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Abstract: Proxy temperature data records featuring local time series, regional averages from areas
all around the globe, as well as global averages, are analyzed using the Slow Feature Analysis
(SFA) method. As explained in the paper, SFA is much more effective than the traditional Fourier
analysis in identifying slow-varying (low-frequency) signals in data sets of a limited length. We
find the existence of a striking gap from ~1000 to about ~20,000 years, which separates intrinsic
climatic oscillations with periods ranging from ~60 years to ~1000 years, from the longer time-scale
periodicities (20,000 year+) involving external forcing associated with Milankovitch cycles. The
absence of natural oscillations with periods within the gap is consistent with cumulative evidence
based on past data analyses, as well as with earlier theoretical and modeling studies.

Keywords: time series analysis; climate variability; intrinsic oscillations; astronomical forcings

1. Introduction

In a seminal paper [1], it was suggested that climate on Earth varies on many temporal
and spatial scales: a typical spectrum of the surface temperature exhibits several peaks that
show up above a continuous background spectrum. Since then, more paleoclimate records
have been accumulated and their analyses has confirmed the general view in [1] (see, for
example, Ref. [2] and references therein). A pressing challenge for climate science in the
era of climate change is to distinguish naturally occurring (intrinsic) climate variability
from externally forced signals. Identifying the former is essential to better understand
the climate system and for assessing relative contributions of each component to overall
climate variability. Quasi-periodic intrinsic climate signals are particularly important due
to their potential predictability. It is the scope of this study to investigate in detail the time
scales of quasi-periodic variability that can naturally occur in the climate system.

The origin of this work dates back to 1991 to a study where a total of 16 tempera-
ture records were analyzed [3]. Thirteen of them were Holocene proxy records of two
parameters: δ18O, and the percent melt. The percent melt is the percentage of each year’s
accumulation encompassed in melt layers by mass in an ice core. Three different ice cores
from Canada and Greenland (specifically from Devon Island ice cap, Agassiz ice cap, and
Camp Century) were used (see [4] and references therein). The remaining three records
were: an instrumental global temperature data set (annual averages 1880–1987; see [5]), a
global temperature proxy data (2000-year averages for the past two million years; see [6]),
and a proxy temperature data derived from δ18O core RC11-120 (with the sampling interval
of 3000 years; see [7]). For each of these records the power spectrum was estimated, and
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significant, at the 5% level, spectral peaks were identified by using random surrogates
having the same (fitted) frequency distribution as the actual data. If a peak was shown to
be significant, its period T and power P were registered. Finally, all of the significant peaks
so determined were plotted in a P vs. log(T) graph (see Figure S1 of the Supplementary
Material). This figure shows significant oscillations with periods up to 750 years, a break
from 750 to about 20,000 years, and then further significant periodicities with timescales in
the range between 20,000 to 100,000 years.

Subsequently, in a follow-up study [8], 31 proxy records were analyzed. Twenty-
six of them were mostly annual temperature proxy records from many places on Earth
extending from 250 to 2650 years into the past. The remaining five records were ice core
data covering periods of thousands of years from present, some at 100-year resolution, and
some at 500-year resolution. In that study again, the power spectrum for each record was
computed, but the 5% significance level for the spectral peaks was estimated differently, by
constructing surrogate time series representing the fractional Brownian motion (fBm) with
the Hurst exponent derived from the original data. The Hurst exponent can vary between
0.0 and 1.0. The range 0.5–1.0 corresponds to persistence, while the range 0–0.5 corresponds
to anti-persistence; the construction of the surrogate time series is naturally possible in the
former case only. It was shown previously [9], and was verified in [8] that all those records
have indeed properties of fBm with the Hurst exponent greater that 0.5. Remarkably, the
resulting picture is very similar to that in [3] (see Figure S2 in Supplementary Material).
We observe significant oscillations with periods up to about 1000 years, a gap from 1000 to
about 20,000 years, and then further significant periodicities with timescales in the range
between 20,000 to 100,000 years. Note that [8] included some longer records than [3], which
extended the range of significant oscillations from 750 (as found in [3]) to about 1000 years.

The above two analyses have thus identified a possible upper timescale limit of about
1000 years for oscillations associated with intrinsic climate dynamics. This is in contrast to
periodic climate oscillations that are centrally involve factors extrinsic to the climate system,
like Milankovitch cycles likely responsible for the oscillations with periods of 20,000 years
and longer. These two regimes are apparently separated from each other by an unexpected
gap of muted variance.

A caveat of these analyses, however, lies in the fact that in many cases the oscillations
so identified only exhibited a few cycles over the limited length of the available data records,
which makes their implied periodicity a possible artifact of the Fourier analysis. One of
the goals of the present work is to examine the robustness of the results reported in [3]
and [8] using an alternative analysis, more suited for the proposed task. The analysis used
is called Slow Feature Analysis (SFA), which, as we explain next, is much more effective
than Fourier analysis in detecting slow varying (low-frequency) signals in a time series of
a limited length (if they exist). The set of records considered in this paper include seven
records 1500–2650 years in length at an annual resolution, and five paleoclimate records
covering hundreds of thousands of years before present (Table 1). Note that, while some
of these data are from a single site, several of the data sets represent regional and global
averages involving multiple sites with tens of independent records.
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Table 1. The data sets used.

Location Type Period Covered Resolution Reference

1 Iceberg Lake, Alaska Annual-mean varve
thickness 442–1998 annual [10]

2 Beijing, China Summer-mean stalagmite
thickness −665–1985 annual [11]

3 Tornetrask, Sweden annual tree-ring data 500–2004 annual [12]

4 Spannagel Cave, Europe stalagmite thickness −90–1935 interpolated to annual [13]

5 Global mean
Average of a large number

(tens) of temperature
proxies

1–2015 AD annual [14–16]

6 China An average of 28
temperature proxies 6–1996 AD Uneven, interpolated

to annual [15–17]

7 Great Aletsch Glacier,
European Alps Temperature proxy −53–2084 AD Uneven, interpolated

to annual [15,16,18,19]

8 Murray Canyon,
Southeastern Australia

Based on several faunal
temperature proxies 1 1.1–134.8 Ky BP Uneven, interpolated

to 100-year [20,21]

9 Global 1Ma Temperature marine benthic oxygen
isotopes −1,067,900–2000 100-year [22]

10 EPICA Dome C,
Antarctica Ice Core −800,000–1900 interpolated to

500-year [23]

11 GISP2, central Greenland Ice core −48,000–1850 interpolated to 50-year [24]

12 IODP, 1202B, Okinawa
Trough SST based on UK’

37 index 8.8–20,089 year BP Uneven, interpolated
to 10-year [20,25]

1 The proxies are constructed from algae biochemistry from offshore Southeastern Australia. This data set comes in three forms. An SST
proxy estimated from UK’

37 index, an SST proxy estimated from the TEXH
86 index, and an SST proxy estimated from the LDI (long-chain

diol) index. All three records give identical results. Here we only record the LDI results.

2. Slow Feature Analysis (SFA), Wavelets and Red-Noise Surrogates

SFA is a fairly new approach that is designed to optimally identify low-frequency
behavior in a time series. This analysis is rooted, theoretically, in the time-embedding theo-
rems. In this method, a one-dimensional time series is embedded in a multi-dimensional
space consisting of the original time series and lagged copies thereof. The SFA further
uses a nonlinear expansion to map this multi-dimensional input signal onto an even larger
feature space and then solves a linear problem to find a linear combination of feature-space
variables that minimizes their time derivative (rate of change) [26]. The objective of SFA is
to find the optimally filtered signals that vary as slowly as possible, but still carry significant
information. To ensure this, these output signals are required to be uncorrelated and have
unit variance [27]. A detailed description of the SFA procedure is given in [28–30]. This
approach has been applied successfully in many areas, including climate science (see, for
example, Refs. [31–33]).

In mathematical terms [29], the goal of SFA is, given an n-dimensional input signal
x(t), to find a set of real-valued input-output functions gj(x) such that the output signals:

yj(t): = gj(x(t))

minimize ∆(yi) :=<
.
y2

j >t

under the constraints:
<yj>t = 0 (zero mean),

<yj>t = 0 (zero mean),

<yiyj>t = 0, ∀i < j (decorrelation and order)
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with <·>t and
.
y indicating temporal averaging and the derivative of y, respectively.

The ∆-value is a measure of the temporal slowness of the signal y(t). It is given by the
mean square of the signal’s time derivative. Small ∆-values correspond to slowly varying
signals. The first two constraints avoid the trivial constant solution, while the last constraint
guarantees that the output functions gj are distinct and hence extract different information
from the input signal. For a tutorial on this method the reader could consult [29] or a more
recent presentation [34]. In that tutorial, a simple example of a two-dimensional input
signal x1(t) = sin(t) + cos(11t)2 and x2(t) = cos(11t) is considered. Both components are
quickly varying, but hidden in the signal is the slowly varying ‘feature’ y(t) = x1(t) − x2(t)2

= sin(t), which can be extracted with a polynomial of degree two, namely h(x) = x1−x2
2.

In the situation with one observable from an unknown system where the actual state
space is not known (as is the case here), embedding is necessary (and essential) to delineate
the underlying dynamics much like in attractor reconstructions. The SFA algorithm can be
summarized as follows. Consider a time series {x(t)}t=t1,...,tn

, where t denotes time and n
indicates the length of the time series. First, we embed {x(t)} into an m-dimensional state
space using time delayed copies of x(t):

X(t) = {x1(t), x2(t), . . . , xm(t)}t=t1,...,tN
,

where x1(t) = x(t); x2(t) = x1(t− τ); x3(t) = x1(t− 2τ), and so on. τ is the delay and N
= n − m + 1. Then, nonlinear expansions (usually second-order polynomials) are used to
generate a k-dimensional function state space:

H(t) =
{

x1(t), . . . , xm(t), x2
1(t), . . . , x1(t)xm(t), . . . , x2

m−1(t), . . . , x2
m(t)

}
t=t1,...,tN

,

which can also be written as

H(t) = {h1(t), h2(t), . . . , hk(t)}t=t1,...,tN

where k = m + m(m + 1)/2.
The expanded signal H(t) is then centered and normalized to zero mean and unit

variance. This process is referred to as whitening or sphering. Thus, we have:

H
′
(t) =

{
h′1(t), h′2(t), . . . , h′k(t)

}
t=t1,...,tN

,

where h′j = 0 (zero mean), h′jh
′
j
T = 1 (unit variance):

h′j(t) =
[

hj(t)− hj

]
/S, and S =

1
k

√
∑k

j=1

(
hj(t)− h

)2

Using the Schmidt algorithm, H
′
(t) is orthogonized into:

Z(t) = {z1(t), z2(t), . . . , zk(t)}t=t1,...,tN
,

where the transformed signal matrix Z is column orthogonal:

zi(t) = zj(t) = 0, zT
i (t)·zj(t) = 0, zT

j (t)·zj(t) = 1,

The final step of SFA is to find the set of coefficients (a1, a2, . . . , ak) such that the time
series:

y(t) = a1z1(t) + a2z2(t) + . . . + akzk(t)

varies as slowly as possible. This set is given by the eigenvector W1 of the time-derivative
covariance matrix:

B =
.
Z

T .
Z
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corresponding to the smallest eigenvalue λ1. Here:

.
Z(t) =

{ .
z1(t),

.
z2(t), . . . ,

.
zk(t)

}
t=t1,...,tN

and:
.

zj(ti) = zj(ti+1)− zj(ti).

Using W1, the optimally filtered slow-feature signal (also known as a driving force
factor) can be written as:

y(t) = rW1·Z(t) + c, (1)

where r and c are constants derived to best match y(t) and the original time series x(t).
A previous study based on idealized models [35], showed that significant low-

frequency periodicities in the system under consideration are, typically, also prominent
in the SFA-derived driving force factors. In fact, these factors by construction represent
the slow manifold of the climate system, dynamically freed, by SFA’s mathematical for-
mulation, from noise biases present in the traditional Fourier-transform based filtering
methods; this allows SFA to extract reliable dynamically significant low-frequency signals
from shorter data sets compared to the traditional Fourier analysis (or, stated differently, to
extract longer periodicities than Fourier analysis in the record of the same length).

Once the SFA optimally filtered (low-frequency) signal has been identified (from
Equation (1)), its significant periodicities can be found from the time-averaged wavelet
power spectrum. Wavelet analysis has been widely used to analyze localized structures
and spectral properties of time series. For example, Ref. [36] provides a detailed description
of the wavelet analysis, along with a very useful toolkit to conduct step-by-step wavelet
analysis, including a statistical significance test based on the red-noise surrogate data (see
http://paos.colorado.edu/research/wavelets/ (accessed on 10 August 2020). We here
used the Morlet wavelet with the wavenumber set to 4 to match the smoothness of the
SFA-derived slow-feature signal, focusing, once again, on the spectral peaks statistically
significant at the 5% level. Note also that SFA is applicable to non-stationary data, so no
data pre-processing is required.

The combination of the SFA and wavelet analyses we intend to use in the present
study has been shown to be more effective in diagnosing low-frequency periodicities in
data sets of a limited length than direct spectral analysis methods. To this end, a recent
study demonstrated, using climate indices, that the SFA/wavelet analysis combination
allows one to detect significant periodicities with longer time scales compared to a wavelet
analysis of the raw data [37]. Moreover, the SFA was shown to be able to successfully
identify signals with periods constituting a large fraction of the data-record length. For
example, SFA clearly delineates a forced signal of a period P from internal variability in a
forced Lorenz model, using a sample of length N~P (see Figure S3 of the Supplementary
Material). In that regard, it will be interesting to see if SFA, as an independent method, (1)
reproduces, from records 1–7 (Table 1), the previously reported variability and its ~1000-
year upper limit to the left of the gap; (2) if it extends this upper limit to a longer time scale;
and (3) whether it produces any significant peaks within the gap from records 8–12.

3. Results

Figure 1 shows an example of the SFA analysis for record 5 of Table 1; here, this
analysis identifies significant oscillations with central periods of 187, 485, and 970 years.
These are closely similar to periods 188, 463 and 1003 years found in [14] using Fourier
analysis. The analogous results for other records are shown in the Supplementary material
(Figures S4–S14).

http://paos.colorado.edu/research/wavelets/
http://paos.colorado.edu/research/wavelets/
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Figure 1. An example of SFA analysis using record 5 of Table 1. The top panel shows the original data. The middle panel
shows the SFA extracted driving forces for various embedding dimensions (m = 1, 13, 23). The bottom three show the
time-averaged wavelet power spectrum of each SFA-extracted slow feature signal and the significant peaks (open circles)
with power exceeding the red-noise based 5% significance level (black dashed lines). These confidence levels are obtained
from 100,000 surrogate signals [36].

Figure 2 shows the cumulative scatterplot of significant periodicities identified by the
SFA—as described above—versus their SFA power. Blue points are produced from records
1–7 and red points are produced from records 8–12. Remarkably, the picture it paints is
basically identical to Figures S1 and S2. We see oscillations with periods ranging from ~60
to ~1000 years, a gap (the absence of oscillations with periods between 1000–20,000 years),
and then the longer-term periodicities (associated with Milankovitch cycles; see Section 4).
Importantly, SFA does not extend the limiting period of significant periodicities to the left
of the gap to periods longer that 1000 years in the analysis of records 1–7; neither does SFA
produce any significant peaks within the gap in the analysis of records 8–12, even though,
in both cases, it is perfectly capable of doing so (see Section 2).
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Figure 2. SFA results from all records. The x-axis is the peak periodicity and the y-axis is the SFA power. Blue points are
produced from records 1–7 and red points are produced from records 8–12.

In all our figures we show results for m = 1, 13, 23. It’s clear from the formulation of
SFA that for embedding dimension m = 1, we simply have the original time series which,
even though is normalized, retains the variability at all time scales. Thus, in Figure 1 and
Figures S4–S14, the result in the plot for m = 1 is identical to a straightforward wavelet
analysis. That is why, especially for the more variable signals, we may observe significant
periodicities at very short time scales for m = 1. Embedding the data in higher dimensions
effectively “smooths” the very short time scales, thereby making those peaks not significant,
while at the same time peaks at longer time scale may emerge (see for example, Figure 1,
Figures S4–S6). Also notice that the results are basically identical for m = 13 and m = 23.
As such, Figure 2 and our conclusions are not affected by the choice of m. As for the time
delay, we use τ = 1 (as it is usually the practice with SFA), but other choices do not affect
the results. Therefore, the cumulative evidence based on the present analysis and previous,
more traditional analyses, clearly indicates that in the climate system there exists an upper
limit of ~1000 years on the period of intrinsic oscillations that do not involve astronomical
periodic forcing (see Section 4 for further discussion). Note, that while SFA (as mentioned
above) has the ability to delineate periodicities greater than those delineated by Fourier
analysis (and thus it may be more effective), it will not delineate them if they don’t exist.
The fact that SFA does not reveal periodicities in the gap, does not make the point that
SFA does not show advantage over Fourier. It confirms (as a different and more dynamical
approach, and with a different statistical significance test), that the existence of the gap is
rather robust.

Note that in the scatter of Figure 2 (and also in the scatter of Figures S1 and S2),
several independent records may have produced similar periodicities (as may be expected
if the underlying oscillatory signals have a sufficiently large spatial scale). However, our
analysis does not identify any significant peaks in records 11 and 12 (GISP2 and Okinawa
Trough). There are some indications of spectral peaks within the gap, with periods around
2500 years in record 12 (Okinawa Trough) and 6500 years in records 8 and 11 (Murray
Canyon, GISP2). These peaks have been noted before in the analysis using the Lomb–
Scargle spectral method [15,16,20], but they are not found here to be statistically significant,
a result also consistent with both [3] and [8]. The same appears true for other periodicities
of the order of 1500 years often referred to as the Dansgaard-Oeschger events [38]. Those
millennial oscillations have been interpreted to arise due to relaxation oscillations via
slow diffusive processes of heat accumulation in the deep ocean [39,40]. However, it has
been noted in [41] that the corresponding spectral peaks found in the GISP2 and other
ice cores at those time scales, depend critically on the accuracy of the dating and that
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the recurrence of Dansgaard–Oeschger events is random consistent with a noise induced
Poisson process [41,42]. Here as well, such peaks are not found to be statistically significant.

In principle, the failure of a spectral peak to pass a particular significance test/level
does not necessarily mean the detected quasi-periodicity is not there. Regardless, the idea
that floats this paper is that there is a gap in the spectrum, which may or may not be
populated with a few sporadic peaks, whose existence is not important for the purpose
of this paper. Instead, the key implication of our analysis is that the gap in the middle of
an otherwise densely populated spectrum represents a separation between two pictures
of long-timescale climate behavior. To the right of the gap, the picture signifies the effect
of external forcing, with climate periodicities linked to specific geological or astronomical
events. To the left of the gap, the variability is dominated by the intrinsic dynamics, which
is something quite different. It represents the phenomena that are nonlinear and chaotic,
not necessarily purely periodic and not necessarily tied to specific external events (see
Section 4 for further discussion).

The results in Figures S1 and S2 consistently indicate the general tendency for longer
time-scale periodicities to carry more power, which is especially evident for the region of
decadal-to-millennial-period oscillations left of the gap (this is also noticeable in Figure 2;
however, the normalization used in SFA procedure scales out the differences in power for
the signals to the left and to the right of the gap). The significant peaks in the region of the
ultra-low-frequency oscillations with periods exceeding 20,000 years, to the right of the
gap, show a larger spread than those to the left of the gap. It is an open question at this
point whether this property manifests true underlying dynamics or is merely due to dating
uncertainties of the older layers in the cores from which the proxy data were obtained.

Finally, our analysis does not appear to point to a common scaling law in Figure 2,
Figures S1 and S2. This may be due to different ways of data manipulation within the
different analysis frameworks used. For example, it is known in the nonlinear geoscience
community that the operation as simple as data normalization may result in different
scaling properties compared to the actual raw data [43]. This, however, does not affect our
major conclusion vis-à-vis the existence of the gap, which places clear limits on the time
scales of the unforced oscillations apparently ‘permitted’ in the climate system.

4. Summary and Discussion

We analyzed a set of proxy records using a relatively recent SFA-based wavelet analysis
to identify an extremely robust property of the climate system: the presence of a gap of
muted variance separating the upper limit of energetic processes with about millennial
(~1000-year) and shorter-scale variability from the longer timescale, 20-kyr+ oscillations.
The robustness of this result is underscored by invoking a combination of the present
study and the earlier analyses of [3] and [8]: essentially the same gap has been identified
using two different types of spectral analyses (Fourier analysis and Slow Feature Analysis),
three different significance tests (parametric test [3], fBm surrogates [8], and the classical
red-noise surrogates here) applied to three largely independent sets of climate records in
all forms (local, regional averages, and global averages) involving hundreds of diverse
paleoclimate reconstructions from basically all areas of the Earth.

The existence of such a gap has been implicit in a wide variety of studies addressing
climatic oscillations. An oscillator can be conceptualized in the form of a single first-order
ordinary differential equation (ODE) with a delayed negative feedback or a pair of single-
order (or a single second-order) ODE(s) (see, for example, [44,45]. In delayed oscillators, the
oscillation period is a factor of 2–4 longer than the delay itself. In this context, the presence
of a spectral gap would indicate the lack of dynamical processes with intrinsic time scales
between a few hundred (the flushing timescale of a global ocean) to thousands of years
(the time scales of land-ice processes). The decadal-to-multidecadal quasi-periodic signals
are thought to be associated with the variability in the Atlantic branch [46], of Meridional
Overturning Circulation (MOC) [47–49], with possible global expressions [49–51] at both
multidecadal and (multi-) centennial ranges [52–54], or with a combination of distinct
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factors in the Pacific sector [55]. On the other end of the gap are the processes associated
with ice-age dynamics, which involve, in one way or another, nonlinear climate response
to and synchronization with the orbital forcing due to Milankovitch cycles [40,56,57].

These results and interpretations thus suggest that in our climate system there seem
to exist two types of natural climatic oscillations: those whose dynamics are internal to the
climate system, with periods from decades to about 1000 years and those of much longer
periods that wouldn’t exist without the external forcing associated with the Milankovitch
orbital cycles. This division is significant in terms of the larger picture insofar as it illustrates
possible dynamical origins of potential climate predictability at various time scales.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/e23040459/s1, Figures S1–S14. Figure S1: Significant oscillations and their periodicities;
reproduced from Zhuang (1991). Figure S2: Significant oscillations and their periodicities; reproduced
from Tsonis and Madsen (2018). Figure S3: (a) SFA extraction signal of the Lorenz X variable forced
by single periodic external forcing (superimposed smooth red line), (b) The result of wavelet analysis
of the SFA signal. Figure S4: Same as Figure 1 but for record 1. Figure S5: Same as Figure 1 but for
record 2. Figure S6: Same as Figure 1 but for record 3. Figure S7: Same as Figure 1 but for record 4.
Figure S8: Same as Figure 1 but for record 6. Figure S9: Same as Figure 1 but for record 7. Figure S10:
Same as Figure 1 but for record 8. Figure S11: Same as Figure 1 but for record 9. Figure S12: Same
as Figure 1 but for record 10. Figure S13: Same as Figure 1 but for record 11. Figure S14: Same as
Figure 1 but for record 12.
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