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Extending the model of Chen et al.1,2 published in this jour-
nal, the Immunogenicity (IG) Simulator3 integrates multi-
ple factors driving unwanted IG against therapeutic proteins 
(TPs) by combining bioinformatics predictions of antigen 
presentation, a pharmacokinetic (PK) model, as well as a 
quantitative systems pharmacology (QSP) model of lym-
phocyte activation and antidrug antibody (ADA) produc-
tion. It was developed by the Certara IG QSP Consortium as 
an in silico platform to predict the ADA prevalence and the 
impact of ADA on PK over time for TP studies.

Scientific rigor, utility, and potential regulatory ac-
ceptance of such a model-informed drug development 
(MIDD) platform demand qualification for each of its 
specific contexts of use.4 Here, we assessed the credibil-
ity of the IG Simulator QSP model for three contexts of 

use in the drug development process through an unbiased 
evaluation. For this, preclinical and clinical data that are 
typically available at the respective stages during drug de-
velopment were leveraged.

In particular, the objectives of our evaluation were to

•	 Provide an unbiased IG Simulator assessment by 
blinding the modeling operator to experimental 
outcomes;

•	 Extend the evaluation of the IG Simulator both in terms 
of the number of compounds assessed and by using a 
realistic drug development setting;

•	 Explore how and whether additional data from preclin-
ical in vitro assays can be used to improve predictions; 
and
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Abstract
Immunogenicity against therapeutic proteins frequently causes attrition owing 
to its potential impact on pharmacokinetics, pharmacodynamics, efficacy, and 
safety. Predicting immunogenicity is complex because of its multifactorial driv-
ers, including compound properties, subject characteristics, and treatment pa-
rameters. To integrate these, the Immunogenicity Simulator was developed using 
published, predominantly late-stage trial data from 15 therapeutic proteins. This 
single-blinded evaluation with subject-level data from 10 further monoclonals as-
sesses the Immunogenicity Simulator's credibility for application during the drug 
development process.
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•	 Adjust the platform's workflow to allow its application 
to real-world clinical study designs.

METHODS

The data from 10 Roche monoclonal antibodies (mAbs)—
two immunocytokines; three monospecifics; one 1  +  1, 
three 2 +  1, and one 2 +  2 bispecifics—originated from 
two phase I single-ascending dose trials, seven combined 
phase I/II multiple-dose trials, and one multiple-dose 
phase III trial. Nine mAbs were administered intrave-
nously and one subcutaneously. The left panel of Figure 1 
shows further characteristics of these trials.

The external model operator received the data in 
three consecutive stages representative of potential 
contexts of use of the IG Simulator in the drug de-
velopment process. Importantly, the transferred data 
were limited to the minimum necessary to complete 
the prediction at the respective stage, ensuring an 
unbiased assessment. The considered stages were the 
following:

1.	 Discovery Stage: The molecule amino-acid sequence 
is central at this stage. In addition, the clinical trial 
design and a PK projection are needed. In the con-
text of this evaluation, subject-level dosing history, 

sampling timepoints, and covariates were provided 
along with a population PK model in absence of IG.

2.	 Preclinical Development Stage: In vitro assays can further 
inform the IG potential. In our case, measurements from two 
in vitro assays that were obtained during the drug develop-
ment process were provided. The Epibase in vitro DC:CD4+ 
restimulation assay5—hereinafter referred to as “DC-T-cell 
assay”—characterizes the re-stimulation of CD4+ T-helper 
cells by dendritic cells (DCs). The Epibase in vitro MAPPs 
assay5—hereinafter  “MAPPs”—identifies naturally pro-
cessed and presented HLA Class II-binding peptides. The 
assay results were used to refine the model.

3.	 Clinical Development Stage: During early clinical develop-
ment, detailed subject-level observations of PK and ADA 
become available. Using these early clinical trial data al-
lows further model calibration for predictions of IG in 
later-stage trials. In the context of this assessment, the pre-
dictions were compared with the observations only at this 
stage. Furthermore, we performed sensitivity analyses.

The workflow for the Discovery Stage involved: 

	 I	 Generating a virtual population representative of the 
study cohort using Simcyp Simulator V19;

	II	 Determining the ethnicity-specific HLA Class II dis-
tribution for the virtual population with the Allele 
Frequency Net Database;6

F I G U R E  1   The panels show the characteristics of the molecules and clinical trials included in the evaluation (left) and the high-level 
comparison of Discovery Stage antidrug antibody (ADA) predictions with clinical observations (right). In monoclonal antibody (mAb) 
studies marked with an asterisk (*), only a single dose was administered. Left: mAb study-specific details regarding the trial duration 
accounted for in the analysis and the number of subjects included at the beginning of each trial are illustrated. mAbs are colored by their 
mode of action effect on IG (cyan: potentially inhibitory, blue: neutral, yellow: potentially stimulatory, red: stimulatory). Right: The stacked 
bar chart shows the percentages of assessed weeks during which the predicted ADA prevalence was below (dark gray), within (green), and 
above (light gray) the 95% confidence interval (CI) of the observations for each mAb study. The CI was calculated for a binomial distribution 
using the function binconf() from R-package Hmisc.
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	III	 Predicting the binding affinity of all possible 15-
mer peptides along the TP sequence to Major 
Histocompatibility Complex (MHC) Class II mole-
cules using NetMHCIIpan 4.0;7

	IV	 Disregarding any peptides with exact matches in the 
non-redundant UniProtKB database8 as identified 
by blastp;

	V	 Using the binding affinities predicted for the popula-
tion HLA Class II molecules (cf. Step II) containing 
the five strongest-binding peptides to any of the pop-
ulation HLA Class II molecules as input to the IG 
Simulator;

	VI	 Translating population PK models into equivalent 
minimal physiologically-based PK models9 within 
the IG Simulator;

	VII	 Simulating with IG Simulator Version 4.1b account-
ing for individual schedules for dosing, sampling, 
and dropout;

	VIII	 For each weekly interval, classifying enrolled sub-
jects as ADA-positive if an ADA concentration of at 
least 100 ng/mL was predicted.

Ceteris paribus, during the Preclinical Development 
Stage, we adapted a published model of in vitro T cell 
proliferation assays10 to adjust the model parameter repre-
senting the initial number of antigen-specific naïve T cells 
(NT0) based on DC-T-cell assay results for nine mAbs. 
Separately, we altered Step III for the seven mAbs for 
which MAPPs data were available to restrict the included 
NetMHCIIpan-predicted binding affinities to the peptides 
identified in the assay. Note that the donors for the MAPPs 
and DC-T-cell assays were distinct from the subjects in the 
clinical trials.

Keeping other parameters constant, respectively, for 
the Clinical Development Stage, we performed a sen-
sitivity analysis for all studies on NT0 as well as on the 
NetMHCIIpan-derived binding affinity parameters de-
scribing the antigen presentation. Moreover, we modified 
system parameters for Study F to account for the mAb's 
mechanism of action. We also investigated the effect of 
changing the ADA-positivity thresholds across studies by 
modulating Step VIII accordingly.

Once clinical observations were unblinded for the 
Clinical Development Stage, they were retrospectively 
compared with prediction results from all stages, as the 
panels of Figure 2 exemplify for mAb C. The population 
ADA prevalence was summarized weekly by carrying 
the latest ADA status per individual forward to the end 
of each week. The predictive performance was summa-
rized per trial by counting the weeks during which the 
predicted ADA prevalence fell within the 95% confidence 
interval (CI) of the observed prevalence (see right panel of 
Figure 1 for Discovery Stage). The CI reflects the varying 

number of subjects within and across the trials and was 
calculated for a binomial distribution (using the function 
binconf() from R-package Hmisc). Throughout, the eval-
uations were limited to times starting 2 weeks after the 
first dose and continued as long as at least 12 subjects re-
mained in the trial.

RESULTS AND DISCUSSION

The performance of the unbiased prediction at the 
Discovery Stage is summarized in the right panel of 
Figure  1. Predictions were within the 95% CI of the ob-
served data for >50% of the assessed study duration for 
three studies, 10%–50% of the duration for four studies, and 
<10% for three studies. There was a general trend toward 
overprediction—including for mAbs C, D, F, and G with 
potentially immuno-stimulatory mode-of-action effects 
on IG. Because the models did not include mAb-specific 
mechanisms of action, underpredictions might have been 
expected in these cases. However, more detailed quantita-
tive information would be needed to improve predictions 
for these mAbs.

As mAb Study C in the left panel of Figure 2 exempli-
fies, refinement with preclinical MAPPs and DC-T-cell 
assay data during the second Preclinical Development 
Stage failed to improve predictions significantly. This 
was observed across all studies with available preclin-
ical data.

Robust experimental determination of ADA concen-
trations is notoriously difficult, and a value for the thresh-
old for ADA-positivity was not available for this analysis. 
As part of the Clinical Development Stage, we therefore 
performed a sensitivity analysis showing the significant 
impact this parameter can have, as illustrated for Study 
C in the right panel of Figure 2. Moderate improvements 
could be achieved by selecting the optimal level post hoc 
for each study. Yet the cutoff is not a free parameter, and 
the Discovery Stage ADA-positivity threshold of 100 ng/
ml was chosen in line with the consortium model de-
fault.3 Only mAb Studies B, D, F, and G were sensitive to 
changing NT0. For Study F, an overall improvement of 
the ADA prevalence prediction was obtained by lower-
ing NT0 and increasing the maximum proliferation rate 
for activated T-helper cells to reflect mAb F's mechanism 
of action. We identified potential for improvement of the 
antigen-presentation module because low sensitivity was 
observed across molecules for changes extending even 
beyond the range of the binding affinities predicted by 
NetMHCIIpan 4.0.

We confirmed that the IG Simulator predicts some 
effect of ADA on PK and hence exposure loss. Yet vari-
ous attempts of quantifying the comparison between 
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observations and predictions of exposure loss highlighted 
that this is nontrivial.

CONCLUSIONS

The MIDD platform developer considers this evaluation 
of a large set of real-world case studies a unique example 
of a development of a rigorous QSP platform through a 
sustained, collaborative “learn-and-confirm” approach. 
Invaluable insights into the model framework, integra-
tion of in vitro data, and the associated workflows were 
gained. The lessons learned will be incorporated into 
the next version of the IG Simulator model and soft-
ware. They highlight that the lack of experimental data 
on absolute ADA concentrations is a major impediment 
in the field, which emphasizes the critical importance 
of the parallel evolution of sophisticated QSP platforms 
and matching experimental and clinical approaches. 
They further identified opportunities in developing 
meaningful methods for the quantification of exposure 
loss, and the IG QSP Consortium is currently working 
on this.

The sponsor/user concludes that this unbiased evalua-
tion has provided crucial insights into the IG Simulator's 
performance when applied during the various stages of 
drug development. The predictive performance was below 

expectations for the examined stages. This has allowed 
identifying modules of the IG Simulator necessitating fur-
ther development. Furthermore, they suggest advancing 
the integration of in vitro assays; developing methods for 
model calibration and adaptation; establishing a quantita-
tive comparison method for exposure loss; and providing 
streamlined, user-friendly workflows for the integration 
of real-world data. To overcome the practical limitations 
of comparing simulations to measured ADA, they propose 
including models of industry-standard bioanalytic ADA 
assays. The sponsor highlights the unmet need for IG pre-
diction during drug development through qualified MIDD 
platforms. Therefore, they look forward to advances in 
performance and credibility of the IG Simulator triggered 
by this and future performance assessments.

ACKNOWLEDGMENTS
The authors thank Henry Hofmann, Managing Director at 
Inovigate Switzerland, for his support as Project Manager 
of this evaluation, and Timothy Hickling, Investigative 
Safety and Immunosafety Chapter Lead at Pharmaceutical 
Sciences, F. Hoffmann-La Roche Ltd., for his scientific 
advice.

FUNDING INFORMATION
This work was conducted and funded by F. Hoffmann-La 
Roche Ltd. and Certara UK Ltd.

F I G U R E  2   Exemplified by monoclonal antibody (mAb) Study C, the panels illustrate the comparisons between the predicted and 
observed antidrug antibody (ADA) prevalences that were typically made per mAb study. Each panel compares ADA prevalence observations 
(blue line with shaded 95% confidence interval (CI) calculated for a binomial distribution to reflect the evolution of the number of subjects 
enrolled in the trial) with predictions (red lines). Left: Discovery Stage default prediction (solid red line) and refined predictions using in 
vitro assay data at the Preclinical Development Stage (dashed red lines) are compared to the observations (blue line with shaded CI). Right: 
Predictions with different ADA detection thresholds illustrated by the Discovery Stage default prediction (100 ng/ml, solid red line) and 
Clinical Development Stage predictions with higher threshold levels (300–3000 ng/ml, dashed red lines) are compared to the observations 
(blue line with shaded CI).
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