Q(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } \Omega_i(0) = 0.00, \ p = .\\ & 1\\ \hline \\ \text{Random-effects REML model} \end{array}$	0 i 2 Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44]	(% 10.1 10.1 8.0 9.0 4.4
Log Study Death Cao I Deng I Deng II Fan II Gao Ghio Lala AlmeidaJunior		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99	Heterogeneity: τ² = 0.47, P = 78.53%, H² = 4.66 Test of θ, = θ ₁ ⁻ Q(5) = 30.65, p = 0.00 Test of group differences: Q ₀ (0) = 0.00, p = . Random-effects REML model D-f Log (O Study Death Chen I Heberto Li I Yang I Barman Liaqat Wang II	0 i 2 Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] 0.1 [-0.04, 0.01] 1.17 [0.10, 0.24] 0.7 [0.73, 1.41] 1.49 [0.29, 0.68] 5.5 [0.63, 2.44] 5.5 [0.28, 0.81]	(% 10.: 10. 10. 8.: 9.: 4.:
Log Study Death Cao I Deng I Deng II Deng II Gao Gaio Anio AlmeidaJunior Lombardi	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.56 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61	$\label{eq:constraint} \begin{array}{l} \mbox{Heterogeneity: $\tau^2 = 0.47, P = 78.53\%, H^2 = 4.66$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(5) = 30.65, $p = 0.00$} \\ \mbox{Test of group differences: $Q_0(0) = 0.00, $p = .$} \\ \mbox{Test of group differences: $Q_0(0) = 0.00, $p = .$} \\ \mbox{Test of group differences: $Q_0(0) = 0.00, $p = .$} \\ \mbox{Test of group differences: $Q_0(0) = 0.00, $p = .$} \\ \mbox{Test of group differences: $Q_0(0) = 0.00, $p = .$} \\ \mbox{Test of $\theta_1 = 0$; $Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = \theta_1^{-}$Q(6) = 108.04, $p = 0.00$} \\ \mbox{Test of $\theta_1 = 0.05$} \\ Test of $\theta_1 = 0.05$$	0 i 2 Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] 0.1 [-0.04, 0.01] 1.17 [0.10, 0.24] 0.7 [0.73, 1.41] 1.49 [0.29, 0.68] 5.5 [0.63, 2.44] 5.5 [0.28, 0.81]	(% 10.: 10. 10. 8.: 9.: 4.:
Log Study Death Cao I Deng I Deng II Deng II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici		with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.45 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ P = 78.53\%, \ H^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \ Q(5) = 30.65, \ p = 0.00\\ \end{array}$	0 1 2 Dimer dds Ratio) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	log(OR) with 95% CI .02[0.00, 0.04] .01[-0.04, 0.01] .17[0.10, 0.24] .07[0.73, 1.41] .49[0.29, 0.68] .53[0.63, 2.44] .54[0.28, 0.81] .54[0.10, 0.80]	(% 10.1 10. 10. 8. 9. 4. 9.
Log Study Death Cao I Deng I Deng I Deng I Deng I Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = . 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .45 [0.29, 0.68] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22]	(% 10.10. 10. 8. 9. 4. 9. 9.
Log Study Death Cao I Deng I Deng I Deng I Deng I San I Gao Gai AlmeidaJunior Lombardi Salvatici Qian Qin	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.28 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ & 1\\ \text{Random-effects REML model} \end{array}$	Dimer dds Ratio)	bg(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .54 [0.28, 0.81] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83]	(% 10.1 10. 10. 8. 9. 4. 9. 9. 7. 7. 9.
Log Study Death Cao I Deng I Deng I Deng II Deng II Salvati AlmeidaJunior Lombardi Salvatici Qian Qian	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } g = \theta_i, \ \text{Q}(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } \Omega_i(0) = 0.00, \ p = . \\ \hline & 1\\ \hline \hline & 1\\ \hline \hline \hline & 1\\ \hline \hline \hline & 1\\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline $	Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44] .45 [0.10, 0.80] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao I Deng I Deng I Deng I Jong I Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.28 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } \Omega_0(0) = 0.00, \ p = . & . & . & . & . & . & . & . & . & .$	Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [-0.53, 0.83] .00 [-0.01, 0.01]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao I Deng I Deng II Deng II Gao Gai Gai AlmeidaJunior Lombardi Salvatici Olan Qin Wang	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.44 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.67 [0.25, 1.10] 3.69	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = . \\ & 1\\ \text{Random-effects REML model} \end{array}$	Dimer dds Ratio)	log(OR) with 95% Cl .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44] .45 [0.10, 0.80] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao I Deng I Deng II Deng II Gao Gaio Gaio AlmeidaJunior Lombardi Salvatici Qian Qin Wang Shi II	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.56 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.67 [0.25, 1.10] 3.69 0.53 [0.27, 0.79] 4.85	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } \Omega_0(0) = 0.00, \ p = . & . & . & . & . & . & . & . & . & .$	Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [-0.53, 0.83] .00 [-0.01, 0.01]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao I Deng I Deng I Deng I Cao Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qin Qin Salvatici Qian Si II Demir	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.63 [0.27, 0.79] 4.85 0.24 [0.10, 0.37] 5.64	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = . \\ & 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.41] .49 [0.29, 0.68] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [-0.53, 0.83] .00 [-0.01, 0.01]	(% 10.; 10. 10. 8.6 9.6 4. 9.; 7.; 9.1 10.;
Log Study Death Cao I Deng I Deng I Deng I Deng I San I Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qin Qin Shi II Demir Guadiana-Romualdo	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.67 [0.25, 1.10] 3.69 0.53 [0.27, 0.79] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ p = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ p = , & 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.; 10. 10. 8.6 9.6 4. 9.; 7.; 9.1 10.;
Log Study Death Cao I Deng I Deng I Deng II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qian Wang Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: τ ² = 0.08, I ² = 99.13%, H ² = 114.50	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.28 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.63] 5.37 1.13 [0.96, 1.29] 5.47 0.63 [0.27, 0.79] 4.85 0.32 [0.27, 0.79] 4.85 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.27	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = . \\ & 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.; 10. 10. 8.6 9.6 4. 9.; 7.; 9.1 10.;
Log Study Death Cao I Deng I Deng I Deng II Deng II San II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Olan Olan Olan Olan Shi II Demir Guadiana-Romualdo Mengozzi	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.28 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.63] 5.37 1.13 [0.96, 1.29] 5.47 0.63 [0.27, 0.79] 4.85 0.32 [0.27, 0.79] 4.85 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.27	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i, \ \text{Q}(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } \Omega_i(0) = 0.00, \ \text{p} = . 1\\ \hline \\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.2 10.1 10.1 10.1 8.6 9.6 4.2 9.2 9.2 7.5 9.8 10.2
Log Study Death Cao I Deng I Deng I Deng II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Wang Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: τ ² = 0.08, I ² = 99.13%, H ² = 114.50	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.28 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.63] 5.37 1.13 [0.96, 1.29] 5.47 0.63 [0.27, 0.79] 4.85 0.32 [0.27, 0.79] 4.85 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.27	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = . 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.2 10.1 10.1 10.1 8.6 9.6 4.2 9.2 9.2 7.5 9.8 10.2
Log Study Death Cao I Deng I Deng I Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qian Qian Qian Qian Qian Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^2 = 0.08$, $P = 99.13\%$, $H^2 = 114.50$ Test of $\theta_i = \theta_i$; Q(16) = 621.82, p = 0.00	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.28 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.63] 5.37 1.13 [0.96, 1.29] 5.47 0.63 [0.27, 0.79] 4.85 0.32 [0.27, 0.79] 4.85 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.24 0.33 [0.12, 0.54] 5.27	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.; 10. 10. 8.6 9.6 4. 9.; 7.; 9.1 10.;
Log Study Death Cao I Deng II Deng II Gao Ghio Lala AlmeidaJunior Lombardi Satvatici Qian Qian Wang Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^2 = 0.08$, I ^e = 99.13%, H ^e = 114.50 Test of $\theta_i = \theta_i$: Q(16) = 621.82, p = 0.00 Critical/Severe Cao II	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.44 [0.39, 0.57] 5.84 0.05 [0.00, 0.08] 5.99 0.23 [0.00, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.63 [0.27, 0.79] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56]	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i \cdot Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = . 1\\ \text{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.2 10.1 10.1 10.1 8.6 9.6 4.2 9.2 9.2 7.5 9.8 10.2
Log Study Death Cao I Deng I Deng I Deng I Deng I Savatic Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qian Qian Qian Qian Din Bemir Guadiana-Romualdo Mengozzi Heterogeneity: $r^2 = 0.08$, $F = 99.13\%$, $H^2 = 114.50$ Test of $\theta_i = \theta_i^2$, Q(16) = 621.82, p = 0.00 Critical/Severe Cao II Bardaji	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.65 [0.27, 1.07] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.06 [0.04, 0.12] 5.97 0.41 [0.27, 0.56]	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.; 10. 10. 8.6 9.6 4. 9.; 7.; 9.1 10.;
Log Study Death Cao I Deng I Deng I Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qin Qin Qian Qian Qian Qian Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^{e} = 0.08$, $P = 99.13\%$, $H^{e} = 114.50$ Test of $\theta_{i} = \theta_{i}$: Q(16) = 621.82, p = 0.00 Crtite/Severe Cao II Bardaji Metkus	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.40 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.57] 5.61 0.00 [0.00, 0.00] 6.00 0.41 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.67 [0.25, 1.10] 3.69 0.53 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.29	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao I Deng I Deng I Deng II Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qin Wang Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^2 = 0.08$, $F = 99.13\%$, $H^2 = 114.50$ Test of $\theta_i = \theta_i$; Q(16) = 621.82, p = 0.00 Critical/Severe Cao II Bardaji Metkus Heterogeneity: $\tau^2 = 0.00$, $F = 0.00\%$, $H^2 = 1.00$	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.65 [0.27, 1.07] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.06 [0.04, 0.12] 5.97 0.41 [0.27, 0.56]	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao 1 Deng I Deng I Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qin Qin Qian Qian Qian Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: τ ^e = 0.08, P = 99.13%, H ^e = 114.50 Test of θ _i = θ _i : Q(16) = 621.82, p = 0.00 Crtite2/Severe Cao II Bardaji Metkus	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.49 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.57] 5.61 0.00 [0.00, 0.00] 6.00 0.41 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.67 [0.25, 1.10] 3.69 0.53 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.29	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.; 10. 10. 8.6 9.6 4. 9.; 7.; 9.1 10.;
Log Study Death Cao I Deng I Deng I Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qin Qian Qin Wang Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^2 = 0.08$, $F = 99.13\%$, $H^2 = 114.50$ Test of $\theta_i = \theta_i$: Q(16) = 621.82, p = 0.00 Critical/Severe Cao II Bardaji Metkus Heterogeneity: $\tau^2 = 0.00$, $F = 0.00\%$, $H^2 = 1.00$ Test of $\theta_i = \theta_i$: Q(2) = 1.95, p = 0.38	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.65 [0.27, 1.07] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.97	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.2 10.1 10.1 10.1 8.6 9.6 4.2 9.2 9.2 7.5 9.8 10.2
Log Study Death Cao I Deng I Deng I Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Qian Qian Qian Qian Qian Qian Qian Qian Qian Shi II Demir Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^2 = 0.08$, $F = 99.13\%$, $H^2 = 114.50$ Test of $\theta_i = \theta_i$: Q(16) = 621.82, p = 0.00 Critica/Severe Cao II Bardaji Metkus Heterogeneity: $\tau^2 = 0.00$, $F = 0.00\%$, $H^2 = 1.00$ Test of $\theta_i = \theta_i$: Q(2) = 1.95, p = 0.38 Overall	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.49 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.57] 5.61 0.00 [0.00, 0.00] 6.00 0.41 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.67 [0.25, 1.10] 3.69 0.53 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.29	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao I Deng I Deng I Fan II Gao Ghio Lala AlmeidaJunior Lombardi Salvatici Olan Olan Olan Olan Olan Olan Guadiana-Romualdo Mengozzi Heterogeneity: $\tau^2 = 0.08$, $F = 99.13\%$, $H^2 = 114.50$ Test of $\theta_i = \theta_i$: Q(16) = 621.82, $p = 0.00$ Critical/Severe Cao II Bardaji Metkus Heterogeneity: $\tau^2 = 0.00$, $F = 0.00\%$, $H^2 = 1.00$ Test of $\theta_i = \theta_i$: Q(2) = 1.95, $p = 0.38$ Overall Heterogeneity: $\tau^2 = 0.07$, $F = 98.92\%$, $H^2 = 92.29$	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.65 [0.27, 1.07] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.97	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10.1 10 10 8 9 4 9 3 9 4 9 3 10 3
Log Study Death Cao 1 Deng I Deng I San 1 San 3 San 3 S	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.65 [0.27, 1.07] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.97	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10. 10. 10. 8. 9. 4. 9. 7. 9. 10.
Log Study Death Cao 1 Deng I Deng I San 1 San 3 San 3 S	(Hazard Ratio)	with 95% CI (%) 0.68 [0.28, 1.08] 3.83 0.54 [0.32, 0.76] 5.12 0.95 [0.43, 1.47] 3.07 0.44 [0.37, 0.51] 5.89 0.27 [0.14, 0.40] 5.65 0.58 [0.38, 0.78] 5.26 0.48 [0.39, 0.57] 5.84 0.05 [0.03, 0.08] 5.99 0.23 [0.09, 0.37] 5.61 0.00 [0.00, 0.00] 6.00 0.34 [0.16, 0.53] 5.37 1.13 [0.96, 1.29] 5.47 0.65 [0.27, 1.07] 4.85 0.24 [0.10, 0.37] 5.64 0.33 [0.12, 0.54] 5.21 0.08 [0.04, 0.12] 5.97 0.41 [0.27, 0.56] 5.97	$\label{eq:constraint} \begin{array}{c} \text{Heterogeneity: } \tau^2 = 0.47, \ \text{P} = 78.53\%, \ \text{H}^2 = 4.66\\ \text{Test of } \theta_i = \theta_i^{-} Q(5) = 30.65, \ \text{p} = 0.00\\ \text{Test of group differences: } Q_i(0) = 0.00, \ \text{p} = .\\ \textbf{Random-effects REML model} \end{array}$	0 1 2 Dimer dds Ratio)	log(OR) with 95% CI .02 [0.00, 0.04] .01 [-0.04, 0.01] .17 [0.10, 0.24] .07 [0.73, 1.45 [0.63, 2.44] .53 [0.63, 2.44] .54 [0.28, 0.81] .45 [0.10, 0.80] .28 [-0.78, 0.22] .68 [0.53, 0.83] .01 [0.00, 0.02] .00 [-0.01, 0.01] .13 [-0.26, 0.52]	(% 10. 10. 10. 8. 9. 4. 9. 7. 9. 10.

Fig. 3. Association between biomarkers of myocardial injury, stretch and coagulation with severe COVID-19 and death: meta-analysis results.

Notes: Hazard ratios and odds ratios with 95% confidence intervals on a logarithmic scale for individual or pooled study data for pair-wise comparison of odds associated with elevated	Lo	D-Dimer g (Hazard Ratio)		
biomarker levels. Logarithmic OR and HR exponentiated for interpretation, for instance, pooled odds ratio for association between troponin elevation and death/severe disease	Study	,	log(HR) with 95% Cl	Weight (%)
$e^{(logx)}$: $e^{(0.57[95\%Cl:0.35-0.78])} = 0R$: 1.77 (95%Cl: 1.42-2.18).	Death			
	AlmeidaJunior		0.00 [0.12, 0.11]	14.15
	Lombardi		0.01 [-0.00, 0.02]	14.63
	Qin			13.97
	Wang II	+	0.04 [0.01, 0.07]	14.61
	De Marzo		0.00[0.00, 0.01]	14.63
	Zhu		0.03 [0.02, 0.03]	14.63
	Heterogeneity: τ^{2} = 0.13, I^{2} = 99.97%, H^{2} = 3505.62		0.16[0.13, 0.45]	
	Test of $\theta_i=\theta_j;$ Q(5) = 186.87, p = 0.00			
	Critical/Severe			
	UII.		0.07 [0.13, 0.27]	13.37
	Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$, $H^2 = .$		0.07 [0.13, 0.27]	
	Test of $\boldsymbol{\theta}_i = \boldsymbol{\theta}_j \colon \mathbf{Q}(0) = 0.00, p =$.			
	Overall		0.15 [-0.10, 0.39]	
	Heterogeneity: τ ² = 0.11, I ² = 99.96%, H ² = 2457.99			
	Test of $\theta_i = \theta_i$: Q(6) = 187.25, p = 0.00			
	Test of group differences: Q _b (1) = 0.25, p = 0.62			
		0.5	1	
	Random-effects REML model			

Fig. 3. (continued).

pooled OR: 1.38 (95 %CI: 1.07–1.79). While the pooled hazards ratio associated with either death, critical/severe disease, and elevated D-dimer levels was HR: 1.16 (95% CI: 0.9, 1.48) (Fig. 3).

Abnormal increases in CRP were also associated with higher severe COVID-19 and death: OR: 1.60 (95% CI: 1.13–2.25). The hazards ratio associated with increased CRP and death or critical/severe COVID-19 was 1.15 (pooled HR: 1.15, 95% CI: 0.94–1.42) (eFig. 2 in Supplement). Elevated IL-6 levels were also significantly associated with death and severe disease, pooled OR: 1.55 (95% CI: 1.14–2.14) (eFig. 3 in the Supplement).

5. Discussion

In this meta-analysis, we aimed to assess the association between biomarkers of myocardial injury and stretch, coagulation, and severe COVID-19 and death. From 62 articles reviewed, hospitalized COVID-19 patients had a high prevalence of underlying comorbidities such as hypertension, diabetes, COPD, CAD, and malignancy. Furthermore, the pooled data demonstrated that elevated biomarkers of inflammation, subclinical myocardial injury, coagulation, were significantly associated with severe COVID-19 and death.

Our findings are consistent with previous findings, which have reported early in the COVID-19 pandemic that individuals who have an underlying or preexisting cardiovascular disease such as heart failure, coronary heart disease and risk factors such as being of older age, hypertension, diabetes are over-represented in COVID-19 hospitalization [37]. In similar meta-analyses examining the association between COVID-19 and poor COVID-19 outcomes, there is a strong association between biomarker evidence of cardiac injury and worse COVID-19 outcomes; they include elevation of cTn, NT-proBNP, d-dimer, which predict poor clinical outcomes [38,39].

Cardiac involvement in COVID-19 is determined by the extent of the viral inoculum, and magnitude of host immune response, and the presence of underlying comorbidities [10]. Some of the mechanisms through which direct and indirect cardiac injury may occur in the context of COVID-19 are through inflammation, endothelial activation, and microvascular thrombosis (eFig. 8 in the Supplement) [10,40]. In direct viral myocardial invasion, the outer membrane spike of the SARS-CoV-2 virus has a high affinity for the ACE2 receptors and the protease transmembrane protease serine 2 (TMPRSS2), which are highly expressed in cardiac tissues [41]. Hence, direct viral myocardial invasion is highly plausible, and evidence of SARS-CoV-2 positivity in cardiac tissues has been documented in autopsy reports [42]. The activation of macrophages (major sources of cytokines and the inflammatory cytokine tumor necrosis factor (TNF)- α) is promulgated by

metalloproteinase domain 17 (ADAM-17), which is also responsible for shedding of ACE2. Loss of ACE2 receptor density due to binding from the SARS-CoV-2 spike protein leads to accumulation of Angiotensin II (Ang II), and continued triggering of ADAM-17 [43]. This creates vicious positive feedback of activated ADA-19, more ACE2 shedding, and increased Ang II-mediated inflammatory responses, which is partially responsible for the cytokine storm characteristic of the SARS-CoV-2 immune response [10,44].

In the context of COVID-19, plaque destabilization and eruption can be facilitated by viral products from the systemic circulation, which could activate immune receptors on cells in already existing plaques in coronary vasculature [45]. The ongoing infection and inflammation could also lead to dysregulation of coronary vascular endothelial function leading to vasoconstriction and thrombosis [46]. Endothelial dysfunction is expressed through alteration in the vessel barrier, promotion of a coagulative state, induction of endothelial inflammation, and mediation of leukocyte infiltration [47]. Importantly, myocardial oxygen supply and demand may result from the following: endothelial dysfunction in coronary microcirculation; fixed coronary atherosclerosis limiting myocardial perfusion, high levels of circulating Ang II and arteriolar vasoconstriction resulting in systemic hypertension, and hypoxemia from ARDS or pulmonary thrombosis [10]. The immense physiologic demands that result from the SARS-CoV-2 infection response and the systemic inflammatory cascade, may be sufficient to trigger this supply-demand mismatch, even in the absence of an atherothrombotic plaque [10]. Another possible contributory mechanism associated with high fatality in COVID-19 and complications is disseminated intravascular coagulation (DIC), with the cross-talk between inflammation and coagulation mediated through protease-activated receptors (PARS); there have been recommendations for clinical use of direct oral anticoagulants to inhibit PARS in acute care of COVID-19 and in patients experiencing persisting symptoms of COVID-19 [48].

Evidence is emerging on the long-term cardiac sequela of COVID-19related myocardial injury, with evidence of myocardial fibrosis or myocarditis in 9–78% of patients who have had COVID-19 [37]. Ongoing inflammation has been reported in 60%, and cardiac involvement in 78% of patients recovered from acute COVID-19 [49]. Based on the results of our meta-analysis and other similar studies, and in light of post-acute sequelae of COVID-19, it is important to consider measurements of sustained expression of biomarkers signaling inflammation and myocardial damage in persons who have previously tested positive for COVID-19. Such sustained expression of certain inflammatory biomarkers are yet to be characterized in COVID-19; however, these may indicate long-term hyperinflammatory state with cardiac involvement from damage mediated by the virus during the acute phase, or even possibilities of host viral reservoir, which is not uncommon in other viruses, but yet to be established in COVID-19 [50]. Considerations of the prognostic value of these biomarkers in persons previously hospitalized for COVID-19, and identification of subclinical myocardial injury can help with risk stratification, and downstream decisions about care.

6. Strengths and limitations

This study has some limitations. First, we could not find a sound and acceptable method for pooling reported medians and interquartile ranges in the literature. This was challenging considering that biomarker values are not typically normally distributed, hence cannot be confidently pooled without introducing bias, particularly when using meta-analysis methods that are reliant on means and standard deviation as measures of central tendency and dispersion. Second, several of the biomarkers were reported in different units, some of which could not be confidently converted to a single unit for use in statistical analyses. This severely limited our inclusion of the biomarker values reported in the articles in the meta-analyses. Third, this review was limited to articles published in English; excluding non-English articles during screening may have introduced some bias.

Nevertheless, this study has major strengths. The meta-analytic approach combined both observational and comparative methods. This included a meta-analysis of proportions for estimating the pooled prevalence of underlying comorbidities, and a comparative metaanalysis of odds and hazards of the associations between elevated biomarker levels and severe COVID-19 and/or death. In addition, our study comprehensively examined biomarkers that are representative of the different pathways of immune response and cardiac injury associated with the COVID-19. This study also offers an updated summary of existing evidence on the relationship between biomarkers of inflammations, myocardial injury in COVID-19, and their value in prognosis. Our meta-analysis included 41,013 patients from diverse global regions and contexts. Findings from our study also corroborate with findings from other studies showing an over-representation of persons with pre-existing comorbidities in persons with poor COVID-19 outcomes.

7. Conclusions

Our systematic review and meta-analysis showed significant associations between markers of myocardial injury and stretch, and coagulopathy with poor COVID-19 outcomes. There is also evidence in the literature of persisting symptoms suggestive of complications in patients recovered from COVID-19. The durability of these complications and their contributions to long-term cardiac implications of the disease is still being investigated. Recovered patients, may benefit from minimally invasive assessment for markers of myocardial injury and stretch and coagulopathy for early risk stratification purposes.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to acknowledge the information specialist, Stella Seal; Williams H. Welch Medical Library, Johns Hopkins Medicine, who curated the search strategy and performed the initial literature search. We would also like to acknowledge Dr. Chakra Budthrodaki, Johns Hopkins University, who reviewed the biostatistics and analytical methods used in this meta-analysis.

Disclosures

The authors report no relationships that could be construed as a conflict of interest.

Funding Source

There was no funding for the study. The authors have full access to the data and have final responsibility.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijcha.2021.100950.

References

- T.J. Guzik, S.A. Mohiddin, A. Dimarco, et al., COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options, Cardiovasc Res. 116 (10) (2020) 1666–1687, https://doi.org/10.1093/cvr/ cvaa106. Aug 1.
- [2] W.J. Wiersinga, A. Rhodes, A.C. Cheng, S.J. Peacock, H.C. Prescott, Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review, JAMA 324 (8) (2020) 782–793, https://doi.org/ 10.1001/jama.2020.12839.
- [3] A. Nalbandian, K. Sehgal, A. Gupta, M.V. Madhavan, C. McGroder, J.S. Stevens, J. R. Cook, A.S. Nordvig, D. Shalev, T.S. Sehrawat, N. Ahluwalia, B. Bikdeli, D. Dietz, C. Der-Nigoghossian, N. Liyanage-Don, G.F. Rosner, E.J. Bernstein, S. Mohan, A.A. Beckley, D.S. Seres, T.K. Choueiri, N. Uriel, J.C. Ausiello, D. Accili, D.E. Freedberg, M. Baldwin, A. Schwartz, D. Brodie, C.K. Garcia, M.S.V. Elkind, J. M. Connors, J.P. Bilezikian, D.W. Landry, E.Y. Wan, Post-acute COVID-19 syndrome, Nat. Med. 27 (4) (2021) 601–615, https://doi.org/10.1038/s41591-021-01283-z.
- [4] A.K. Azkur, M. Akdis, D. Azkur, M. Sokolowska, W. Veen, M.-C. Brüggen, L. O'Mahony, Y. Gao, K. Nadeau, C.A. Akdis, Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19, Allergy 75 (7) (2020) 1564–1581, https://doi.org/10.1111/all.14364.
- [5] J. Wang, M. Jiang, X. Chen, L.J. Montaner, Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts, J. Leukoc. Biol. 108 (1) (2020) 17–41, https://doi.org/10.1002/JLB.3COVR0520-272R.
- [6] T. Guo, Y. Fan, M. Chen, X. Wu, L. Zhang, T. He, H. Wang, J. Wan, X. Wang, Z. Lu, Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19), JAMA Cardiol. 5 (7) (2020) 811, https://doi.org/ 10.1001/jamacardio.2020.1017.
- [7] S. Hendren Nicholas, H. Drazner Mark, B. Biykem, L.T. Cooper, Description and proposed management of the acute COVID-19 cardiovascular syndrome, Circulation 141 (23) (2020) 1903–1914, https://doi.org/10.1161/ CIRCULATIONAHA.120.047349; 27 10.1161/CIRCULATIONAHA.120.047349.
- [8] X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L.u. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan, Y. Shang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered, retrospective, observational study, Lancet Respir. Med. 8 (5) (2020) 475–481, https://doi.org/10.1016/S2213-2600(20)30079-5.
- [9] A. Mengozzi, G. Georgiopoulos, M. Falcone, G. Tiseo, N.R. Pugliese, M. A. Dimopoulos, L. Ghiadoni, G. Barbieri, F. Forfori, L. Carrozzi, M. Santini, F. Monzani, S. De Marco, F. Menichetti, A. Virdis, S. Masi, The relationship between cardiac injury, inflammation and coagulation in predicting COVID-19 outcome, Sci. Rep. 11 (1) (2021), https://doi.org/10.1038/s41598-021-85646-z.
- [10] G. Giustino, S.P. Pinney, A. Lala, V.Y. Reddy, H.A. Johnston-Cox, J.I. Mechanick, J.L. Halperin, V. Fuster, Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar, J. Am. Coll. Cardiol. 76 (17) (2020) 2011–2023, https://doi.org/10.1016/j.jacc.2020.08.059.
- [11] S. Shi, M.u. Qin, B.o. Shen, Y. Cai, T. Liu, F. Yang, W. Gong, X.u. Liu, J. Liang, Q. Zhao, H.e. Huang, B.o. Yang, C. Huang, Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China, JAMA Cardiology 5 (7) (2020) 802, https://doi.org/10.1001/jamacardio.2020.0950.
- [12] P. Bettencourt, A. Azevedo, J. Pimenta, F. Friões, S. Ferreira, A. Ferreira, N-Terminal–Pro-Brain Natriuretic Peptide Predicts Outcome After Hospital Discharge in Heart Failure Patients. Circulation. 2004;110(15):2168-2174. doi: doi:10.1161/01.CIR.0000144310.04433.BE.
- [13] D. Wang, B.o. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao, Y. Li, X. Wang, Z. Peng, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323 (11) (2020) 1061, https://doi.org/10.1001/jama.2020.1585.
- [14] M.G. Argenziano, S.L. Bruce, C.L. Slater, et al., Characterization and clinical course of 1000 Patients with COVID-19 in New York: retrospective case series, medRxiv. Apr 22 2020;doi:10.1101/2020.04.20.20072116.
- [15] J.-H. Zeng, W.-B. Wu, J.-X. Qu, Y. Wang, C.-F. Dong, Y.-F. Luo, D. Zhou, W.-X. Feng, C. Feng, Cardiac manifestations of COVID-19 in Shenzhen, China, Infection 48 (6) (2020) 861–870, https://doi.org/10.1007/s15010-020-01473-w.

- [16] M.R. Dweck, A. Bularga, R.T. Hahn, et al., Global evaluation of echocardiography in patients with COVID-19, Eur. Heart J. Cardiovasc. Imaging. Sep 1 2020;21(9): 949-958. doi:10.1093/ehjci/jeaa178.
- [17] S.S. Jain, Q.i. Liu, J. Raikhelkar, J. Fried, P. Elias, T.J. Poterucha, E.M. DeFilippis, H. Rosenblum, E.Y. Wang, B. Redfors, K. Clerkin, J.M. Griffin, E.Y. Wan, M. Abdalla, N.A. Bello, R.T. Hahn, D. Shimbo, S.D. Weiner, A.J. Kirtane, S. K. Kodali, D. Burkhoff, L.E. Rabbani, A. Schwartz, M.B. Leon, S. Homma, M.R. Di Tullio, G. Sayer, N. Uriel, D.E. Anstey, Indications for and Findings on Transthoracic Echocardiography in COVID-19, J. Am. Soc. Echocardiogr. 33 (10) (2020) 1278–1284, https://doi.org/10.1016/j.echo.2020.06.009.
- [18] Y.u. Kang, T. Chen, D. Mui, V. Ferrari, D. Jagasia, M. Scherrer-Crosbie, Y. Chen, Y. Han, Cardiovascular manifestations and treatment considerations in COVID-19, Heart 106 (15) (2020) 1132–1141, https://doi.org/10.1136/heartjnl-2020-317056.
- [19] G. Lippi, F. Sanchis-Gomar, E.J. Favaloro, C.J. Lavie, B.M. Henry, Coronavirus disease 2019-associated coagulopathy, Mayo Clin. Proc. 96 (1) (Jan 2021) 203–217, https://doi.org/10.1016/j.mayocp.2020.10.031.
- [20] L. Gao, D. Jiang, X.-S. Wen, X.-C. Cheng, M. Sun, B. He, L.-n. You, P. Lei, X.-W. Tan, S. Qin, G.-Q. Cai, D.-Y. Zhang, Prognostic value of NT-proBNP in patients with severe COVID-19, Respir. Res. 21 (1) (2020), https://doi.org/10.1186/ s12931-020-01352-w.
- [21] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, X. Zhang, Li. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395 (10223) (2020) 507–513, https://doi.org/ 10.1016/S0140-6736(20)30211-7.
- [22] K.J. Clerkin, J.A. Fried, J. Raikhelkar, G. Sayer, J.M. Griffin, A. Masoumi, S. S. Jain, D. Burkhoff, D. Kumaraiah, LeRoy Rabbani, A. Schwartz, N. Uriel, COVID-19 and Cardiovascular Disease, Circulation 141 (20) (2020) 1648–1655, https://doi.org/10.1161/CIRCULATIONAHA.120.046941.
- [23] D F. The cardiovascular impact of COVID-19, Diagnostic and Interventional Cardiology (DAIC), 2020.
- [24] Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia.
- [25] National Health Commission of the People's Republic of China, Chinese management guideline for COVID-19 (version 7.0), 2020.
- [26] World Health O, Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, 28 January 2020, 2020, 2020, https://apps.who.int/iris/handle/10665/330893.
- [27] K. Thygesen, J.S. Alpert, A.S. Jaffe, et al., Fourth universal definition of myocardial infarction (2018), Eur. Heart J. 40(3) (2018) 237-269. doi:10.1093/ eurheartj/ehy462.
- [28] G. S.B. Wells, D. O'Connell, J. Peterson, V. Welch, M. Losos, P. Tugwell, The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses, http://www.ohri.ca/programs/clinical_epidemiology/oxford. asp.
- [29] L.A. McGuinness, J.P.T. Higgins, Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments, Res. Synthesis Methods (2021), 2020/04/26 2020;n/a(n/a)doi:10.1002/jrsm.1411.
- [30] Stata: Release 16. Statistical Software, 2021.
- [31] B.H. Chang, D.C. Hoaglin, Meta-analysis of odds ratios: current good practices, Med. Care. 55 (4) (Apr 2017) 328–335, https://doi.org/10.1097/ MLR.00000000000696.
- [32] J.P.T. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis, Stat. Med. 21 (11) (2002) 1539–1558, https://doi.org/10.1002/sim.1186.
- [33] L. Lin, H. Chu, Quantifying publication bias in meta-analysis, Biometrics 74 (3) (2018) 785–794, https://doi.org/10.1111/biom.12817.
- [34] V.N. Nyaga, M. Arbyn, M. Aerts, Metaprop: a Stata command to perform metaanalysis of binomial data, Arch. Public Health 72 (1) (2014) 39, https://doi.org/ 10.1186/2049-3258-72-39.
- [35] M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M.M. Lalu, T. Li, E.W. Loder, E. Mayo-Wilson, S. McDonald, L.A. McGuinness, L.A. Stewart, J. Thomas, A.C. Tricco, V.A. Welch, P. Whiting, D. Moher, The PRISMA 2020 statement: An updated guideline for reporting systematic reviews, Int. J. Surg. 88 (2021) 105906, https://doi.org/ 10.1016/j.ijsu.2021.105906.
- [36] PRISMA2020: R package and ShinyApp for producing PRISMA 2020 compliant flow diagrams (Version 0.0.1). Zenodo; 2020. http://doi.org/10.5281/ zenodo.4287835.
- [37] M.K. Chung, D.A. Zidar, M.R. Bristow, S.J. Cameron, T. Chan, C.V. Harding, D. H. Kwon, T. Singh, J.C. Tilton, E.J. Tsai, N.R. Tucker, J. Barnard, J. Loscalzo, COVID-19 and cardiovascular disease: from bench to bedside, Circ. Res. 128 (8) (2021) 1214–1236, https://doi.org/10.1161/CIRCRESAHA.121.317997.
- [38] S. Khan, S.T. Rasool, S.I. Ahmed, Role of cardiac biomarkers in COVID-19: What recent investigations tell us? Curr. Probl. Cardiol. 46 (10) (2021) 100842, https://doi.org/10.1016/j.cpcardiol.2021.100842.
- [39] G. Lippi, C.J. Lavie, F. Sanchis-Gomar, Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis, Prog. Cardiovasc. Dis. 63 (3) (2020) 390–391, https://doi.org/10.1016/j. pcad.2020.03.001.
- [40] O.-C.-M. Ogungbe, Y., Cardiac Biomarkers and COVID-19: What Nurses Should Know About Cardiac and Inflammatory Biomarkers and COVID-19, PCNA (Preventive Cardiovascular Nurses Association) (2021). https://pcna.net/bioma rkers-and-covid-19/.

- [41] P.P. Liu, A. Blet, D. Smyth, H. Li, The Science Underlying COVID-19: Implications for the Cardiovascular System, (1524-4539 (Electronic)).
- [42] D. Lindner, A. Fitzek, H. Bräuninger, G. Aleshcheva, C. Edler, K. Meissner, K. Scherschel, P. Kirchhof, F. Escher, H.-P. Schultheiss, S. Blankenberg, K. Püschel, D. Westermann, Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases, JAMA Cardiol. 5 (11) (2020) 1281, https:// doi.org/10.1001/jamacardio.2020.3551.
- [43] M. Gheblawi, K. Wang, A. Viveiros, Q. Nguyen, J.-C. Zhong, A.J. Turner, M. K. Raizada, M.B. Grant, G.Y. Oudit, Response by Gheblawi et al to Letter Regarding Article, "Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2", Circ. Res. 127 (2) (2020) https://doi.org/10.1161/ CIRCRESAHA.120.317332.
- [44] A.J. Scott, K.P. O'Dea, D. O'Callaghan, L. Williams, J.O. Dokpesi, L. Tatton, J. M. Handy, P.J. Hogg, M. Takata, Reactive oxygen species and p38 mitogenactivated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes, J. Biol. Chem. 286 (41) (2011) 35466–35476, https://doi.org/10.1074/jbc.M111.277434.
- [45] T.H. Mogensen, Pathogen recognition and inflammatory signaling in innate immune defences, (1098-6618 (Electronic)).
- [46] P. Vallance, Collier J. Fau, K. Bhagat, K. Bhagat, Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? (0140-6736 (Print)).
- [47] Y. Jin, W. Ji, H. Yang, S. Chen, W. Zhang, G. Duan, Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches, Signal Transduction Targeted Therapy, 2020/12/24 2020;5(1):293. doi:10.1038/s41392-020-00454-7.
- [48] D. Acanfora, C. Acanfora, M.M. Ciccone, P. Scicchitano, A.S. Bortone, M. Uguccioni, G. Casucci, The cross-talk between thrombosis and inflammatory storm in acute and long-COVID-19: Therapeutic targets and clinical cases, Viruses 13 (10) (2021) 1904, https://doi.org/10.3390/v13101904.
- [49] V.O. Puntmann, M.L. Carerj, I. Wieters, M. Fahim, C. Arendt, J. Hoffmann, A. Shchendrygina, F. Escher, M. Vasa-Nicotera, A.M. Zeiher, M. Vehreschild, E. Nagel, Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19), JAMA Cardiol. 5 (11) (2020) 1265, https://doi.org/10.1001/jamacardio.2020.3557.
- [50] S.D. Datta, A. Talwar, J.T. Lee, A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection: illness beyond acute infection and public health implications, JAMA 324 (22) (2020) 2251–2252, https://doi. org/10.1001/jama.2020.22717.
- [51] S. Abdeladim, S. Oualim, A. Elouarradi, I. Bensahi, R. Aniq Filali, M. EL Harras, S. Scadi, E.A. Bouaiti, N. Abdelhamid, M. Sabry, Analysis of cardiac injury biomarkers in COVID-19 patients, Arch. Clin. Infect. Diseases 15 (4) (2020), https://doi.org/10.5812/archcid10.5812/archcid105515.
- [52] J.T. Cao, Y. Zheng, Z. Luo, et al., Myocardial injury and COVID-19: Serum hs-cTnl level in risk stratification and the prediction of 30-day fatality in COVID-19 patients with no prior cardiovascular disease, Theranostics. 10 (21) (2020) 9663–9673, https://doi.org/10.7150/thno.47980.
- [53] L. Cao, S. Zhang, X.i. Luo, E. Wang, Y. Bai, Z. Li, F. Li, J. Ma, H. Liu, Myocardium injury biomarkers predict prognosis of critically ill coronavirus disease 2019 (Covid-19) patients, Ann. Palliat Med. 9 (6) (2020) 4156–4165, https://doi.org/ 10.21037/apm-20-2112.
- [54] A. Bardají, A. Carrasquer, R. Sánchez-Giménez, N. Lal-Trehan, V. del-Moral-Ronda, Ó.M. Peiró, G. Bonet, G. Castilho, I. Fort-Gallifa, C. Benavent, G. Recio, C. Gutiérrez, C. Villavicencio, T. Auguet, C. Boqué, Prognostic implications of myocardial injury in patients with and without COVID-19 infection treated in a university hospital, Rev. Esp. Cardiol (Engl. Ed.) 74 (1) (2021) 24–32, https:// doi.org/10.1016/j.rec.2020.08.027.
- [55] P. Deng, Z. Ke, B. Ying, B. Qiao, L. Yuan, The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19, Clin. Chim. Acta 510 (2020) 186–190, https://doi.org/10.1016/j.cca.2020.07.018.
 [56] Q. Deng, B.o. Hu, Y. Zhang, H. Wang, X. Zhou, W. Hu, Y. Cheng, J. Yan, H. Ping,
- [56] Q. Deng, B.o. Hu, Y. Zhang, H. Wang, X. Zhou, W. Hu, Y. Cheng, J. Yan, H. Ping, Q. Zhou, Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China, Int. J. Cardiol. 311 (2020) 116–121, https://doi.org/10.1016/j.ijcard.2020.03.087.
- [57] L.Q. Chen, J. Burdowski, R. Marfatia, et al., Reduced cardiac function is associated with cardiac injury and mortality risk in hospitalized COVID-19 Patients, Clin. Cardiol. 43 (12) (2020) 1547–1554, https://doi.org/10.1002/ clc.23479.
- [58] Q. Chen, L. Xu, Y. Dai, et al., Cardiovascular manifestations in severe and critical patients with COVID-19, Clin. Cardiol. 43 (7) (2020) 796–802, https://doi.org/ 10.1002/clc.23384.
- [59] D. Doyen, P. Dupland, L. Morand, et al., Characteristics of cardiac injury in critically ill patients with COVID-19, Chest (2020), https://doi.org/10.1016/j. chest.2020.10.056.
- [60] H. Fan, L. Zhang, B. Huang, M. Zhu, Y. Zhou, H. Zhang, X. Tao, S. Cheng, W. Yu, L. Zhu, J. Chen, Cardiac injuries in patients with coronavirus disease 2019: Not to be ignored, Int. J. Infect. Dis. 96 (2020) 294–297, https://doi.org/10.1016/j. iijd.2020.05.024.
- [61] Q. Fan, H. Zhu, J. Zhao, L. Zhuang, H. Zhang, H. Xie, R. Zhang, J.F. Granada, X. Xiang, W. Hu, X. Yan, Risk factors for myocardial injury in patients with coronavirus disease 2019 in China, ESC Heart Fail. 7 (6) (2020) 4108–4117, https://doi.org/10.1002/ehf2.13022.
- [62] G. Ferrante, F. Fazzari, O. Cozzi, et al., Risk factors for myocardial injury and death in patients with COVID-19: insights from a cohort study with chest

computed tomography, Cardiovasc. Res. 116 (14) (2020) 2239–2246, https://doi.org/10.1093/cvr/cvaa193.

[63] S. Ghio, E. Baldi, A. Vicentini, M.V. Lenti, A. Di Sabatino, A. Di Matteo, V. Zuccaro, D. Piloni, A. Corsico, M. Gnecchi, F. Speciale, A. Sabena, L. Oltrona Visconti, S. Perlini, S. Ghio, L.O. Visconti, E. Baldi, M. Ferlini, M. Gnecchi, A. Greco, G. Magrini, L. Scelsi, R. Totaro, A. Vicentini, M. Acquaro, M. Coccia, S. D'Amore, S. Digiacomo, D. Foglia, F. Jeva, L. Masiello, C. Montalto, M. Moschella, L. Pezza, S. Perlini, C. Alfano, M. Bonzano, F. Briganti, G. Crescenzi, A.I. Falchi, E. Maggi, R. Guarnone, B. Guglielmana, I.F. Martino, M. S. Pioli Di Marco, P. Pettenazza, F. Quaglia, A. Sabena, F. Salinaro, F. Speciale, I. Zunino, G. Sturniolo, F. Bracchi, E. Lago, A. Corsico, D. Piloni, G. Accordino, C. Burattini, A. Di Sabatino, M.V. Lenti, I. Pellegrino, S. Soriano, G. Santacroce, A. Parodi, F. Borrelli de Andreis, R. Bruno, A. Di Matteo, E.M. Seminari, V. Zuccaro, F. Moioli, G. Tavazzi, V. Dammassi, R. Albertini, C. Klersy, Cardiac

involvement at presentation in patients hospitalized with COVID-19 and their outcome in a tertiary referral hospital in Northern Italy, Intern. Emerg. Med. 15 (8) (2020) 1457–1465, https://doi.org/10.1007/s11739-020-02493-y.
[64] G. Giustino, L.B. Croft, G.G. Stefanini, R. Bragato, J.J. Silbiger, M. Vicenzi,

- [64] G. Giusunio, L.B. Croit, G.O. Stefanni, R. Bragato, J.J. Shibger, M. Vicelizi, T. Danilov, N. Kukar, N. Shaban, A. Kini, A. Camaj, S.W. Bienstock, E.R. Rashed, K. Rahman, C.P. Oates, S. Buckley, L.S. Elbaum, D. Arkonac, R. Fiter, R. Singh, E. Li, V. Razuk, S.E. Robinson, M. Miller, B. Bier, V. Donghi, M. Pisaniello, R. Mantovani, G. Pinto, I. Rota, S. Baggio, M. Chiarito, F. Fazzari, I. Cusmano, M. Curzi, R. Ro, W. Malick, M. Kamran, R. Kohli-Seth, A.M. Bassily-Marcus, E. Neibart, G. Serrao, G. Perk, D. Mancini, V.Y. Reddy, S.P. Pinney, G. Dangas, F. Blasi, S.K. Sharma, R. Mehran, G. Condorelli, G.W. Stone, V. Fuster, S. Lerakis, M.E. Goldman, Characterization of myocardial injury in patients with COVID-19, J. Am. College Cardiol. (JACC) 76 (18) (2020) 2043–2055, https://doi.org/ 10.1016/i.jacc.2020.08.069.
- [65] H. Guo, Y. Shen, N. Wu, X. Sun, Myocardial injury in severe and critical coronavirus disease 2019 patients, J. Card. Surg. 36 (1) (2021) 82–88, https:// doi.org/10.1111/jocs.15164.
- [66] T. Guo, Y. Fan, M. Chen, et al., Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19), JAMA Cardiol. 2020;5(7): 811-818. doi:10.1001/jamacardio.2020.101731950516; D.S. Hui, E.I. Azhar, T. A. Madani, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020) 264-2.
- [67] A. Lala, K.W. Johnson, J.L. Januzzi, et al., Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection, J. Am. College of Cardiol. (JACC) 76 (5) (2020) 533–546, https://doi.org/10.1016/j.jacc.2020.06.007.
- [68] H. Han, L. Xie, R. Liu, et al., Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China, J. Med. Virol. 92 (7) (2020) 819–823, https://doi.org/10.1002/jmv.25809.
- [69] X. He, L. Wang, H. Wang, et al., Factors associated with acute cardiac injury and their effects on mortality in patients with COVID-19, Sci. Rep. 2020;10(1)doi: 10.1038/s41598-020-77172-1.
- [70] A.B. Heberto, P.C.J. Carlos, C.R.J. Antonio, et al., Implications of myocardial injury in Mexican hospitalized patients with coronavirus disease 2019 (COVID-19), Int. J. Cardiol. Heart Vasc. 30 (2020), 100638, https://doi.org/10.1016/j. ijcha.2020.100638.
- [71] L. Jin, W. Tang, L. Song, et al., Acute cardiac injury in adult hospitalized COVID-19 patients in Zhuhai, China, Cardiovasc. Diagn. Theer. 10 (5) (2020) 1303–1312, https://doi.org/10.21037/cdt-20-607.
- [72] G.L.G. Almeida Junior, F. Braga, J.K. Jorge, et al., Prognostic value of troponin-T and B-type natriuretic peptide in patients hospitalized for COVID-19, Arq. Bras. Cardiol. 115 (4) (2020) 660–666, https://doi.org/10.36660/abc.20200385.
- [73] T. Maeda, R. Obata, D. Rizk, T. Kuno, Cardiac injury and outcomes of patients with COVID-19 in New York City, Heart Lung Circul. (2020), https://doi.org/ 10.1016/j.hlc.2020.10.025.
- [74] D.T. Majure, L. Gruberg, S.G. Saba, C. Kvasnovsky, J.S. Hirsch, R. Jauhar, Usefulness of elevated troponin to predict death in patients with COVID-19 and myocardial injury, Am. J. Cardiol. (2020), https://doi.org/10.1016/j. amjcard.2020.09.060.
- [75] I.C. Kim, J.E. Song, H.J. Lee, et al., The Implication of cardiac injury score on inhospital mortality of coronavirus disease 2019, 35(39):1/10-10/10, J. Korean Med. Sci. (2020), https://doi.org/10.3346/jkms.2020.35.e349.
- [76] C. Li, J. Jiang, F. Wang, et al., Longitudinal correlation of biomarkers of cardiac injury, inflammation, and coagulation to outcome in hospitalized COVID-19 patients, J. Mol. Cell. Cardiol. 147 (2020) 74–87, https://doi.org/10.1016/j. yjmcc.2020.08.008.
- [77] J. Li, Y. Zhang, F. Wang, et al., Cardiac damage in patients with the severe type of coronavirus disease 2019 (COVID-19), 20(1):N.PAG-N.PAG, BMC Cardiovascular Disorders (2020), https://doi.org/10.1186/s12872-020-01758-w.
- [78] C.M. Lombardi, V. Carubelli, A. Iorio, et al., Association of troponin levels with mortality in italian patients hospitalized with coronavirus disease 2019: results of a multicenter study, JAMA Cardiol. 2020;5(11):1274-1280. doi:10.1001/ jamacardio.2020.353831389986; S. Shi, M. Qin, B. Shen, Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China (2020) Jama Cardiol, http://jamanetwork.com/article.aspx?doi=10.1001/ jamacardio.2020.09.
- [79] T.S. Metkus, L.J. Sokoll, A.S. Barth, et al., Myocardial injury in severe COVID-19 compared to non-COVID acute respiratory distress syndrome, Circulation (2020), https://doi.org/10.1161/CIRCULATIONAHA.120.050543.
- [80] S. Mu, W. Wei, C. Jin, et al., Risk factors for COVID-19 patients with cardiac injury: pulmonary ventilation dysfunction and oxygen inhalation insufficiency

are not the direct causes, Aging. 12 (2020), https://doi.org/10.18632/aging.104148.

- [81] S. Karbalai Saleh, A. Oraii, A. Soleimani, et al., The association between cardiac injury and outcomes in hospitalized patients with COVID-19, Intern Emerg Med. 15 (8) (2020) 1415–1424, https://doi.org/10.1007/s11739-020-02466-1.
- [82] M. Salvatici, B. Barbieri, S.M.G. Cioffi, et al., Association between cardiac troponin I and mortality in patients with COVID-19, Biomarkers 7, doi:10.1080/ 1354750x.2020.1831609.
- [83] M. Schiavone, A. Gasperetti, M. Mancone, et al., Redefining the prognostic value of high-sensitivity troponin in COVID-19 patients: the importance of concomitant coronary artery disease, J. Clin. Med. 9 (10) (2020) 13, https://doi.org/10.3390/ jcm9103263.
- [84] H. Qian, P. Gao, R. Tian, et al., Myocardial injury on admission as a risk in critically ill COVID-19 patients: a retrospective in-ICU study, J. Cardiothorac. Vasc. Anesth. (2020), https://doi.org/10.1053/j.jvca.2020.10.019.
- [85] J.-J. Qin, X. Cheng, F. Zhou, et al., Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19, Hypertension (0194911X) 76 (4) (2020) 1104–1112, https://doi.org/10.1161/HYPERTENSIONAHA.120.15528.
- [86] M. Raad, M. Dabbagh, S. Gorgis, et al., Cardiac injury patterns and inpatient outcomes among patients admitted with COVID-19, Am. J. Cardiol. 133 (2020) 154–161, https://doi.org/10.1016/j.amjcard.2020.07.040.
- [87] F.M.A. van den Heuvel, J.L. Vos, Y. Koop, et al., Cardiac function in relation to myocardial injury in hospitalised patients with COVID-19, Neth. Heart J. 28 (7–8) (2020) 410–417, https://doi.org/10.1007/s12471-020-01458-2.
- [88] Y. Wang, Y. Zheng, Q. Tong, et al., Cardiac injury and clinical course of patients with coronavirus disease 2019, Front Cardiovasc. Med. 7 (2020) 147, https://doi. org/10.3389/fcvm.2020.00147.
- [89] J.F. Wei, F.Y. Huang, T.Y. Xiong, et al., Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis, Heart 106 (15) (2020) 1154–1159, https://doi.org/10.1136/heartjnl-2020-317007.
- [90] S. Shi, M. Qin, Y. Cai, et al., Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019, Eur. Heart J. 41 (22) (2020) 2070–2079, https://doi.org/10.1093/eurheartj/ehaa408.
- [91] S. Shi, M. Qin, B. Shen, et al., Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China, JAMA Cardiol. 2020;5(7): 802-810. doi:10.1001/jamacardio.2020.095031986264; D. Wang, B. Hu, C. Hu, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China (2020) Jama, http://jamanetwork.com/ article.aspx?doi=10.1001/jama.2020.1.
- [92] X. Yan, S. Wang, P. Ma, et al., Cardiac injury is associated with inflammation in geriatric COVID-19 patients, J. Clin. Lab. Anal. (2020), https://doi.org/10.1002/ jcla.23654.
- [93] C. Yang, F. Liu, W. Liu, et al., Myocardial injury and risk factors for mortality in patients with COVID-19 pneumonia, Int. J. Cardiol. (2020), https://doi.org/ 10.1016/j.ijcard.2020.09.048.
- [94] J. Yang, X. Liao, W. Yin, et al., Elevated cardiac biomarkers may be effective prognostic predictors for patients with COVID-19: A multicenter, observational study, Am. J. Emerg. Med. 39 (2021) 34–41, https://doi.org/10.1016/j. ajem.2020.10.013.
- [95] M. Zaninotto, M.M. Mion, A. Padoan, L. Babuin, M. Plebani, Cardiac troponin I in SARS-CoV-2-patients: The additional prognostic value of serial monitoring, Clin. Chim. Acta 511 (2020) 75–80, https://doi.org/10.1016/j.cca.2020.09.036.
- [96] Z.X. Fan, J. Yang, J. Zhang, et al., Analysis of influencing factors related to elevated serum troponin I level for COVID-19 patients in Yichang, China, Cardiovisc. Diagn. Ther. 10 (4) (2020) 678–686, https://doi.org/10.21037/cdt-20-510.
- [97] W. Zhou, L. Song, X. Wang, et al., Cardiac injury prediction and lymphocyte immunity and inflammation analysis in hospitalized patients with coronavirus disease 2019 (COVID-19), Int. J. Cardiol. 2020;doi:10.1016/j.ijcard.2020.10.049.
- [98] H.A. Barman, A. Atici, I. Sahin, et al., Prognostic significance of cardiac injury in COVID-19 patients with and without coronary artery disease, Coron Artery Dis. 32 (5) (2021) 359–366, https://doi.org/10.1097/mca.00000000000914.
- [99] H. Chen, X. Li, T. Marmar, et al., Cardiac Troponin I association with critical illness and death risk in 726 seriously ill COVID-19 patients: A retrospective cohort study, Int. J. Med. Sci. 18 (6) (2021) 1474–1483, https://doi.org/ 10.7150/ijms.53641.
- [100] V. De Marzo, A. Di Biagio, R. Della Bona, et al., Prevalence and prognostic value of cardiac troponin in elderly patients hospitalized for COVID-19, J. Geriatr. Cardiol. 18 (5) (2021) 338–345, https://doi.org/10.11909/j.issn.1671-5411.2021.05.004.
- [101] O.M. Demir, M. Ryan, C. Cirillo, et al., Impact and determinants of highsensitivity cardiac troponin-T concentration in patients with COVID-19 admitted to critical care, Am. J. Cardiol. 147 (2021) 129–136, https://doi.org/10.1016/j. amjcard.2021.01.037.
- [102] L. García de Guadiana-Romualdo, D. Morell-García, C. Morales-Indiano, et al., Characteristics and laboratory findings on admission to the emergency department among 2873 hospitalized patients with COVID-19: the impact of adjusted laboratory tests in multicenter studies. A multicenter study in Spain (BIOCOVID-Spain study), Scand. J. Clin. Lab. Invest. 81 (3) (2021) 187–193, https://doi.org/10.1080/00365513.2021.1881997.
- [103] J. He, B. Zhang, Q. Zhou, et al., The prognostic value of myocardial injury in COVID-19 patients and associated characteristics, Immun. Inflamm. Dis. (2021), https://doi.org/10.1002/iid3.484.
- [104] A. Liaqat, R.S. Ali-Khan, M. Asad, Z. Rafique, Evaluation of myocardial injury patterns and ST changes among critical and non-critical patients with

O. Ogungbe et al.

coronavirus-19 disease, Sci. Rep. 11 (1) (2021) 4828, https://doi.org/10.1038/ s41598-021-84467-4.

- [105] Y. Lu, Z. Huang, M. Wang, et al., Clinical characteristics and predictors of mortality in young adults with severe COVID-19: a retrospective observational study, Ann. Clin. Microbiol. Antimicrobials 2021;20(1)doi:10.1186/s12941-020-00412-9.
- [106] T. Maeda, R. Obata, D. Rizk, T. Kuno, Cardiac injury and outcomes of patients with COVID-19 in New York City, Heart, Lung & Circulation 30 (6) (2021) 848–853, https://doi.org/10.1016/j.hlc.2020.10.025.
- [107] A. Mengozzi, G. Georgiopoulos, M. Falcone, et al., The relationship between cardiac injury, inflammation and coagulation in predicting COVID-19 outcome, Sci. Rep. 11 (1) (2021) 6515, https://doi.org/10.1038/s41598-021-85646-z.
- [108] T. Omar, M. Karakayalı, G. Perincek, Assessment of COVID-19 deaths from cardiological perspective, Acta Cardiol. 1–8 (2021), https://doi.org/10.1080/ 00015385.2021.1903704.
- [109] M. Selçuk, M. Keskin, T. Çinar, et al., Prognostic significance of N-Terminal Pro-BNP in patients with COVID-19 pneumonia without previous history of heart failure, J. Cardiovascular Thoracic Res. 13 (2) (2021) 141–145, https://doi.org/ 10.34172/jcvtr.2021.26.
- [110] Y. Wang, H. Shu, H. Liu, et al., The peak levels of highly sensitive troponin I predicts in-hospital mortality in COVID-19 patients with cardiac injury: a retrospective study, Eur. Heart J. Acute Cardiovasc Care 10 (1) (2021) 6–15, https://doi.org/10.1093/ehjacc/zuaa019.
- [111] F. Zhu, W. Li, Q. Lin, M. Xu, J. Du, H. Li, Myoglobin and troponin as prognostic factors in patients with COVID-19 pneumonia, Med. Clin. (Barc.) Feb 27 2021;doi: 10.1016/j.medcli.2021.01.013.