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Abstract: Obesity is associated with autoimmunity, a phenomenon considered as harmful. Here
we show that obese mice and humans produce IgG-type autoantibodies that specifically recognize
apolipoprotein B-100 (ApoB100), its native epitope p210, and the synthetic p210 mimotope pB1. By
contrast, antibodies against epitopes p45 and p240, which have been associated with atherosclerosis,
were not detected in either the humans or mice. In a longitudinal analysis of high fat diet-fed
mice, autoantibody production rose with increasing body weight, then decreased and plateaued at
morbid obesity. Likewise, in a cross-sectional analysis of sera from 148 human volunteers spanning a
wide BMI range and free of comorbidities, the immunoreactivity increased and then decreased with
increasing BMI. Thus, the obesity-related ApoB100-specific natural autoantibodies characteristically
showed the same epitope recognition, IgG-type, and biphasic serum levels in humans and mice. We
previously reported that a pB1-based vaccine induces similar antibodies and can prevent obesity in
mice. Therefore, our present results suggest that autoantibodies directed against native ApoB100
may mitigate obesity, and that the vaccination approach may be effective in humans.

Keywords: obese patients; apolipoprotein B-100; IgG-type autoantibody; high-fat diet induced
obesity; epitope; mimotope; body mass index

1. Introduction

Many countries are experiencing an obesity epidemic, for which an effective ther-
apy has not yet been found [1–4]. An intriguing facet of obesity is its association with
autoimmunity and related comorbidities involving adipokines and cytokines [5,6]. A range
of autoimmune antibodies has been found to be produced in obesity [7,8], but little is
known about their roles. Generally, autoantibodies are seen as components that aggravate
pathogenesis [9,10]. However, studies of rheumatoid arthritis, atherosclerosis, type 1 dia-
betes, and Sjögren’s syndrome have raised the possibility that certain autoantibodies may
have beneficial, protective effects [11–17]. For example, it was found that autoantibodies
against p210, a native epitope of human ApoB100, are associated with a reduced severity
of atherosclerosis in humans [18,19], and immunization of mice with antibodies directed
against native p210 had an anti-atherogenic effect [20,21], raising the possibility of a simi-
lar role of the corresponding autoantibodies. We previously found that pB1, a synthetic
mimotope of p210, can induce antibodies that recognize native p210 and ApoB100 and
prevent diet-induced obesity in mice [22]. We therefore speculate that in analogy with the
findings on atherosclerosis, certain ApoB100/p210-reactive autoantibodies may be part
of an anti-obesity, rather than pathogenic, mechanism. Here, we show that obese mice
and humans produce autoantibodies that recognize ApoB100/p210/pB1. Remarkably, the
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antibody titers do not simply increase with the body weight but first increase and then stop
increasing, and even decrease again.

2. Results
2.1. Metabolic Context

This study analyzed sera from wild-type chow- or high-fat diet (HFD)-fed mice and
from humans of a wide BMI range. We first obtained profiles of lipids and liver enzymes.
In both species, the serum triglyceride levels did not change significantly with higher
weights (Supplementary Figure S1A,B). In contrast, the cholesterol values (total, HDL,
LDL) increased in mice but not humans; we note, however that comparability is limited by
the fact that the mouse study was longitudinal, while the human study was cross-sectional.
Nevertheless, in both humans and mice the body weight increases ultimately led to moderately
increased serum levels of AST or ALT (Supplementary Figure S1A,B). More importantly, since
diabetic and cardiovascular patients were excluded from the study (see Section 4.2), it should be
noted that the obese mice were insulin-resistant but not diabetic (Supplementary Figure S1A)
and that wild type mice do not develop atherosclerosis [23,24]. Thus, the two rather different
species were physiologically comparable as much as is possible.

2.2. Obese Mice and Humans Produce ApoB100/p210/pB1-Specific Autoantibodies

In order to characterize the ApoB100-specific autoantibodies from human and mouse,
we separately pooled the sera of 16 obese mice (after 15 weeks of HFD) and of 148 human
subjects. We loaded the pooled mouse or human sera on Affi-gel linked ApoB100 affinity
chromatography columns and in both cases were able to elute an immunoglobulin fraction,
indicating the existence of ApoB100-specific autoantibodies. We determined their isotypes
as IgG1, IgG2b, and IgM with kappa light chains in the mice, and as IgG1 and IgG2 type
with kappa and lambda light chains in the human subjects (Figure 1A).

Figure 1. Characterization of autoantibodies in mouse and human sera. (A) Determination of isotypes. Antibodies were
affinity-purified from pooled sera over human ApoB100 and analyzed with paper strip isotyping kits. Blue arrows indicate
positive reactions. C; control, G3; IgG3, 2b; IgG2b, 2a; IgG2a, G1; IgG1, G4; IgG4, G2; IgG2, A; IgA, M; IgM, λ; lambda light
chain, κ; kappa light chain. (B) Epitope mapping of ApoB100 affinity-purified mouse and human antibodies as well as of
mouse monoclonal antibody 22B4 raised against pB1. The mouse sera used for affinity purification were harvested and
pooled at the end of the experiments (33 weeks of age) from Chow-fed or HFD-fed mice. The human sera were pooled after
the first ELISA screening experiments and also affinity-purified before the dot blot analysis. 0.2 µg of the given antibody
preparation were added per well. a, b and c indicate the amounts of the peptides or proteins spotted per well; a, b and c = 5,
2.5 and 1 µg for p45, p210, p240, pB1 and BSA (bovine serum albumin; negative control); a, b and c = 5, 2.5 and 1 ng for
immunoglobulins (M/H IgG = mouse or human IgG; positive control), respectively.
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We then performed dot blot experiments in order to clarify whether these antibodies
would recognize the previously known human ApoB100 autoantibody epitopes, p45, p210,
and p240; these peptides are homologous to their mouse counterparts by 95%, 90%, and
60%, respectively (UniProtKB/Swiss-Prot accession no. P04114.2 for human and E9Q414.1
for mouse). Both the human and mouse affinity-purified antibodies reacted with pB1
and with p210, of which pB1 is a mimotope. Unexpectedly, however, no reactivity was
found with p45 and p240 (Figure 1B). Importantly, the exact same reactivity pattern was
exhibited by the monoclonal antibody 22B4 (Figure 1B) that we had previously raised
against pB1 [22]. Thus, sera from obese mice and humans contain autoantibodies directed
against the ApoB100 epitope p210, and these autoantibodies also recognize the synthetic
p210 mimotope pB1.

2.3. The Autoantibody Response in Obese Mice Exhibits a Biphasic Pattern

Next, we performed ELISA measurements in order to characterize the anti-ApoB100/p210
autoimmune response throughout the evolution of obesity in mice fed a HFD; the autoantibody
characterization outlined in the foregoing section allowed us to use pB4, which is more practical
than ApoB100 or p210, as the diagnostic antigen. At 11 weeks of age, a group of male mice that
had been kept on a regular chow was split into two: one group continued to receive the chow,
the other one was switched to HFD. Starting from week 9 and up to 33 weeks of age, every
three weeks, we measured the body weights and antibody titers for the ApoB100 mimotope
pB1. The chow-fed mice showed a continuous but modest increase in body weight, reaching
~33 g between 30 and 33 weeks of age. These mice remained lean [25], and no pB1-reactive
antibodies were detected in their sera during the whole experimental period (Figure 2A).

Figure 2. Longitudinal analysis of anti-pB1 antibody titers and body weight in Chow-fed and high fat diet (HFD)-fed mice.
(A) Body weight curves and superimposition of autoantibody titer. Male C57BL/6 mice were continuously maintained on
Chow (n = 11; squares) or switched (black arrow) at 11 weeks of age to a 60% HFD (n = 16; circles). Solid symbols indicate
body weights; empty symbols indicate antibody units (absorbance of ×100 diluted serum at 450 nm). Data points are
shown for every 3rd week, i.e., 9, 12, 15, 18, 21, 24, 27, 30 and 33 weeks of age. (B) Cluster analysis of the data shown in A.
Based on the degree of obesity, its evolution was divided into four stages. Stage I: 9~12 weeks of age (overweight), stage II:
13~18 weeks of age (mildly obese), stage III: 19–25 weeks of age (moderately obese), stage IV: 26–33 weeks of age (severely
obese). Error bars in panels A and B indicate means ± s.e.m. * p < 0.0001, ** p < 0.01.

In contrast, the HFD-fed mice became highly obese. They achieved most of their
weight gain in a steep rise by 21 weeks of age and reached their final weight of ~50 g
between 24 and 27 weeks of age. Already by 12 weeks of age (a week after the switch
to HFD), when the HFD-fed mice were only ~3 g heavier than the chow-fed mice, an
immunoreactivity against pB1 was clearly detectable (Figure 2A). The titer increased



Pharmaceuticals 2021, 14, 330 4 of 10

steeply until ~15 weeks of age (4 weeks after the switch to HFD). Unexpectedly, the titer
then declined again but nevertheless remained high till the end of the experiment, where it
appeared to reach a plateau (Figure 2A). Using the Friedman test algorithm, we divided
the evolution of HFD-induced obesity into four stages. At stage I (week ages between
9–12, overweight) antibody induction was detectable; at stage II (week ages between 13–18,
mildly obese) antibody levels increased dramatically; at stage III (week ages between 19–25,
moderately obese) antibody levels did not increase further but appeared to decline (not
significant); but at stage IV (week ages after 26, severely obese) antibody levels clearly
declined compared to stages II and III (Figure 2B). This provided the clearest illustration of
the rise and subsequent decline of the anti-ApoB100/p210 autoimmune response.

2.4. The Autoantibody Response in Obese Humans Also Exhibits a Biphasic Pattern

In humans, a longitudinal analysis analogous to that done in mice is not practical.
We therefore performed a cross-sectional study of ApoB100 immunoreactivity for BMI
values ranging from ~20 (lean) to ~36 (severely obese). Although immunoreactivity against
ApoB100 was unambiguously detected in a first screening step (see Section 4.4), there was
significant variation, and a robust pattern was not readily apparent from the scatter plot
(Supplementary Figure S2A). We therefore performed a second screening step designed
to eliminate false positive samples, using the fact that the ELISA absorbance read-outs of
truly positive samples should linearly decrease with increased dilution (Supplementary
Figure S2B). Based on the dot blot results (Figure 1), we were able to replace ApoB100 by
pB4 as analyte in the 2nd screening step. Out of the 148 samples used in the first ELISA
step (Supplementary Figure S2A), 107 samples passed the second screening (Figure 3A).
After these data were adjusted for sex and age, quadratic trend analysis was performed
(Figure 3B).

Figure 3. Cross-sectional analysis of human anti-pB1 antibody titer data versus BMI. (A) Scatterplot derived from 107
positive samples (out of 148 human volunteers of South Korean nationality) according to the BMI group. BMI < 23: lean,
23 ≤ BMI < 25: overweight, 25 ≤ BMI < 27: obese, 27 ≤ BMI: severely obese. n = 23, 26, 27 and 31, respectively. Ab
(antibody) units indicate the absorbance of ×100 diluted sera at 450 nm. Error bars indicate means ± s.e.m. (B) Quadratic
Trend Analysis of data shown in A. Antibody titers refer to serum dilution folds (D.F.) yielding an absorbance read-out of
0.5 (See “Supplementary Materials” for a detailed explanation). The association between autoantibody titers and the BMI
group was adjusted for age and sex. The P value for quadratic trend was 0.0494 (p < 0.05). Error bars indicate geometric
means ± s.e.m.

As a result, a biphasic pattern emerged, with the antibody titers ascending at BMIs up
to 27 kg/m2 but descending thereafter, resulting in an inverted U-shape (P for quadratic
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trend of 0.0494) (Figure 3B). Remarkably, the autoantibody positive/negative populations
showed the biphasic pattern as well (Supplementary Figure S3).

3. Discussion

Since we have previously shown that a pB1-based vaccine (which induced antibodies
that reacted with p210 and ApoB100) can prevent HFD-induced obesity in mice [22], our
new finding suggests that obesity-induced anti-p210 autoantibodies may blunt the weight
increase in non-vaccinated mice. In this respect, it is intriguing that in both mice and
humans, the antibody titers did not continuously rise with the degree of obesity but rather
decreased and leveled off in morbid obesity. Such a biphasic pattern seems consistent
with the hypothesis that the autoimmune antibody mechanism is protective but becomes
overwhelmed at morbid obesity.

Our findings resemble previous findings in atherosclerosis, where p210 is also tar-
geted by autoantibodies [18,19], and vaccination with that antigen counteracts atherogene-
sis [21,26,27]. How different these two contexts really are, however, awaits further study:
Obesity and atherosclerosis occur frequently (but not necessarily) together [28,29], hence
there may be mechanistic overlap (one possibility is outlined in the next paragraph). On
the other hand, in our study the obesity-associated autoantibodies did not recognize two
other ApoB100 epitopes, p45 and p240, which (in addition to p210) were recognized by
autoantibodies in atherosclerosis [30–32]. It should be noted, however, that the kinetics
of the two diseases are different. Obesity develops much more rapidly, which could ex-
plain why we did not observe an effect of transient anti-obesity vaccination with pB1 on
atherogenesis in ApoE knockout mice [33].

Further work is required to elucidate the mechanisms of obesity-associated anti-
p210 autoantibody induction. It was previously shown that in obesity, the macrophage-
derived protein, AIM, boosts the production of multiple IgG autoantibodies by promoting
the presentation of IgM-bound antigens to B cells [7]. In this mechanism, a given IgG
epitope must be located on the same antigen as one of the IgM epitopes. It is therefore of
interest that in atherosclerosis—another inflammatory context involving macrophages—
ApoB100 fragments of 15 kDa and 42 kDa in size were observed that carry the IgM epitope
p216 [30,34], which corresponds to amino acids 3226–3245 of ApoB100. Since this is close
to p210 (aa 3136–3155 of ApoB100), it appears plausible that both epitopes are present
on the same ApoB100 fragment and that hence the IgG-type anti-p210-autoantibodies
described in the present report were also induced via the AIM/p216 mechanism. Note
that once the plasma cells triggered by this non-classical mechanism become exhausted,
the corresponding memory B cells will hardly become activated because they lack the
support of T helper cells (which are eliminated by the self-tolerance mechanisms) and
will outcompete the natural autoantibodies (which are of IgM type and therefore of lower
affinity)—potentially explaining why the autoimmune response is not further increased or
even decreased in morbid obesity.

In conclusion, we show here that in both mice and humans, obesity is associated with
the production of autoantibodies that are directed against p210, an epitope of ApoB100, and
can also recognize the synthetic p210 mimotope pB1. Moreover, in both species the antibody
titers appear to go through a peak before reaching the morbid stage, or at least do not
further increase in morbid obesity. In conjunction with our previous study demonstrating
an obesity-preventing effect of a pB1-based vaccine [22], these findings (i) add obesity to
the range of pathologies in which autoantibodies potentially play a protective physiological
role (see Introduction) and (ii) provide support for the rationale [22] that the anti-obesity
vaccination strategy that was successful in mice can be extended into humans.

4. Materials and Methods
4.1. Animals, Diets, and Serum Harvest

Seven weeks old male C57BL/6 mice were purchased from SLC, Inc. (Seoul, Korea).
The animals were kept in a temperature- and light-controlled room (25 ◦C, 12 h light and
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12 h dark cycle) and allowed free access to water and food. From 11 weeks (w) of age,
the animals were given either a low-fat diet (10 kcal% fat by calories, #D1250B, “Chow”)
or a high-fat diet (60 kcal% fat by calories, #D12492, “HFD”) from Research Diets, Inc.
(New Brunswick, NJ, USA). Each group included 11 chow-fed and 16 HFD-fed mice. The
mice were weighed three times per week, and the average weight was determined for
each week. Blood was taken by eye-bleeding every 3rd week from 9 till 33 weeks of age.
For preparation of serum, the blood was drawn into a tube, left at room temperature
for 30 min, and then centrifuged (13,000 rpm, 10 min, 4 ◦C). Biochemical analysis of the
lipid profiles was performed at weeks 9 (before the HFD), 23, and 33 (time of sacrifice)
of age (Supplementary Figure S1). All animal procedures were approved by the Center
for Laboratory Animal Science of Hanyang University and the Institutional Review Board
(HY-IACUC-19-0048).

4.2. Human Subjects and Serum Harvest

The serum samples used in this study had been prepared in 2015–2016 [35] and
stored at −80 ◦C until use. 148 volunteer participants (80 males, 68 females) between
30 and 70 years of age were recruited during routine health checks at the Center for
Health Promotion at Korea University Ansan Hospital. All participants responded to
an interviewer-administered questionnaire and underwent a comprehensive physical ex-
amination. Lifestyle characteristics included smoking status and alcohol consumption
categorized as never, former, and current. Subjects with a history of chronic illness, in-
cluding diabetes mellitus, hypertension, or cardiovascular disease were excluded. Blood
was drawn for biochemical analysis by using serum separator tubes (Vacutainer; Becton
Dickinson, Franklin Lakes, NJ, USA) after an overnight fast. The participants signed an
informed consent form for usage of stored samples for other studies. The baseline clinical
characteristics of the study participants are shown in Table 1. This study was performed
according to the principles of the Declaration of Helsinki of the World Medical Association
and was approved by the Institutional Review Committee at Korea University Ansan
Hospital (AS17011).

4.3. Peptide Preparation

The previously defined [30] peptides p45 (IEIGLEGKGFEPTLEALFGK), p210 (KT-
TKQSFDLSVKAQYKKNKH), and p240 (FPDLGQEVALNANTKNQKIR), as well as pep-
tide pB1 (RNVPPIFNDVYWIAF) were chemically synthesized by Peptron Co. (Daejeon,
Korea). Peptide pB4, a tandem 4-repeat of pB1, was expressed in E. coli and purified as
previously described [22].

4.4. Serum Antibody Analysis

Figure 4 gives an overview of the usages of the human and mouse sera. All the serum
samples were heat-inactivated at 56 ◦C for 30 min to destroy complement factors. Indirect
ELISA was performed in 96-well plates (#32296, SPL Life Science, Pocheon, Korea) with
a standard protocol. Each well bottom was coated with 100 ng of ApoB100 (for the 1st
screening) or pB4 (for the 2nd screening) in an overnight incubation at 4 ◦C, then washed
with PBS-T (PBS with 0.05% Tween-20) and blocked with a 0.05% casein solution for 2 h
at 37 ◦C. The wells were then incubated for 1 h at 37 ◦C with 100 µL of diluted mouse
or human serum, washed, and then incubated for 1 h at 37 ◦C with HRP-conjugated
anti-mouse IgG (0.1 µg/mL, A0168, Sigma, St. Louis, MO, USA) or HRP-conjugated goat
anti-human IgG, IgM, IgA (H + L) (#31418, Invitrogen, Carlsbad, CA, USA), respectively.
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Table 1. Baseline characteristics of the human subjects by BMI.

Characteristics
BMI (kg/m2)

<23.0
(n = 33)

23.0 to <25.0
(n = 41)

25.0 to <27.0
(n = 30)

≥27.0
(n = 44)

Age (years) 54.4 ± 1.6 54.4 ± 1.5 54.3 ± 1.6 52.0 ± 1.4
Hight (cm) 162.2 ± 1.8 165.5 ± 1.2 163.2 ± 1.6 164.4 ± 1.5
Weight (kg) 58.0 ± 1.3 65.2 ± 1.0 69.7 ± 1.4 78.6 ± 1.5

BMI (kg/m2) 21.8 ± 0.1 23.8 ± 0.1 26.0 ± 0.1 29.2 ± 0.3
Diabetes (%) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Hypertension (%) 9 (27.3) 7 (16.7) 3 (10.0) 13 (39.4)
Dyslipidemia (%) 2 (6.1) 5 (11.9) 2 (6.7) 6 (18.2)

Smoking (%) 7 (21.2) 8 (19.0) 4 (13.3) 8 (24.2)
Alcohol (%) 12 (36.4) 21 (50.0) 14 (46.7) 22 (66.7)
Exercise (%) 14 (42.4) 22 (52.4) 15 (50.0) 19 (57.6)

WC (cm) 78.7 ± 1.1 83.8 ± 0.7 86.2 ± 0.6 92.3 ± 0.9
SBP (mm/Hg) 116.3 ± 2.3 120.8 ± 2.2 120.0 ± 2.3 121.7 ± 1.7
FPG (mg/dL) 97.1 ± 2.3 95.0 ± 1.9 92.4 ± 2.0 97.6 ± 1.6

HbA1c (%) 5.5 ± 0.1 5.4 ± 0.1 5.4 ± 0.1 5.5 ± 0.1
Total cholesterol (mg/dL) 201.9 ± 5.9 203.0 ± 5.9 194.8 ± 5.2 200.3 ± 5.5

Triglyceride (mg/dL) 141.6 ± 23.2 172.1 ± 14.5 142.5 ± 14.7 173.5 ± 15.2
LDL-C (mg/dL) 125.4 ± 5.0 117.0 ± 6.1 123.8 ± 4.9 122.3 ± 5.2
HDL-C (mg/dL) 48.5 ± 2.6 45.8 ± 1.8 47.6 ± 2.1 47.1 ± 1.8
hsCRP (mg/L) 0.5 ± 0.2 0.5 ± 0.1 2.5 ± 1.6 0.6 ± 0.1

AST (IU/L) 24.1 ± 1.2 24.2 ± 0.9 24.8 ± 1.2 26.9 ± 1.3
ALT (IU/L) 19.6 ± 2.2 21.4 ± 1.3 22.3 ± 1.5 32.6 ± 2.8

WBC (×103 cells/ul) 5.5 ± 0.2 6.2 ± 0.2 5.8 ± 0.2 6.2 ± 0.2
The human donors were categorized as BMI < 23 (lean), 23 ≤ BMI < 25 (overweight), 25 ≤ BMI < 27 (obese), or BMI
≥ 27 (severely obese) based on the Asian and Pacific Island population BMI standard. Data are presented as the
mean ± s.e.m. Abbreviations: BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; FPG,
fasting plasma glucose; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol;
hsCRP, high-sensitivity C-reactive protein; AST, aspartate aminotransferase; ALT, alanine aminotransferase; WBC,
white blood cell.

Figure 4. Strategy of serum analyses.

The color reaction was performed with o-phenylenediamine dihydrochloride for
10 min at 37 ◦C, and the absorbency (450 nm) measured to calculate the antibody titer.
Human ApoB100 was purchased from Sigma (A5353, Sigma). Because of high background
values especially of the human sera, we used a two-stage ELISA screening procedure
(Figure 4) in order to discriminate true from false positive signals. In the first screening
stage, we used 100-fold diluted sera with human ApoB100 as analyte (Supplementary
Figure S2A). In the second screening step, the sera were serially diluted 100-, 200-, 400-, and
800-fold and pB4 used as analyte. Samples were considered as positive when they showed
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a first-order linear relationship between dilution fold and absorbance with a negative slope
X > 0.074 (See “Supplementary Materials” for a detailed explanation).

4.5. Purification of Autoantibodies against ApoB100

Sera were separately pooled from 16 HFD-fed mice (collected from weeks 15 to 33,
Figure 2) or from 148 humans. The antibodies were purified from these sera by affinity
chromatography using human ApoB100-conjugated Affi-gel 15 resin. Conjugation of
ligand and resin was conducted according to the instruction provided by the manufacturer
with minor modifications. In brief, human ApoB100 (A5353, Sigma, St. Louis, MO, USA)
was conjugated with 3 mg of freshly washed Affi-gel 15 (#153-6051, BIO-RAD, Hercules,
CA, USA) gel in 0.1 M HEPES buffer (pH 7.5). The Affi-gel was mixed with 3 mL of
ApoB100 (1 mg/mL) and the suspension was gently agitated on a wheel (10 rpm, 4 h at
4 ◦C). The coupling reaction was stopped by adding 0.3 mL of 0.1 M ethanolamine-HCl
(pH 8.0) for 1 h and washed with PBS. The conjugated resin was then packed into an
open column (ϕ1.0 cm × 3 cm), and 5 mL-aliquots of pooled anti-serum were applied to
the top of the resin for three times followed by gravity-flow elution. Unbound or non-
specific serum proteins were washed off (0.1 M sodium phosphate with 1 M NaCl, pH 7.4)
prior to elution, and the ApoB100 specific antibodies were eluted with 0.1 M Glycine-HCl
(pH 2.5). Eluates were neutralized with 2 M Tris-HCl (pH 7.5) and concentrated using
VIVASPIN 500 (#VS0101, Sartorius, Göttingen, Germany). Finally, the eluates were dialyzed
(molecular weight cut off 3000 Da) against 1 L of PBS overnight at 4 ◦C, and the VIVASPIN
concentration was repeated for three cycles. The antibodies from chow-fed mice (11 mice,
weeks 15 to 33) were purified using protein A (20333, Pierce, Waltham, MA, USA) rather
than by ApoB100-affinity chromatography. 22B4 is a monoclonal antibody raised in-house
against pB4 [22].

4.6. Dot-Blots

Synthetic peptides and proteins were dissolved in 10% DMSO at 1 mg/mL and
diluted in PBS. A 0.2 µm PVDF membrane (#1620177, Bio-Rad, Hercules, CA, USA) was
pre-wetted with methanol, washed with distilled water and then assembled into a 96-well
Bio-Dot microfiltration apparatus (#1706545, Bio-Rad). Peptide or protein solutions were
added to each well and allowed to filter through onto an absorption pad for 30 min. For
immunoblotting, the membrane was blocked for 3 h at room temperature in 5% (w/v) non-
fat dried skimmed milk in TBST (Tris-buffered saline with 0.1% Tween-20) and incubated
overnight at 4 ◦C with the ApoB100 affinity purified antibody (0.2 µg protein/well, diluted
with TBST). The membrane was then washed with TBST three times and incubated for 1 h
at room temperature with HRP-conjugated goat anti-mouse IgG (Fc) (A0168, Sigma) or
HRP-conjugated goat anti-human IgG/IgM/IgA (H + L) (#31418, Invitrogen), then washed
three times with TBST, and finally developed using the ECL prime Reagent (RPN2232, GE
Healthcare, Chicago, IL, USA).

4.7. Identification of Isotype

Antibodies were analyzed using the Iso-Gold rapid mouse or human antibody iso-
typing kit (mouse #MISOT-010, human #HISOT-010, BioAssay Works LLC, Ijamsville,
MD, USA).

4.8. Data Analysis and Statistics

In the mouse experiments, the longitudinal period was divided into 4 stages based
on antibody titer changes. The stages were denoted as: Stage I, overweight (week ages of
9~12); Stage II, mildly obese (week ages of 13~18); Stage III, moderately obese (week ages
of 19~25); Stage IV, severely obese (week ages of 26~33). As antibody titer difference values
violate the normality (Shapiro–Wilk test; p = 0.012 for Stage I vs. II, p = 0.0062 for Stage I
vs. III, p = 0.0011 for Stage I vs. IV) and sphericity (p < 0.001) assumptions, the Friedman
test with Wilcoxon signed-rank test as post-hoc analysis were used to evaluate repeated
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measures. For the human data, the antibody titers did not meet the normal distribution
(Shapiro-Wilk test, p < 0.001). Therefore, the antibody titers were converted to their natural
logarithms, and the effect of different BMI levels on the antibody titers was evaluated by
Quadratic Trend Analysis with the contrast statement of PROC GLM (general linear model)
of the SAS 9.4 program (SAS Institute Inc., Cary, NC, USA). The level of significance was
set to p < 0.05.

Supplementary Materials: The following Supplementary Method and Figures are available online at
https://www.mdpi.com/article/10.3390/ph14040330/s1; Supplementary Figure S1: Serum analysis
in mouse and human, Supplementary Figure S2: Establishing criteria for true autoantibody positivity,
Supplementary Figure S3: Pattern of autoantibody extinction along obesity progression.
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