
CPT Pharmacometrics Syst Pharmacol. 2023;12:139–143.	 		 		 |	 139www.psp-journal.com

Extending	the	model	of	Chen	et	al.1,2	published	in	this	jour-
nal,	the	Immunogenicity	(IG)	Simulator3	integrates	multi-
ple	factors	driving	unwanted	IG	against	therapeutic	proteins	
(TPs)	by	combining	bioinformatics	predictions	of	antigen	
presentation,	a	pharmacokinetic	(PK)	model,	as	well	as	a	
quantitative	 systems	 pharmacology	 (QSP)	 model	 of	 lym-
phocyte	 activation	 and	 antidrug	 antibody	 (ADA)	 produc-
tion.	It	was	developed	by	the	Certara	IG	QSP	Consortium	as	
an	in	silico	platform	to	predict	the	ADA	prevalence	and	the	
impact	of	ADA	on	PK	over	time	for	TP	studies.

Scientific	 rigor,	 utility,	 and	 potential	 regulatory	 ac-
ceptance	 of	 such	 a	 model-	informed	 drug	 development	
(MIDD)	 platform	 demand	 qualification	 for	 each	 of	 its	
specific	 contexts	of	use.4	Here,	we	assessed	 the	credibil-
ity	of	 the	 IG	Simulator	QSP	model	 for	 three	contexts	of	

use	in	the	drug	development	process	through	an	unbiased	
evaluation.	For	this,	preclinical	and	clinical	data	that	are	
typically	available	at	the	respective	stages	during	drug	de-
velopment	were	leveraged.

In	particular,	the	objectives	of	our	evaluation	were	to

•	 Provide	 an	 unbiased	 IG	 Simulator	 assessment	 by	
blinding	 the	 modeling	 operator	 to	 experimental	
outcomes;

•	 Extend	the	evaluation	of	the	IG	Simulator	both	in	terms	
of	 the	number	of	compounds	assessed	and	by	using	a	
realistic	drug	development	setting;

•	 Explore	how	and	whether	additional	data	from	preclin-
ical	in	vitro	assays	can	be	used	to	improve	predictions;	
and
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Abstract
Immunogenicity	against	 therapeutic	proteins	 frequently	causes	attrition	owing	
to	 its	 potential	 impact	 on	 pharmacokinetics,	 pharmacodynamics,	 efficacy,	 and	
safety.	Predicting	immunogenicity	is	complex	because	of	its	multifactorial	driv-
ers,	 including	 compound	 properties,	 subject	 characteristics,	 and	 treatment	 pa-
rameters.	To	integrate	these,	the	Immunogenicity	Simulator	was	developed	using	
published,	predominantly	late-	stage	trial	data	from	15	therapeutic	proteins.	This	
single-	blinded	evaluation	with	subject-	level	data	from	10	further	monoclonals	as-
sesses	the	Immunogenicity	Simulator's	credibility	for	application	during	the	drug	
development	process.
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•	 Adjust	the	platform's	workflow	to	allow	its	application	
to	real-	world	clinical	study	designs.

METHODS

The	data	from	10	Roche	monoclonal	antibodies	(mAbs)—	
two	 immunocytokines;	 three	 monospecifics;	 one	 1  +  1,	
three	2 +  1,	 and	one	2 +  2	bispecifics—	originated	 from	
two	phase	I	single-	ascending	dose	trials,	seven	combined	
phase	 I/II	 multiple-	dose	 trials,	 and	 one	 multiple-	dose	
phase	 III	 trial.	 Nine	 mAbs	 were	 administered	 intrave-
nously	and	one	subcutaneously.	The	left	panel	of	Figure 1	
shows	further	characteristics	of	these	trials.

The	 external	 model	 operator	 received	 the	 data	 in	
three	 consecutive	 stages	 representative	 of	 potential	
contexts	 of	 use	 of	 the	 IG	 Simulator	 in	 the	 drug	 de-
velopment	 process.	 Importantly,	 the	 transferred	 data	
were	 limited	 to	 the	 minimum	 necessary	 to	 complete	
the	 prediction	 at	 the	 respective	 stage,	 ensuring	 an	
unbiased	assessment.	The	considered	stages	were	the	
following:

1.	 Discovery	 Stage:	 The	 molecule	 amino-	acid	 sequence	
is	 central	 at	 this	 stage.	 In	 addition,	 the	 clinical	 trial	
design	 and	 a	 PK	 projection	 are	 needed.	 In	 the	 con-
text	 of	 this	 evaluation,	 subject-	level	 dosing	 history,	

sampling	 timepoints,	 and	 covariates	 were	 provided	
along	 with	 a	 population	 PK	 model	 in	 absence	 of	 IG.

2.	 Preclinical	Development	Stage:	In	vitro	assays	can	further	
inform	the	IG	potential.	In	our	case,	measurements	from	two	
in	vitro	assays	that	were	obtained	during	the	drug	develop-
ment	process	were	provided.	The	Epibase	in	vitro	DC:CD4+	
restimulation	assay5—	hereinafter referred to as “DC-	T-	cell	
assay”—	characterizes	the	re-	stimulation	of	CD4+	T-	helper	
cells	by	dendritic	cells	(DCs).	The	Epibase	in	vitro	MAPPs	
assay5—	hereinafter  “MAPPs”—	identifies	 naturally	 pro-
cessed	and	presented	HLA	Class	II-	binding	peptides.	The	
assay	results	were	used	to	refine	the	model.

3.	 Clinical	Development	Stage:	During	early	clinical	develop-
ment,	detailed	subject-	level	observations	of	PK	and	ADA	
become	available.	Using	 these	early	clinical	 trial	data	al-
lows	 further	 model	 calibration	 for	 predictions	 of	 IG	 in	
later-	stage	trials.	In	the	context	of	this	assessment,	the	pre-
dictions	were	compared	with	the	observations	only	at	this	
stage.	Furthermore,	we	performed	sensitivity	analyses.

The	workflow	for	the	Discovery	Stage	involved:	

	 I	 Generating	a	virtual	population	representative	of	the	
study	cohort	using	Simcyp	Simulator	V19;

	II	 Determining	the	ethnicity-	specific	HLA	Class	II	dis-
tribution	 for	 the	 virtual	 population	 with	 the	 Allele	
Frequency	Net	Database;6

F I G U R E  1  The	panels	show	the	characteristics	of	the	molecules	and	clinical	trials	included	in	the	evaluation	(left)	and	the	high-	level	
comparison	of	Discovery	Stage	antidrug	antibody	(ADA)	predictions	with	clinical	observations	(right).	In	monoclonal	antibody	(mAb)	
studies	marked	with	an	asterisk	(*),	only	a	single	dose	was	administered.	Left: mAb	study-	specific	details	regarding	the	trial	duration	
accounted	for	in	the	analysis	and	the	number	of	subjects	included	at	the	beginning	of	each	trial	are	illustrated.	mAbs	are	colored	by	their	
mode	of	action	effect	on	IG	(cyan:	potentially	inhibitory,	blue:	neutral,	yellow:	potentially	stimulatory,	red:	stimulatory).	Right:	The	stacked	
bar	chart	shows	the	percentages	of	assessed	weeks	during	which	the	predicted	ADA	prevalence	was	below	(dark	gray),	within	(green),	and	
above	(light	gray)	the	95%	confidence	interval	(CI)	of	the	observations	for	each	mAb	study.	The	CI	was	calculated	for	a	binomial	distribution	
using	the	function	binconf()	from	R-	package	Hmisc.
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	III	 Predicting	 the	 binding	 affinity	 of	 all	 possible	 15-	
mer	 peptides	 along	 the	 TP	 sequence	 to	 Major	
Histocompatibility	 Complex	 (MHC)	 Class	 II	 mole-
cules	using	NetMHCIIpan	4.0;7

	IV	 Disregarding	any	peptides	with	exact	matches	in	the	
non-	redundant	 UniProtKB	 database8	 as	 identified	
by	blastp;

	V	 Using	the	binding	affinities	predicted	for	the	popula-
tion	HLA	Class	II	molecules	(cf.	Step	II)	containing	
the	five	strongest-	binding	peptides	to	any	of	the	pop-
ulation	 HLA	 Class	 II	 molecules	 as	 input	 to	 the	 IG	
Simulator;

	VI	 Translating	 population	 PK	 models	 into	 equivalent	
minimal	 physiologically-	based	 PK	 models9	 within	
the	IG	Simulator;

	VII	 Simulating	with	IG	Simulator	Version	4.1b	account-
ing	 for	 individual	 schedules	 for	 dosing,	 sampling,	
and	dropout;

	VIII	 For	 each	 weekly	 interval,	 classifying	 enrolled	 sub-
jects	as	ADA-positive	if	an	ADA	concentration	of	at	
least	100	ng/mL	was	predicted.

Ceteris	 paribus,	 during	 the	 Preclinical	 Development	
Stage,	 we	 adapted	 a	 published	 model	 of	 in	 vitro	 T	 cell	
proliferation	assays10	to	adjust	the	model	parameter	repre-
senting	the	initial	number	of	antigen-	specific	naïve	T	cells	
(NT0)	 based	 on	 DC-	T-	cell	 assay	 results	 for	 nine	 mAbs.	
Separately,	 we	 altered	 Step	 III	 for	 the	 seven	 mAbs	 for	
which	MAPPs	data	were	available	to	restrict	the	included	
NetMHCIIpan-	predicted	binding	affinities	to	the	peptides	
identified	in	the	assay.	Note	that	the	donors	for	the	MAPPs	
and	DC-	T-	cell	assays	were	distinct	from	the	subjects	in	the	
clinical	trials.

Keeping	 other	 parameters	 constant,	 respectively,	 for	
the	 Clinical	 Development	 Stage,	 we	 performed	 a	 sen-
sitivity	 analysis	 for	 all	 studies	 on	 NT0	 as	 well	 as	 on	 the	
NetMHCIIpan-	derived	 binding	 affinity	 parameters	 de-
scribing	the	antigen	presentation.	Moreover,	we	modified	
system	parameters	 for	Study	F	 to	account	 for	 the	mAb's	
mechanism	 of	 action.	 We	 also	 investigated	 the	 effect	 of	
changing	the	ADA-	positivity	thresholds	across	studies	by	
modulating	Step	VIII	accordingly.

Once	 clinical	 observations	 were	 unblinded	 for	 the	
Clinical	 Development	 Stage,	 they	 were	 retrospectively	
compared	 with	 prediction	 results	 from	 all	 stages,	 as	 the	
panels	of	Figure 2	exemplify	for	mAb	C.	The	population	
ADA	 prevalence	 was	 summarized	 weekly	 by	 carrying	
the	 latest	 ADA	 status	 per	 individual	 forward	 to	 the	 end	
of	 each	 week.	 The	 predictive	 performance	 was	 summa-
rized	 per	 trial	 by	 counting	 the	 weeks	 during	 which	 the	
predicted	ADA	prevalence	fell	within	the	95%	confidence	
interval	(CI)	of	the	observed	prevalence	(see	right	panel	of	
Figure 1	for	Discovery	Stage).	The	CI	reflects	the	varying	

number	of	subjects	within	and	across	 the	trials	and	was	
calculated	for	a	binomial	distribution	(using	the	function	
binconf()	from	R-	package	Hmisc).	Throughout,	the	eval-
uations	 were	 limited	 to	 times	 starting	 2	 weeks	 after	 the	
first	dose	and	continued	as	long	as	at	least	12	subjects	re-
mained	in	the	trial.

RESULTSANDDISCUSSION

The	 performance	 of	 the	 unbiased	 prediction	 at	 the	
Discovery	 Stage	 is	 summarized	 in	 the	 right	 panel	 of	
Figure  1.	 Predictions	 were	 within	 the	 95%	 CI	 of	 the	 ob-
served	 data	 for	 >50%	 of	 the	 assessed	 study	 duration	 for	
three	studies,	10%–	50%	of	the	duration	for	four	studies,	and	
<10%	for	three	studies.	There	was	a	general	trend	toward	
overprediction—	including	for	mAbs	C,	D,	F,	and	G	with	
potentially	 immuno-	stimulatory	 mode-	of-	action	 effects	
on	IG.	Because	the	models	did	not	include	mAb-	specific	
mechanisms	of	action,	underpredictions	might	have	been	
expected	in	these	cases.	However,	more	detailed	quantita-
tive	information	would	be	needed	to	improve	predictions	
for	these	mAbs.

As	mAb	Study	C	in	the	left	panel	of	Figure 2	exempli-
fies,	refinement	with	preclinical	MAPPs	and	DC-	T-	cell	
assay	 data	 during	 the	 second	 Preclinical	 Development	
Stage	 failed	 to	 improve	 predictions	 significantly.	 This	
was	 observed	 across	 all	 studies	 with	 available	 preclin-
ical	data.

Robust	 experimental	 determination	 of	 ADA	 concen-
trations	is	notoriously	difficult,	and	a	value	for	the	thresh-
old	for	ADA-positivity	was	not	available	for	this	analysis.	
As	part	of	the	Clinical	Development	Stage,	we	therefore	
performed	a	sensitivity	analysis	showing	 the	significant	
impact	 this	parameter	can	have,	as	 illustrated	 for	Study	
C	in	the	right	panel	of	Figure 2.	Moderate	improvements	
could	be	achieved	by	selecting	the	optimal	level	post	hoc	
for	each	study.	Yet	the	cutoff	is	not	a	free	parameter,	and	
the	Discovery	Stage	ADA-	positivity	threshold	of	100	ng/
ml	 was	 chosen	 in	 line	 with	 the	 consortium	 model	 de-
fault.3	Only	mAb	Studies	B,	D,	F,	and	G	were	sensitive	to	
changing	 NT0.	 For	 Study	 F,	 an	 overall	 improvement	 of	
the	 ADA	 prevalence	 prediction	 was	 obtained	 by	 lower-
ing	NT0	and	increasing	the	maximum	proliferation	rate	
for	activated	T-	helper	cells	to	reflect	mAb	F's	mechanism	
of	action.	We	identified	potential	for	improvement	of	the	
antigen-	presentation	module	because	low	sensitivity	was	
observed	 across	 molecules	 for	 changes	 extending	 even	
beyond	 the	 range	 of	 the	 binding	 affinities	 predicted	 by	
NetMHCIIpan	4.0.

We	 confirmed	 that	 the	 IG	 Simulator	 predicts	 some	
effect	 of	 ADA	 on	 PK	 and	 hence	 exposure	 loss.	Yet	 vari-
ous	 attempts	 of	 quantifying	 the	 comparison	 between	
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observations	and	predictions	of	exposure	loss	highlighted	
that	this	is	nontrivial.

CONCLUSIONS

The	MIDD	platform	developer	considers	this	evaluation	
of	a	large	set	of	real-	world	case	studies	a	unique	example	
of	a	development	of	a	rigorous	QSP	platform	through	a	
sustained,	collaborative	“learn-	and-	confirm”	approach.	
Invaluable	insights	into	the	model	framework,	integra-
tion	of	in	vitro	data,	and	the	associated	workflows	were	
gained.	 The	 lessons	 learned	 will	 be	 incorporated	 into	
the	 next	 version	 of	 the	 IG	 Simulator	 model	 and	 soft-
ware.	They	highlight	that	the	lack	of	experimental	data	
on	absolute	ADA	concentrations	is	a	major	impediment	
in	 the	 field,	 which	 emphasizes	 the	 critical	 importance	
of	the	parallel	evolution	of	sophisticated	QSP	platforms	
and	 matching	 experimental	 and	 clinical	 approaches.	
They	 further	 identified	 opportunities	 in	 developing	
meaningful	methods	for	the	quantification	of	exposure	
loss,	and	 the	 IG	QSP	Consortium	 is	currently	working	
on	this.

The	sponsor/user	concludes	that	this	unbiased	evalua-
tion	has	provided	crucial	insights	into	the	IG	Simulator's	
performance	 when	 applied	 during	 the	 various	 stages	 of	
drug	development.	The	predictive	performance	was	below	

expectations	 for	 the	 examined	 stages.	 This	 has	 allowed	
identifying	modules	of	the	IG	Simulator	necessitating	fur-
ther	 development.	 Furthermore,	 they	 suggest	 advancing	
the	integration	of	in	vitro	assays;	developing	methods	for	
model	calibration	and	adaptation;	establishing	a	quantita-
tive	comparison	method	for	exposure	loss;	and	providing	
streamlined,	 user-	friendly	 workflows	 for	 the	 integration	
of	real-	world	data.	To	overcome	the	practical	 limitations	
of	comparing	simulations	to	measured	ADA,	they	propose	
including	 models	 of	 industry-	standard	 bioanalytic	 ADA	
assays.	The	sponsor	highlights	the	unmet	need	for	IG	pre-
diction	during	drug	development	through	qualified	MIDD	
platforms.	 Therefore,	 they	 look	 forward	 to	 advances	 in	
performance	and	credibility	of	the	IG	Simulator	triggered	
by	this	and	future	performance	assessments.
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F I G U R E  2  Exemplified	by	monoclonal	antibody	(mAb)	Study	C,	the panels illustrate the comparisons between	the	predicted	and	
observed	antidrug	antibody	(ADA)	prevalences	that	were	typically	made	per	mAb	study.	Each	panel	compares	ADA	prevalence	observations	
(blue	line	with	shaded	95%	confidence	interval	(CI)	calculated	for	a	binomial	distribution	to	reflect	the	evolution	of	the	number	of	subjects	
enrolled	in	the	trial)	with	predictions	(red	lines).	Left:	Discovery	Stage	default	prediction	(solid	red	line)	and	refined	predictions	using	in	
vitro	assay	data	at	the	Preclinical	Development	Stage	(dashed	red	lines)	are	compared	to	the	observations	(blue	line	with	shaded	CI).	Right:	
Predictions	with	different	ADA	detection	thresholds	illustrated	by	the	Discovery	Stage	default	prediction	(100	ng/ml,	solid	red	line)	and	
Clinical	Development	Stage	predictions	with	higher	threshold	levels	(300–	3000	ng/ml,	dashed	red	lines)	are	compared	to	the	observations	
(blue	line	with	shaded	CI).

0 5 10 15 20 25
Time after first dose (weeks)

0

10

20

30

40

50

60

70

80

90

100
AD

A 
in

 s
tu

dy
 p

op
ul

at
io

n 
(%

)
Observations
Prediction (ad hoc)
Prediction (DC-T-cell)
Prediction (MAPPs)

0 5 10 15 20 25
Time after first dose (weeks)

0

10

20

30

40

50

60

70

80

90

100

AD
A 

in
 s

tu
dy

 p
op

ul
at

io
n 

(%
)

Observations
Prediction (100 ng/mL)
Prediction (300 ng/mL)
Prediction (1000 ng/mL)
Prediction (3000 ng/mL)



   | 143ASSESSMENT OF IMMUNOGENICITY QSP PLATFORM

CONFLICTOFINTEREST
L.C.F.	and	H.P.G.	are	full-	time	employees	and	sharehold-
ers	 of	 F.	 Hoffmann-	La	 Roche	 Ltd.	 All	 other	 authors	 de-
clared	no	competing	interests	for	this	work.

ORCID
Linnea C. Franssen  	https://orcid.org/0000-0002-9636-0283	

REFERENCES
	 1.	 Chen	X,	Hickling	TP,	Vicini	P.	A	mechanistic,	multiscale	mathemat-

ical	model	of	immunogenicity	for	therapeutic	proteins:	part	1	–		the-
oretical	model.	CPT Pharmacometrics Syst Pharmacol.	2014;3:1-	9.

	 2.	 Chen	X,	Hickling	TP,	Vicini	P.	A	mechanistic,	multiscale	mathe-
matical	model	of	immunogenicity	for	therapeutic	proteins:	part	
2	–		model	applications.	CPT Pharmacometrics Syst Pharmacol.	
2014;3:1-	10.

	 3.	 Kierzek	AM,	Hickling	TP,	Figueroa	I,	et	al.	A	quantitative	sys-
tems	pharmacology	consortium	approach	to	managing	immu-
nogenicity	of	therapeutic	proteins.	CPT Pharmacometrics Syst 
Pharmacol.	2019;8:773-	776.

	 4.	 Musuamba	FT,	Skottheim	Rusten	I,	Lesage	R,	et	al.	Scientific	
and	regulatory	evaluation	of	mechanistic	in	silico	drug	and	dis-
ease	models	 in	drug	development:	building	model	credibility.	
CPT Pharmacometrics Syst Pharmacol.	2021;10:804-	825.

	 5.	 Bray-	French	 K,	 Hartman	 K,	 Steiner	 G,	 et	 al.	 Managing	 the	
impact	of	immunogenicity	in	an	era	of	immunotherapy:	from	
bench	to	bedside.	J Pharm Sci.	2021;110:2575-	2584.

	 6.	 Gonzalez-	Galarza	 FF,	 McCabe	 A,	 Melo	 dos	 Santos	 EJ,	
et	al.	Allele	frequency	net	database	(AFND)	2020	update:	gold-	
standard	 data	 classification,	 open	 access	 genotype	 data	 and	
new	query	tools.	Nucleic Acids Res.	2020;48:D783-	D788.

	 7.	 Reynisson	 B,	 Barra	 C,	 Kaabinejadian	 S,	 Hildebrand	 WH,	
Peters	B,	Nielsen	M.	 Improved	prediction	of	MHC	II	antigen	
presentation	 through	 integration	 and	 motif	 deconvolution	 of	
mass	 spectrometry	 MHC	 eluted	 ligand	 data.	 J Proteome Res.	
2020;19:2304-	2315.

	 8.	 The	 UniProt	 Consortium.	 UniProt:	 the	 universal	 protein	
knowledgebase	in	2021.	Nucleic Acids Res.	2020;49:D480-	D489.

	 9.	 Li	L,	Gardner	I,	Dostalek	M,	Jamei	M.	Simulation	of	monoclo-
nal	 antibody	 pharmacokinetics	 in	 humans	 using	 a	 minimal	
physiologically	based	model.	AAPS J.	2014;16:1097-	1109.

	10.	 Yogurtcu	 ON,	 Sauna	 ZE,	 McGill	 JR,	 Tegenge	 MA,	 Yang	 H.	
TCPro:	an	in	silico	risk	assessment	tool	for	biotherapeutic	pro-
tein	immunogenicity.	AAPS J.	2019;21:96.

Howtocitethisarticle:	Franssen	LC,	Swat	MJ,	
Kierzek	AM,	Rose	RH,	van	der	Graaf	PH,	Grimm	
HP.	Learn–	confirm	in	model-informed	drug	
development:	Assessing	an	immunogenicity	
quantitative	systems	pharmacology	platform.	CPT 
Pharmacometrics Syst Pharmacol.	2023;12:139-143.	
doi:10.1002/psp4.12887

https://orcid.org/0000-0002-9636-0283
https://orcid.org/0000-0002-9636-0283
https://doi.org/10.1002/psp4.12887

	Learn–confirm in model-informed drug development: Assessing an immunogenicity quantitative systems pharmacology platform
	Abstract
	METHODS
	RESULTS AND DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST
	REFERENCES


