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Purpose: Microvesicles (MV) can modulate the function of recipient cells by transferring

their contents. Our previous study highlighted that MV released from tumor necrosis

factor-α (TNF-α) plus serum deprivation (SD)-stimulated endothelial progenitor cells,

induce detrimental effects on endothelial cells. In this study, we investigated the potential

effects of endothelial MV (EMV) on proliferation, migration, and apoptosis of human brain

vascular smooth cells (HBVSMC).

Methods: EMV were prepared from human brain microvascular endothelial cells

(HBMEC) cultured in a TNF-α plus SD medium. RNase-EMV were made by treating

EMV with RNase A for RNA depletion. The proliferation, apoptosis and migration abilities

of HBVSMC were determined after co-culture with EMV or RNase-EMV. The Mek1/2

inhibitor, PD0325901, was used for pathway analysis. Western blot was used for

analyzing the proteins of Mek1/2, Erk1/2, phosphorylation Erk1/2, activated caspase-3

and Bcl-2. The level of miR-146a-5p was measured by qRT-PCR.

Results: (1) EMV significantly promoted the proliferation and migration of HBVSMC.

The effects were accompanied by an increase in Mek1/2 and p-Erk1/2, which could

be abolished by PD0325901; (2) EMV decreased the apoptotic rate of HBVSMC by

approximately 35%, which was accompanied by cleaved caspase-3 down-regulation

and Bcl-2 up-regulation; (3) EMV increased miR-146a-5p level in HBVSMC by about

2-folds; (4) RNase-treated EMV were less effective than EMV on HBVSMC activities and

miR-146a-5p expression.

Conclusion: EMV generated under inflammation challenge can modulate HBVSMC

function and fate via their carried RNA. This is associated with activation

of theMek1/2/Erk1/2 pathway and caspase-3/Bcl-2 regulation, during which

miR-146a-5p may play an important role. The data suggest that EMV derived

from inflammation-challenged endothelial cells are detrimental to HBVSMC homeostatic

functions, highlighting potential novel therapeutic targets for vascular diseases.
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INTRODUCTION

Vascular endothelial cells (EC) and smooth muscle cells
(VSMC) are the main components of vascular parenchyma
and play important roles in vascular homeostasis (Rudijanto,
2007; Chang et al., 2014). Vascular injury and inflammation
affect the normal function of VSMC and play a major role
in atherogenesis (Gambardella and Santulli, 2016). Various
inflammatory cytokines, such as Tumor necrosis factor-α (TNF-
α), Interferon-γ (IFN-γ), and Interleukin-2 (IL-2) have been
associated with dysfunction in EC and VSMC, which are among
the key contributors resulting in various vascular diseases, such
as atherosclerosis (AS), hypertension, and vascular stenosis
(Ho et al., 2010; Lu et al., 2013; Stone et al., 2013; Zhu
et al., 2014). Studies have demonstrated that the pathogenesis
of AS is closely associated with the dysregulation of VSMC
proliferation, migration, and apoptosis (Shen et al., 2014; Zhu
et al., 2014). EC provide an interface between blood and vessel
walls, interact in close proximity with VSMC, and contribute to
VSMC proliferation and migration (Nagel et al., 1994; Zitman-
Gal et al., 2015). However, the underlying mechanisms of EC-
VSMC interactions are not fully understood.

Endothelial microvesicles (EMV) are small vesicles 0.1–1 µm
in size, which are released when endothelial cells undergo stress,
activation or apoptosis (Boulanger et al., 2006; Burger et al.,
2013). They harborthe characteristics of their parent cells which
make them usefulas potential biomarkers for vascular diseases
(Jy et al., 2004; Burger et al., 2013). Moreover, EMV could
modulate target cell function through transferring their contents
to various recipient cells (Mause and Weber, 2010). Mounting
evidence suggests that EMV could regulate EC activation and
permeability (Jansen et al., 2013), leukocytes adhesion (Angelot
et al., 2009), and platelet activation (Héloire et al., 2003). Of
note, the effect of EMV on the recipient cells is dependent
on the stimulus under which EMV are released (Jansen et al.,
2013; Pan et al., 2016). Among the contents of EMV, miRNA
play an important role in the effects of MV on regulating
EC and VSMC functions (Tréguer et al., 2012; Jansen et al.,
2013). Hergenreider recently reported that miR143/miR145
rich MV from human umbilical vein EC could influence the

expression of Ets-like protein 1 (ELK1), Krüppel-like factor 4
(KLF4), and Matrix metalloproteinase3 (MMP3) genes in VSMC
(Hergenreider et al., 2012). Moreover, several microRNA have
been known to modulate VSMC proliferation and differentiation
phenotypes (Cheng et al., 2009; Liu et al., 2009). Among
them, miR-146a-5p, an important regulator of inflammation,
has been demonstrated to promote VSMC proliferation and
migration (Wang et al., 2015). However, the functional roles
of EMV released from inflammation-challenged EC on VSMC
are unknown, and whether EMV could transfer miR-146-5p to
VSMC under this challenged environment is unclear.

TNF-α is an established pro-atherosclerotic factor inducing
vascular inflammation injury (Zheng et al., 2013; Zhang et al.,
2014). Serum deprivation (SD) is also an important apoptotic
stimulus contributing greatly to endothelial dysfunction (Scioli
et al., 2014). Therefore, co-culture of EC with TNF-α and SD
offers a good model to mimicking ischemia and inflammation

in ischemic cardiovascular diseases (Wang et al., 2013). Our
previous study has demonstrated that MV released from
endothelial progenitor cells under TNF-α and SD environment
had detrimental effects on EC function (Wang et al., 2013).

Additionally, the Mek-Erk pathway was reported to be
involved in inflammation-induced VSMC proliferation and
migration (Lin et al., 2016). Caspase-3 and Bcl-2 are important
regulators involved in VSMC apoptosis (Su et al., 2015). Thus,
Mek-Erk pathway, Caspase3, and Bcl2 proteins are important
factors for the regulation of VSMC functions.

Above all, we hypothesize that EMV derived from HBMEC
under inflammatory stimuli could modulate HBVSMC functions
via their carried miRNA, and the underlying mechanisms may
be associated with the Mek1/2/Erk1/2 and Caspase-3/Bcl-2
Pathways. In this study, we investigated the potential effects
of EMV released from human brain microvascular endothelial
cells (HBMEC) under TNF-α plus SD stimulation on the
proliferation, migration, and apoptosis function of human
brain vascular smooth cells (HBVSMC). To determine the
role of the EMV-carried RNA, we treated EMV with RNase
A and the level of miR-146a-5p in EMV and HBVSMC was
assessed. Signaling pathway proteins which are closely associated
with proliferation, migration, and apoptosis, such as Mek1/2,
Erk1/2, phosphorylated Erk1/2, cleaved caspase-3, and Bcl-2
were examined to explore the underlying mechanisms.

MATERIALS AND METHODS

Cell Culture
HBMEC were obtained from Shanghai Bioleaf Biotech Co. Ltd.
HBVSMC were purchased from Sciencell Research Laboratories,
USA. The cells were cultured on 100-mm cell culture dishes in
DMEM (Hyclone), supplemented with 10% fetal bovine serum
(FBS, Hyclone), 100 U/ml penicillin and 100 U/ml streptomycin
in a 37◦C incubator with humidified atmosphere of 5% CO2 and
95% air.

Preparation and Identification of EMV
EMV were prepared from HBMEC under TNF-α and SD
treatment (Wang et al., 2013). To generate EMV, HBMEC were

cultured in SD medium supplemented with 10 ng/ml TNF-α
(Sigma, St Louis, MO, USA) for 48 h. EMV were collected
from HBMEC modified culture medium as previously described
(Chen et al., 2011; Cantaluppi et al., 2012). In brief, the HBMEC
culture medium was collected and centrifuged at 2000 g for 20
min to remove cells and debris. Then cell-free culture medium
was ultra-centrifuged at 20,000 g for 90 min to pellet MV. The
pellet MV were re-suspended with phosphate-buffered saline
(PBS) filtered through 20 nm-filter (Whatman, Pittsburgh, PA),
and aliquoted for nanoparticle tract analysis (NTA), transmission
electron microscopy (TEM) and flow cytometry analysis.

EMV can be quantified by flow cytometry based on EC-
related surface markers such as CD31, CD51, CD62E, and CD144
(Horstman et al., 2004; Amabile et al., 2005). To define EMV,
samples were stained with 5 µL of PE-conjugated anti-mouse
CD144 antibody (BD Biosciences). The size of vesicles was
calibrated using 1 and 2 µm flow cytometry beads (Molecular
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Probes; Invitrogen, Eugene, OR). EMV were defined as vesicles
with a diameter <1 µm.

Morphology and size of sorted MV were further confirmed
by TEM, quantified and averaged by examining four random
microscopy fields (magnification,×15,000).

Co-culture Assay of HBVSMC with EMV
In order to co-cultureHBVSMCwith EMV, the latter were labeled
with PKH26 (Sigma Aldrich, St Louis, MO) according to the
manufacturer’s protocol with some modifications (Soleti et al.,
2012). Briefly, the concentration of EMV was quantified by NTA,
and 2 × 107/mL EMV were used for co-culture experiments.
EMV were labeled with 2 µM PKH26 (Sigma-Aldrich, St Louis,
MO) at room temperature (RT) for 5 min. An equal volume of
1% bovine serum albumin (BSA) was added to stop staining.
EMV were then ultra-centrifuged and re-suspended with culture
medium. The PKH26-labeled EMV were added to HBVSMC
seeded in glass plates for 24 h incubation (37◦C, 5% CO2).
Cell nuclei were then stained with DAPI (1 µg/mL; Wako Pure
Chemical Industries Ltd). Themerging of EMV byHBVSMCwas
examined under a fluorescence microscope (Leica, TCS SP5II,
Germany).

Gene Expression Analysis
The levels of miR-146a-5p in EMV, EMV treated with RNase
A and HBVSMC were determined. Total miR were extracted
by using miRNeasy Mini kit (QIAGEN) according to the
manufacturer’s instructions. The miR-146a-5p cDNA were
synthesized using Hairpin-itTM miRNA RT-PCR Quantitation kit
(GenePharma, Shanghai, China) using the following parameters:
(25◦C for 30 min, 42◦C for 30 min, and 85◦C for 5 min).
Real-time PCR parameters were 95◦C for 3 min; 40 cycles were
performed at 95◦C for 12 s and 60◦C for 40 s. PCR primers
were as follows: 5′-TGC CGC TGA GAA CTG AAT T-3′ and
5′-CAG AGC AGG GTC CGA GGT A-3′ for miR-146a-5p;
5′-CTC GCT TCG GCA GCA CA-3′ and 5′-AAC GCT TCA
CGA ATTTGC GT-3′ for small nuclear RNA U6 (as an internal
control). Quantitative real-time PCR was conducted on a real-
time PCR system (Bio-Rad). Relative expression of miR-146a-5p
was calculated using the 2−11CT method (Cheng et al., 2013).

Cell Proliferation Analysis
Cell proliferation of HBVSMC were tested using an MTT (3-
[4,5-dimethylthiazyol-2yl]-2,5-diphenyltetrazolium bromide, 5
mg/mL, Sigma) assay. To eliminate the effects of RNA carried
by EMV, the latter were pre-treated with 0.1% Triton-100
for 5 min, then treated with 200 U/mL RNase A (Thermo
scientific, USA) for 90 min at 37◦C then washed and pelleted by
ultracentrifugation (Cantaluppi et al., 2012; Wang et al., 2013).
To verify the effect of RNase, total RNA was extracted from
EMV using the RNA isolation kit (Ambion, USA), and the RNA
concentration was determined using quantitative assay (Biotek
Epoch, Microplate reader, USA). The obtained RNase A-treated
EMV were set as RNase-EMV. For proliferation analysis, cells
were seeded into 96-well plates at a concentration of 2 × 103

cells/well containing 200 µL of DMEM (supplemented with 10%
FBS) containing EMV, RNase-EMV, or PBS (vehicle). The MTT

solution (20 µL) was added and incubated with cells for 4 h
at 37◦C, then 150 µL of DMSO was added to each well and
incubated with the cells for 20 min at 37◦C. The optical density
(OD) was read at 490 nm on a microplate reader (BioTek,
USA). Measurement was carried out on day 3 after incubation.
The percentage of cell proliferation was defined as the relative
absorbance of treated cells versus untreated cells. Cells from
3 wells were counted at each time point, and the experiment
was repeated 3 times for each group. Results are represented
as the mean ± SEM from values obtained in 3 independent
experiments.

Cell Migration Assay
The migration rate of HBVSMC was measured by scratch assay
(Yaghini et al., 2010). Cells were grown to confluence on 6-
well cell culture plates. A scratch was made through the cell
monolayer using a pipette tip. After washing with PBS, 0.5%
FBS maintenance medium containing EMV, RNase-EMV, or PBS
(vehicle) was added. Photographs of the wounded area were
taken immediately after making the scratch (0 h time point) and
16 h after, to monitor the invasion of cells into the scratched area.
For pathway blocking experiments, cells were pre-incubated with
Mek1/2 inhibitor (PD0325901, 10 mM; Selleckchem) for 2 h. The
experiment was repeated 3 times for each group.

Apoptosis Assay
Cell apoptosis was analyzed by Hoechst 33258 staining and
Annexin V-PE/7-AAD apoptosis detection kit (BD Biosciences)
as we previously described (Liu et al., 2015). Briefly, HBVSMC
were seeded at a density of 2 × 105/well in 2 mL serum free
DMEM. Following co-culture with EMV, RNase-EMV, or PBS
(vehicle) for 24 h, cell apoptosis was measured. Cells were
fixed and stained with Hoechst 33258 solution according to the
manufacturer’s instructions (Beyotime) followed by fluorescence
microscope observation in 5 independent fields assessed from
each well. The average number of positive cells and total cells
per field were determined. The apoptotic rate was defined as
the ratio of positive cells versus total cells. For Annexin V-
PE/7-AAD apoptosis detection, cells were washed with PBS, re-
suspended with 100 µL 1X annexin-binding buffer, incubated
with 5 µL PE-conjugated Annexin V and 5 µL 7-Aminno-
actinomycin (7-AAD) for 15 min in the dark, then analyzed by
flow cytometry. Cells stained with both Annexin V-PE and 7-
AAD were considered to be late apoptotic HBVSMC, while cells
stained only with Annexin V-PE were considered to be early
apoptotic cells. Three plates per experiment were analyzed and
the experiment was repeated 3 times for each group.

Western Blot
For western blot analysis, 30 µg protein of cells lysate were
separated by 12% SDS-PAGE on Tris-glycine gels (Invitrogen)
and transferred to PVDF membranes (Millipore Corp, Bedford,
MA). The membranes were blocked 1 h at RT in TBS (50
mM Tris, 150 mM NaCl, pH 7.6, 5% fat-free dry milk) and
washed in TBST (0.5% Tween20 in TBS), 2 min at RT. Primary
antibodies were added overnight at 4◦C then washed out
in TBST. Secondary antibody (1:50,000, EarthOx, USA) was
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added for 1 h, at RT. Membranes were washed in TBST and
detection was done using ECL solution (GE healthcare, USA).
β-actin (1:1000, EarthOx, San Francisco, CA, USA) was used
to normalize protein loading. The following primary antibodies
were used: Mek1/2 (1:1000, CST, USA), Erk1/2 and phosphor-
Erk1/2 (Thr202/Tyr204) (1:1000, CST, USA), Bcl-2 (1:1000,
abcam, Britain), cleaved caspase-3 (1:1000, CST, USA).

Statistic Analysis
All data are expressed as mean ± SEM. Multiple comparisons
were performed by two-way ANOVA. Comparisons for two
groups were performed using a Student’s t-test (GraphPad Prism
5 software). p < 0.05 were considered to be significant.

RESULTS

Microvesicles Characterization
EMV were identified as 0.1–1.0 µm nanoparticles specifically
expressing the EC specific marker CD144. Flow cytometry

analysis showed that EMV were 91.7 ± 1.1% positive for CD144
(Figure 1A). TEM analysis showed that the average size of EMV
was 154± 14 nm in diameter (Figure 1B).

EMV Merged with HBVSMC after In vitro

Co-incubation
After co-incubation of PKH26-labeled EMV with HBVSMC
for 24 h, PKH26 fluorescence was detected in the cytoplasm
of HBVSMC (Figure 1C), suggesting that EMV merged with
HBVSMC.

RNase Abolished the Effect of EMV on
Increasing the Proliferation of HBVSMC
As shown in Figure 2A, following RNase digestion, total RNA in
EMV was significantly decreased by 71.8 ± 2.8% (vs. EMV; p
< 0.01; n = 3/group; Figure 2A). According to the MTT assay,
we found that EMV increased the proliferation of HBVSMC
by approximately 167% (vs. vehicle; p < 0.01; n = 3/group;
Figure 2B). As expected, the effect of RNase-EMV on HBVSMC

FIGURE 1 | Characterization of EMV. (A) EMV were identified as 0.1–1.0 µm particles specifically stained with PE-CD144 by flow cytometry. (B) Representative

image of EMV examined by TEM. (C) The incorporation of EMV with HBVSMC after co-culture. Representative images showing the merging of PKH26 labeled EMV

with HBVSMC (red:PKH26;blue:DAPI). Scale bar: 50 µm.
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FIGURE 2 | RNase digestion of EMV and effects of EMV and RNase- EMV on viability of HBVSMC. (A) Summarized data showing effective digestion of EMV

total RNAs by RNase treatment. (B) Summary data showing that EMV promoted HBVSMC proliferation, and RNase-EMV was less effective. **p < 0.01 vs. vehicle;
+p < 0.05,++p < 0.01 vs. EMV.

proliferation was reduced by approximately 30% compared to
EMV (p < 0.05; n= 3/group; Figure 2B).

RNase Abolished the Effect of EMV on
Increasing the Migration Ability in
HBVSMC via Mek1/2/Erk1/2 Pathway
The average migration area of HBVSMC was increased by 12.6
± 2.3% in the EMV group (vs. vehicle; p < 0.01; n = 3/group;
Figure 3A). RNase-EMV were less effective on increasing the
migration ability of HBVSMC (vs. EMV; p < 0.05; n= 3/group).
The data suggest that EMV promoted HBVSMC migration via
their carried RNA. In addition, pre-incubation of HBVSMC with
the Mek1/2 inhibitor PD0325901 also attenuated this effect (vs.
EMV; p < 0.01; n = 3/group; Figure 3A), indicating that the
Mek1/2 pathway contributed to the effects of EMV on HBVSMC
migration.

EMV significantly up-regulated Mek1/2 protein expression
and the phosphorylation of Erk1/2 in HBVSMC (vs. vehicle;
p < 0.01; n = 3/group; Figure 3B), while RNase-EMV were
less effective (vs. EMV; p < 0.05; n = 3/group). Pre-incubation
of HBVSMC with PD0325901 also attenuated these effects (vs.
EMV; p< 0.01; n= 3/group; Figure 3B). These data demonstrate
that the migration promoting effect of EMV is closely related to
the Mek1/2/ Erk1/2 pathway.

RNase Abolished the Effect of EMV on
Reducing the Apoptosis of HBVSMC
Accompanied with the Change of
Caspase-3 and Bcl-2 Level
Annexin V-PE/7-AAD and Hoechst 33258 staining revealed that
EMV significantly decrease the apoptotic rate of HBVSMC by
about 35% (vs. vehicle; p < 0.01; n = 3/group; Figures 4A,B).
Following treatment by RNase, EMV exhibited a lower apoptotic
inhibitory effect on HBVSMC, and the anti-apoptotic effect of
RNase-EMV in HBVSMC decreased by nearly 70% (vs. EMV; p
< 0.01; n= 3/group; Figures 4A,B).

In addition, we monitored the cleaved caspase-3 and Bcl-
2 levels, which are associated with induction of apoptosis,
by western blot. Results show that cleaved caspase-3 protein
expression was significantly decreased (vs. vehicle; p < 0.05; n
= 3/group; Figure 4C) while Bcl-2 protein expression obviously
increased (vs. vehicle; p < 0.01; n = 3/group; Figure 4C) after
EMV treatment. RNase-EMV also showed less effect (vs. EMV; p
< 0.01; n= 3/group).

RNase Abolished the Effect of EMV on
Increasing miR-146a-5p Gene Expression
in HBVSMC
QRT-PCR data show that miR-146a-5p gene expression
was significantly increased by nearly 2-folds in EMV-treated
HBVSMC (vs. vehicle; p< 0.01; n= 3/group; Figure 5). The level
of miR-146a-5p in RNase-EMV was significantly decreased by 48
± 7% (vs. EMV; p < 0.01; n = 3/group, Figure 5). Meanwhile,
the ability of RNase-EMV to increase miR-146a-5p expression in
HBVSMC was impaired by nearly 20% (vs. EMV; p < 0.05; n =

3/group; Figure 5).

DISCUSSION

Accumulating evidence suggest that EMV could regulate the
function of various cells, including EC, monocytes, dendritic
cells, and T lymphocytes (Abid Hussein et al., 2007; Angelot
et al., 2009; Lu et al., 2013). In this study, our results show
that EMV secreted from HBMEC stressed with TNF-α plus
SD could merge with HBVSMC and significantly increase cell
proliferation and migration, while inhibiting cell apoptosis via
their carried RNA. The effects of EMV on HBVSMC migration
were associated with an increase in Mek1/2 and p-Erk1/2, which
could be abolished by PD0325901, while the apoptosis inhibitory
effect was accompanied with down-regulation of cleaved caspase-
3 and up-regulation of Bcl-2. These results indicate that EMV
mediate EC-VSMC communication, playing important roles
in regulating vascular homeostasis. EMV released under an
inflammatory environment can induce HBVSMC dysfunction,
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FIGURE 3 | Effects of EMV and RNase-EMV on migration and expression of Mek1/2 and p-Erk1/2/Erk1/2 in HBVSMC. (A) Migration of HBVSMC treated

with EMV, RNase-EMV or EMV+Mek1/2 inhibitor (PD0325901). (B) Expression of Mek1/2 and p-Erk1/2/Erk1/2. **p < 0.01 vs. vehicle; +p < 0.05, ++p < 0.01 vs.

EMV. Scale bar: 400 µm.

which may contribute to the pathogenesis of ischemia- and
inflammation-related vascular diseases.

Inflammation contributes to the pathogenesis of various
vascular diseases. TNF-α is a major inflammatory factor involved
in the pathological basis of EC injury and AS (Dixon and
Symmons, 2007; Zheng et al., 2013; Zhang et al., 2014). Previous
studies have used SD to induce EC apoptosis, oxidative stress and
dysfunction (Chen et al., 2010), which are known to contribute to
vascular diseases (Kawashima and Yokoyama, 2004). EMV can
deliver and transfer their contents (miRNA, mRNA, proteins)
to target cells. Besides, EMV derived from different stimuli
have shown different or even adverse effects on the recipient
cells depending on their distinct contents (Wang et al., 2013;
Pan et al., 2016; Paul et al., 2016). In this study, we generated

EMV from HBMEC under TNF-α plus SD stimulation to mimic
ischemia and inflammation in ischemic diseases, and examined
the functional role of these EMV on HBVSMC.We observed that
both proliferation and migration of HBVSMC were increased
significantly after treated with EMV. It is well-known that
VSMC proliferation and migration play a critical role in the
pathogenesis of AS (Zheng et al., 2013). In the early phase of the
disease, VSMC, changing from contractile to synthetic, migrate
from media to the intima, and then proliferation of VSMC
is thought to promote neointimal hyperplasia and remodeling
(Geng and Libby, 2002; Sugimoto et al., 2010). Our findings
suggest that MV derived from HBMEC under inflammation
conditions such as TNF-α plus SD could contribute to the
pathogenesis and progression of AS via amplification of VSMC
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FIGURE 4 | Effects of EMV and RNase-EMV on apoptosis and

expression of cleaved caspase-3 and Bcl-2 expression in HBVSMC. (A)

Apoptosis analysis by flow cytometry. (B) Apoptosis determined by Hoechst

33258 staining (Red arrows represent apoptotic cells, white arrows represent

normal cells). Scale bar: 50 µm. (C) Protein levels of cleaved caspase-3 and

Bcl-2 in HBVSMC. *p < 0.05, **p < 0.01 vs. vehicle; ++p < 0.01 vs. EMV.

migration and proliferation. Our earlier report has shown
that MV released from endothelial progenitor cells (EPC-MV)
treated with TNF-α and SD injured EC function, including

FIGURE 5 | MiR-146a-5p expression in EMV and HBVSMC. Summary

data showing effective digestion of miR-146a-5p in EMV by RNase treatment.
∧∧p < 0.01 vs. EMV. MiR-146a-5p expression in HBVSMC co-cultured with

EMV or RNase-EMV was also measured. **p < 0.01 vs. vehicle; +p < 0.05,

vs. EMV.

increased cell apoptosis and ROS production, while decreasing
NO cell production and tube formation (Wang et al., 2013). The
detrimental effects of EPC-MV released under TNF-α plus SD
environment are consistent with the findings on EMV of the
present study. Additionally, we found that EMV significantly
decrease HBVSMC apoptosis. It is well accepted that in the
late stage of AS, activated inflammatory and immune cells in
the plaque can lead to the death of VSMC by apoptosis, and
finally cause plaque rupture and cerebral hemorrhage (Geng
and Libby, 2002). Therefore, the inhibitory effects of EMV on
HBVSMC apoptosis might also contribute to maintain the plaque
stability. Thus, EMV may have complex functions in the process
of AS. However, there are limitations in the present study.
Our experiments were solely carried out in vitro. While we
demonstrated that EMV could merge with BVSMC in vitro, this
needs to be further determined in mice brain tissue. To confirm
the function of EMV in vivo, primary cell cultures or in vivo
treatments are warranted.

To determine whether the effects of EMV depend on the
carried RNA, we treated EMV with RNase A as previously
reported (Cantaluppi et al., 2012; Wang et al., 2013). We found
that RNase A treatment diminished the effects of EMV on
HBVSMC, confirming the hypothesis that EMV played roles via
their carried RNA. Several microRNAs have been reported to
participate in regulating VSMC function, such as miR-145/143
(Cheng et al., 2009), miR-221/222 (Choe et al., 2015), miR-
146a (Sun et al., 2011), miR-34(Choe et al., 2015). A recent
study reported that MV secreted by KLF2-transduced or shear-
stress-stimulated human umbilical vein EC are enriched in
miR-143/145 and could transfer these miRNA to co-cultured
SMC, controlling target gene expression in these cells. These
data show a communication between EC and SMC through a
miRNA- and microvesicle-mediated mechanism. MiR-146a is
well-known for its important regulatory role in the immune
response and inflammation (Cheng et al., 2013). Recent studies
have demonstrated that miR-146a promote VSMC proliferation
and migration by targeting KLF4 (Sun et al., 2011). Herein,
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we found that EMV increased miR-146a-5p expression in
HBVSMC and that miR-146a-5p level in RNase -EMV and
HBVSMC co-cultured with RNase -EMV increased less, which
was accompanied by diminished effects on HBVSMC. These
data suggest that miR-146a-5p was delivered to HBVSMC from
HBMEC (under inflammation challenge) via EMV and play
a functional role in regulating HBVSMC proliferation and
migration capabilities. Our results are in agreement with previous
studies showing MV can deliver and transfer their contents
(miRNA, mRNA) to target cells and regulate target cells function
(Mause and Weber, 2010; Ratajczak and Ratajczak, 2016).

Of note, our results indicate that RNase partially abolished
the effect of EMV on increasing the viability of HBVSMC. This
could be explained by our observation that RNase partially
decreased miR-146a-5p expression in EMV (Figure 5). In other
words, the RNase was not able to fully digest EMV-carried
RNA. Additionally, it is well-known that MV could modulate
target cells function through transfer of their contents (RNA,
protein, and DNA, Morel et al., 2004; Deregibus et al., 2007).
Therefore, our data suggest that other EMV contents, such as
protein and RNA, might also contribute to the regulation of
HBVSMC function. We admit that the different effects of EMV
on HBVSMC may involve various RNA and/or proteins. Further
investigation usingmiR-146a-5p knock down or overexpression
experiments is needed to verify the role of miR-146a-5p via a
more mechanistic analysis. Moreover, we defined that RNase
A significantly decreased the effects of EMV on HBVSMC,
suggesting that distinct RNA carried by the EMV contribute
significantly to the changes in EMV-treated HBVSMC. However,
we did not determine whether the same RNA was able to trigger
the various downstream signaling pathways involved in these
changes. This indeed needs further work, such as digestion of
RNAs in HBVSMC.

To further understand the regulatory mechanisms of EMV,
we examined the Mek/Erk pathway which comprise important
proteins related with the migration of VSMC (Jeong et al.,
2015; Lin et al., 2016). In this study, we found that EMV
increased Mek1/2 and p-Erk1/2 in HBVSMC and blockade
of the Mek1/2/Erk1/2 pathway inhibited the effect of EMV
on promoting migration of HBVSMC. The results suggest
that EMV promote migration of HBVSMC via activation of
the Mek1/2/Erk1/2 pathway, thereby providing a probable
underlying mechanism in the process of pro-atherosclerosis. The
Mek-Erk pathway has been shown to be involved in VSMC
proliferation and migration under an inflammatory environment
(Lin et al., 2016). Nevertheless, whether it plays a role in VSMC
apoptosis has not been investigated. Caspase-3 is an important
apoptosis-promoting factor, which plays a critical role in the
execution-phase of cell apoptosis (Kluck et al., 1997). Whereas,
Bcl-2 is an anti-apoptotic protein, which serve as a key regulator

at the early stage of apoptosis (Kluck et al., 1997). A recent study
reported that up-regulation of Bcl-2 and inactivation of caspase-3
involved in the anti-apoptosis effect of Niacin on VSMC (Su et al.,
2015). Herein, our data show that the EMV-mediated reduction
of apoptosis of HBVSMC appears linked with Bcl-2 and cleaved
caspase-3 signaling pathways. In addition, MV can deliver and
transfer their contents (miRNA, mRNA, proteins) to target cells
and regulate target cells functions. In this study, we explored
the mechanisms underlying the effects of EMV on HBVSMC
apoptosis by measuring the expression of apoptosis-related genes
capase3 and Bcl-2. However, we only determined the level of
miR-146a-5p in EMV, which has been shown to promote VSMC
proliferation and migration (Wang et al., 2015). Our results show
that the level of miR-146a-5p in HBVSMC was increased after
EMV treatment, accompanied by an increase of Mek1/2/Erk1/2
expression. Meanwhile, after RNase digestion of EMV, miR-146a-
5p level was decreased in EMV and EMV-treated HBVSMC,
and the expression of Mek1/2/Erk1/2 in HBVSMC was also
reduced. These findings indicate that miR-146a-5p is engaged
in the expression of Mek1/2/ErK1/2. Future studies will focus
on the contents of EMV to better understand the mechanisms
underpinning the protective effect of EMV on caspase-3 and
Bcl-2 expression.

CONCLUSIONS

In conclusion, our data demonstrate that MV derived from
HBMEC under inflammatory stimulation could significantly
increase proliferation and migration of HBVSMC while reduced
apoptosis of HBVSMC via their carried RNA is associated with
the Mek1/2/Erk1/2 and caspase-3/Bcl-2 pathways, which might
contribute to the pathogenesis of AS. Moreover, EMV mediate
EC-SMC communication which could provide novel therapeutic
targets for vascular diseases.
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