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Obesity is one of the biggest public health concerns identified by an increase in
adipose tissue mass as a result of adipocyte hypertrophy and hyperplasia. Pertaining
to the importance of adipose tissue in various biological processes, any alteration
in its function results in impaired metabolic health. In this review, we discuss how
adipose tissue maintains the metabolic health through secretion of various adipokines
and inflammatory mediators and how its dysfunction leads to the development of
severe metabolic disorders and influences cancer progression. Impairment in the
adipocyte function occurs due to individuals’ genetics and/or environmental factor(s)
that largely affect the epigenetic profile leading to altered gene expression and onset
of obesity in adults. Moreover, several crucial aspects of adipose biology, including
the regulation of different transcription factors, are controlled by epigenetic events.
Therefore, understanding the intricacies of adipogenesis is crucial for recognizing its
relevance in underlying disease conditions and identifying the therapeutic interventions
for obesity and metabolic syndrome.
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INTRODUCTION

Obesity is defined as excessive or abnormal fat accumulation in the body which may impair
the health of an individual. Body mass index (BMI), which is considered the most simple
and useful index of weight-for-height in the entire world, provides only a rough estimate to
categorize people with obesity in adult population1. Therefore, the concept of metabolically
healthy obesity and metabolically unhealthy obesity is gaining attention as in addition to gaining
abdominal weight, hormonal and metabolic profile of an individual also counts (Naukkarinen
et al., 2014). The increasing incidences of obesity ignited a huge interest in understanding the
process promoting efficient energy storage and curtailing the adverse metabolic consequences
of obesity such as diabetes, hypertension, dyslipidemia, atherosclerosis and fatty liver diseases.
The ability of adipocytes to effectively store lipids prevents the toxic lipid accumulation in other
organs. In fact, adipose tissue can expand in response to excess lipid accumulation to maintain
the energy homeostasis (Wang et al., 2013) but the capacity of adipose tissue to store fat or
to expand in response to fat storage is limited. Once exceeded, lipids might spill into other

1https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet
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organs that are not suitable for fat storage resulting in insulin
resistance (IR) and other metabolic complications (Tan and
Vidal-Puig, 2008). Alteration in fat mass also results in alteration
in adipokine profile of an individual. Obesity is linked with an
increase in leptin concentration and a decrease in adiponectin
levels (Matsubara et al., 2002). In addition to these two prototype
adipokines, many other factors are known to get altered in
obesity. Obese state is also identified by an increased macrophage
infiltration in the adipose tissue. These macrophages and other
immune cells infiltrated in the adipose tissue are a source of TNF-
α, IL-6, and other cytokines that links obesity with inflammation
and IR (Weisberg et al., 2003). Altered immune response and
adipokine secretion are also known to increase the risks of
certain cancers such as breast, ovarian, kidney, endometrial,
colorectal, etc. (see text footnote 1). Past few decades have shown
some great advancement in understanding transcriptional and
epigenetic regulation of adipogenesis. Peroxisome-proliferator
activator receptor γ (PPARγ) and CCAAT/enhancer binding
protein α (C/EBPα) are the two key transcription factors
which regulates the adipocyte formation. They work in co-
ordination with transcriptional co-activators and epigenetic
regulators modulating the gene expression profiles during
adipocyte differentiation (Madsen et al., 2014). Advancement
in molecular biology techniques unfolded the key mechanisms
of epigenomic regulation during adipogenesis and revealed
the significance of histone modification, DNA methylation,
and chromatin remodeling in adipocytes differentiation (Lee
et al., 2019). These epigenetic changes are influenced by certain
environmental factors such as energy-rich foods, changes in sleep
cycle, sedentary lifestyle, medicated drugs and environmental
chemicals that have potential to reprogram the epigenetic
patterns and induce adiposity (Gangwisch et al., 2005; McAllister
et al., 2009). The environment-epigenetic interaction also results
in transgenerational and lifestyle-induced obesity (Youngson
and Morris, 2013). Moreover, exposure to high fat diet and
environmental toxins in utero may affect the metabolic outcomes
in future generations through epigenetic transgenerational
inheritance of obesity (Vandegehuchte et al., 2010; Dunn and
Bale, 2011).

This review focuses on the interplay between adipose
tissue function, adipokines, systemic inflammatory profile and
metabolic health. We have also discussed the transcriptional
and epigenetic regulators involved in adipogenesis and their
interaction with environment responsible for transgenerational
inheritance of the disease. Understanding the molecular
mechanism of adipogenesis and the complexities associated with
it will help in finding the plausible therapeutic approaches for
treatment of obesity.

ADIPOSE TISSUE: WHITE, BROWN AND
MORE

Adipose tissue is a loose connective tissue which is critical
in regulating energy metabolism, i.e., energy storage and
expenditure. Adipocytes or the fat cells contribute around
35–70% of adipose tissue mass in an adult human. Besides

adipocytes, some other cell types like macrophages, blood cells,
fibroblasts, endothelial cells, etc., are also present in the adipose
tissue (Frühbeck, 2008). Morphologically, adipose tissue can be
classified into three types: white, brown and beige. White adipose
tissue (WAT) is mostly composed of unilocular adipocytes and
its key function is to store surplus energy as triglycerides during
excess nutrient condition. The stored triglycerides are utilized
for energy generation under energy deficit conditions such as
fasting, exercise or prolonged food deprivation (Li et al., 1993;
Blüher, 2013). On the other hand, brown adipose tissue (BAT)
consists of mitochondria-rich multilocular adipocytes. The main
function of brown adipose tissue is to dissipate energy in
the form of heat through mitochondrial uncoupling upon β-
adrenergic stimulation (Foster and Frydman, 1979). BAT was
formerly believed to have functional role in rodents, hibernating
mammals, and partly in human infants but recently, adult
humans have shown functional BAT upon mild cold exposure
and activation of sympathetic nervous system (Cypess et al., 2013,
2015). β3-adrenergic receptor (β3-AR) agonist can stimulate
human BAT thermogenesis and help in treatment of obesity
and metabolic diseases (Cypess et al., 2015). A clinical trial of
β3-AR agonist, mirabegron, stimulated BAT metabolic activity
and increased WAT lipolysis in human subjects (Baskin et al.,
2018). In addition to white and brown fat, there also exists a
third type known as beige/brite fat. As the name implies, brite
fat is the accumulation of brown adipocytes within the white
fat depots. Beige cells have the unique ability to shift between
energy storage and energy expenditure phenotype (Wu et al.,
2012). A study by Zhang et al. demonstrated that embryo-derived
white adipose stem cells (eWAsc) have excellent beige adipogenic
potential. The study showed potential in widening the research
on human adipocytes (Zhang et al., 2019). There also exists
a functional relationship between angiogenesis and brite/beige
adipocyte development. The pro-angiogenic conditions helps
in proliferation of beige/brite adipocytes and transplantation
of human brite adipocytes improves the systemic glucose
homeostasis in diet induced obesity (DIO) mice model. Since
brite adipocytes were found to enhance glucose homeostasis,
they could be implied to have potential therapeutic benefits
(Min et al., 2016).

Adipocytes have an astonishing plastic property, i.e., white
adipocytes can trans-differentiate to brown adipocytes. In fact,
during pregnancy and lactation, white adipocytes specific to
mammary gland convert reversibly to milk producing epithelial
cells (also called pink adipocytes because they appear pink at
macroscopic level) and brown adipocytes trans-differentiate to
myoepithelial cells (cells of alveolar glands) (Figure 1). Once the
lactation period is over, pink adipocytes convert back to white and
brown adipocytes (Morroni et al., 2004; Giordano et al., 2014).

The fat cells (adipocytes) develop from adipocyte precursor
cells (pre-adipocytes) in a process called adipogenesis which
occurs throughout the lifespan of an organism (Billon et al.,
2007). The differentiation of pre-adipocytes to lipid-laden
adipocytes is widely studied in vitro. Amongst all the studied cell
lines, the most widely used ones which provide the important
insights in regulating late steps of adipocyte development
are 3T3-L1 and 3T3-F422A (Green and Meuth, 1974;
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FIGURE 1 | Adipocytes have remarkable plastic properties. In usual scenario adipose tissue consists of white, brown and occasional beige adipocytes. The main
function of white adipocytes is to store lipids to meet the metabolic requirements of the body while brown adipocytes are required for thermogenesis. Beige
adipocytes have the ability to switch between energy storage and expenditure. However, during certain conditions like cold exposure or strenuous exercise, white
adipocytes trans-differentiates to beige or brown adipocytes while during the state of positive energy when there is lack of lipid storage, brown/beige adipocytes can
be converted back to white adipocytes to increase the energy stores. During pregnancy and lactation, subcutaneous white adipocytes of the breast tissue convert to
pink adipocytes which are basically the milk secreting glands formed by lipid-rich elements and brown adipocytes trans-differentiate to myoepithelial cells of
mammary glands. All these conversions are reversible, i.e., post-lactation, pink adipocytes convert back to white and brown adipocytes.

Green and Kehinde, 1975). Mouse embryonic stem cells
(mESCs) also provide an alternate system for understanding
early stages of adipogenesis (Billon et al., 2007). By using these
biological tools, researchers have been able to recognize the key
transcription factors involved in adipogenesis and many are still
in the process of being identified.

ADIPOSE TISSUE DYSFUNCTION IN
OBESITY AND METABOLIC DISEASES

Obesity is defined as excessive fat accumulation that may impair
the health and wellbeing of an individual. Sedentary lifestyle,
urbanization, easy affordability and accessibility to high calorie
food may account for excess energy intake and weight gain
within the population (Afshin et al., 2017). Apart from some
parts of sub-Saharan Africa and Asia, the number of people with

obesity surpasses the number of people who are underweight.
Globally, this accounts for more deaths from obesity than
malnutrition2. The development of obesity not only depends
upon the balance between energy intake and expenditure but also
on the balance between WAT and BAT. Unhealthy expansion
of WAT is one of the major culprits contributing to obesity-
associated metabolic complications.

White adipose tissue accounts for 5–50% of human body
weight and has a central role in energy homeostasis (Kajimura,
2017). Anatomically, WAT can be categorized as visceral adipose
tissue or VAT (intra-abdominal, surrounding the internal organs)
and sub-cutaneous adipose tissue or SAT (under the skin).
Amongst the two types, visceral fat is said to be strongly
associated with increased metabolic risk than subcutaneous fat
(Hayashi et al., 2008). Additionally, the associated risk factor

2https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
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is more pronounced in women than men (Fox et al., 2007).
It has been observed that in 3D adipocyte-ECM culture, SAT
ECM rescued the defects in glucose uptake and adipogenesis
specific gene regulation in VAT adipocytes while VAT ECM
impaired the adipocyte function in SAT adipocytes. This suggests
the importance of extracellular matrix-adipocyte crosstalk in
regulation of depot-specific adipocyte function in murine obesity
and metabolic diseases (Strieder-Barboza et al., 2020).

In majority of lean and healthy individuals, WAT is mostly
restricted to subcutaneous depots but in individuals with
obese/overweight phenotype, WAT mass can expand ectopically
in areas other than their specific depots as a result of
lipodystrophy (Chait and den Hartigh, 2020). Lipodystrophy is
a heterogenous group of disorder characterized by abnormal
adipose tissue distribution. It can be congenital or acquired and
is linked with the development of IR and related co-morbidities
like type 2 diabetes (T2D), hyperglycemia, hyperlipidemia, non-
alcoholic fatty liver disease (NAFLD), auto-immune hepatitis
or viral hepatitis in case of human immunodeficiency virus
(HIV)-associated lipodystrophy (Polyzos et al., 2019). There
are essentially two mechanisms to explain the development of
metabolic syndrome resulting from obesity: (a) accumulation of
fat in liver and muscle or other cells of the body in addition
to adipose tissue resulting in IR in these organs (Petersen and
Shulman, 2006) and (b) release of adipokines and cytokines
from the dysfunctional adipocytes (Saltiel, 2001; Scherer, 2006).
In healthy states, these adipokines and cytokines maintain
the metabolic homeostasis but in obesity, the hypertrophic
adipocytes and the resident immune cells hasten the pro-
inflammatory profile with altered secretion of these endocrine
factors thereby contributing to metabolic diseases (Scheja and
Heeren, 2019). However, not all individuals with obesity develop
the associated metabolic problems. The sub-group of insulin-
sensitive individuals with obesity showing normal hormonal
and metabolic profiles despite of their BMIs in obese category
(i.e., ≥30 kg/m2) are classified as having “metabolically healthy
obesity” (MHO) (Naukkarinen et al., 2014). These individuals
are different from those having “metabolically unhealthy obesity”
(MUHO) who are characterized by accumulation of intra-
abdominal fat in visceral depots (central obesity), IR, pre-
disposition to diabetes and other metabolic diseases (Karelis
et al., 2005; Blüher, 2010). Individuals with MHO are defined
as having abdominal obesity with waist circumference >88 cm
in women and >102 cm in men. They might not develop any
of the risk factors such as increased fasting plasma glucose, high
triglycerides, low HDL cholesterol and high blood pressure, two
or more of which are observed commonly in MUHO (Grundy
et al., 2005; Janiszewski and Ross, 2010).

In mice and rat models, surgical removal of visceral fat pads
using lipectomy improved the insulin sensitivity, longevity and
decreased tumor proliferation (Gabriely et al., 2002; Lu et al.,
2012). Not only in rodent models but adipose tissue removal
from the mesentery of baboons (having insulin resistance and
obese phenotype) also resulted in reversal of IR and significant
weight loss (Andrew et al., 2018). These studies suggest the use
of lipectomy as a potential clinical tool to ameliorate obesity
associated co-morbidities. In summary, adipose tissue health is

utmost important for maintaining the metabolic health of an
individual. Any perturbance in adipose tissue function may result
in long term health ailments.

ALTERED ADIPOKINE PRODUCTION
AND THE RISK OF DEVELOPMENT OF
METABOLIC DISORDERS

Adipose tissue is a metabolically active endocrine organ that
secretes a range of adipokines and hormones which can have
different functions in human body (Derosa et al., 2020). One of
the first discoveries that recognized the role of adipose tissue as
an endocrine organ was the positional cloning of obese (ob) gene
and detection of its 16-KDa protein product leptin (Zhang et al.,
1994). Subsequent studies revealed that daily administration of
recombinant OB protein to ob/ob mice lowered their food intake,
body fat percentage and serum concentration of glucose and
insulin. Moreover, the energy expenditure and metabolic rate of
these mice were also increased with this treatment, suggesting
that OB protein stabilizes the metabolic status of ob/ob mice
(Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et al.,
1995). Since then, leptin is known to regulate whole body
metabolism through inhibiting food intake, restoring euglycemia
and stimulating energy expenditure. In 2014, AstraZeneca’s
myalept/metreleptin (recombinant human leptin) was approved
by the United States Food and Drug Administration to treat
generalized lipodystrophy (3identifier: NCT00677313) (Ajluni
et al., 2016). Recently, in a non-randomized crossover group
study including patients with lipodystrophy, metreleptin was
shown to improve insulin sensitivity and decrease circulating
and hepatic triglycerides irrespective of their food intake (Brown
et al., 2018). Another important protein, adiponectin, was
originally described in 1995 as a 30 KDa secretory protein
‘Acrp30’ that was exclusively made in adipocytes (Scherer et al.,
1995). Adiponectin functions to increase the insulin sensitivity,
fatty acid oxidation and energy expenditure along with reduction
in glucose production by liver (Galic et al., 2010). Adiponectin
is also known to inhibit breast cancer growth by induction of
cytotoxic autophagy in breast cancer cells through activation
of AMPK-ULK1 axis (Chung et al., 2017). Altered adipokine
production is usually associated with the risk of development
of metabolic disorders. High levels of resistin and low levels
of adiponectin could be predictive of future diabetic condition
in people with obesity (Derosa et al., 2020). Apart from these
two proteins, many different adipokines have been described in
recent times that control the energy metabolism (Galic et al.,
2010). An observational trial confirmed that people with obesity
have higher levels of leptin, adipsin, retinol binding protein-4
(RBP-4), IL-6, high sensitivity-C reactive protein (Hs-CRP) and
lower levels of adiponectin and visfatin as compared to lean
people (Derosa et al., 2013). Recently, S100A4 was identified
as a novel adipokine associated with IR and subcutaneous
WAT inflammation/adipocytes hypertrophy irrespective of BMI
although its significance as a circulating marker for dysfunctional

3https://clinicaltrials.gov/
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WAT and IR is yet to be established (Arner et al., 2018).
A newly discovered adipokine, asprosin, promoted the hepatic
glucose release and inhibition of its activity could be used
as an approach to counteract hyperinsulinism associated with
metabolic disorders (Romere et al., 2016). Apelin is another
adipokine which improves insulin sensitivity in humans and
could be considered as a target for new therapeutic strategies
to combat IR in patients with T2D (Gourdy et al., 2018). TGF-
β2 is an exercise/lactate induced adipokine which improves the
glucose tolerance and insulin sensitivity. HFD-fed mice treated
with recombinant TGF-β2 showed reduced WAT inflammation
and fat mass indicating the importance of exercise training on
glucose and lipid metabolism (Takahashi et al., 2019).

Obesity related adipokines also play a role in etiology of
different cancers. A decrease in adiponectin concentration and
a corresponding increase in concentration of leptin, resistin,
visfatin, IL-6, IL-8, and TNF-α are linked with progression of
breast cancer (Gui et al., 2017). Moreover, decreased expression
of adiponectin receptor is associated with the metastasis of
human endometrioid adenocarcinoma (Yamauchi et al., 2012).
Exposure of human breast cancer cell line MCF-7 to recombinant
adiponectin resulted in AMPK activation and MAPK inactivation
thereby inhibiting cell cycle progression. This indicates that
adiponectin mediates anti-proliferative response in breast cancer
cells (Dieudonne et al., 2006). Apart from adiponectin, nearly all
the other adipokines exhibit pro-inflammatory and proliferative
activities in cancer progression. For example resistin induces
prostate cancer progression through activation of PI3K signaling
pathway (Kim et al., 2011). Resistin also stimulates the expression
of stromal cell-derived factor-1 (SDF-1) by activating p38
MAPK/NF-κB signaling pathway in human gastric carcinoma
cells (Hsieh et al., 2014). A meta-analysis study revealed that
serum leptin profile plays an important role in pathogenesis of
breast cancer (Gu et al., 2019). Leptin crosstalks with various
molecular mediators of the obesity such as VEGF, estrogen,
IGF-1, insulin and inflammatory cytokines. Hyperactive leptin
signaling potentiates these molecular mediators and leads to
the activation of various oncogenic pathways resulting in
enhanced proliferation and invasion of cancer cells (Saxena
and Sharma, 2013). Accumulating evidences suggest that leptin
induces EMT in cancer cells via different molecular pathways
including JAK/STAT pathway, β-catenin activation via Akt/GSK3
and MTA/Wnt1 pathway, and activation of IL-8 via PI3K/Akt
dependent pathway (Yan et al., 2012; Wang L. et al., 2015; Mullen
and Gonzalez-Perez, 2016). Upregulation of pyruvate kinase
muscle isozyme 2 (PKM2) along with activation of PI3K/AKT
signaling can also be regarded as the potential candidate for
breast cancer therapy (Wei et al., 2016). A recent research
demonstrated that leptin results in the secretion of MMP2 and
MMP9 in mammary epithelial cells via Src and FAK-dependent
pathways (Olea-Flores et al., 2019). Leptin is also known to
promote ovarian cancer invasion by inducing MMP7 expression
through activation of ERK and JNK pathways (Ghasemi et al.,
2018). The cell signaling events triggered by different adipokines
are illustrated in Figure 2.

Leptin is often found to be associated with drug resistance.
Tumor leptin expression in gastro-oesophageal adenocarcinomas

is associated with resistance to cytotoxic chemotherapy (Bain
et al., 2014). Additionally, leptin receptor-positive glioblastoma
cells were found to be temozolomide (TMZ)-resistant (Han
et al., 2013). Also, the high circulating leptin concentration
could counteract cisplatin-induced cytotoxicity in breast cancer
cells (Nadal-Serrano et al., 2015). Therefore, the use of non-
toxic leptin antagonists that interferes with leptin signaling could
serve as a novel mechanism to target leptin-induced cancers
(Candelaria et al., 2017).

In addition to WAT, recent studies also reported the
contribution of BAT to release secretory molecules called
‘batokines’ which make BAT functionally similar to an endocrine
organ. Fibroblast growth factor 21 (FGF21), IL-6, neuregulin-
4 (NRG-4), and bone morphogenetic protein-8b (BMP8b) are
amongst the first few batokines to be identified. The BAT-
released endocrine factors can target peripheral tissues and
affect systemic metabolism by interacting with central nervous
system (Burýsek and Houstek, 1997; Hondares et al., 2011;
Whittle et al., 2012; Wang et al., 2014). Peptidase M20 domain
containing 1 (PM20D1) and Slit2 are two newly identified
batokines that improves glucose homeostasis as well as regulate
thermogenesis which might be used for the treatment of obesity
and obesity associated metabolic disorders (Long et al., 2016;
Svensson et al., 2016). In summary, adipokine/batokine-centered
therapeutic strategies could pave the way for treatment of
metabolic diseases and cancers.

INFLAMMATORY MEDIATORS IN
OBESITY

Development of chronic low grade systemic inflammation
is one of the primary consequences of obesity (Bekkering
et al., 2020). High fat diet induces the expression of pro-
inflammatory cytokines and inflammatory responsive proteins
in the hypothalamus (an important part of brain responsible
for controlling hunger and thermogenesis). Leptin and insulin
provide signals to specific neurons in the hypothalamus to
report about the energy stocks in response to high fat diet.
This signaling is accompanied by an increased expression
of c-Jun N-terminal kinase (JNK) and nuclear factor-κB
(NF-κB) and thereby inducing IR in the hypothalamus (De
Souza et al., 2005). Moreover, depletion of medio-basal
hypothalamus (MBH) in mice resulted in enhanced leptin
signaling and reduced food intake, signifying the importance of
inflammation in hypothalamus-related weight gain (Valdearcos
et al., 2014). In addition to this, consumption of HFD is
accompanied by unfavorable changes in gut microbiota (a
decrease in ratio of Firmicutes to Bacteroidetes), metabolic
profile of feces and plasma proinflammatory factors (PGE2
and TXB2) which adversely affect the health of young adults
(Wan et al., 2019).

In healthy and lean individuals, the resident immune cells of
adipose tissue are indispensable for its function but in individuals
with obesity, inflammation of adipose tissue is one of the major
contributors to metabolic dysfunction including systemic IR
and/or glucose intolerance. The resident cells of both innate and
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FIGURE 2 | Cell signaling events triggered by altered adipokine production during obesity. Expansion of adipose tissue in obese condition leads to altered adipokine
production. High concentration of leptin and resistin results in the activation of different signaling pathways within the cell (Akt/GSK3, MTA/Wnt1, Src/FAK, ERK/JNK,
JAK/STAT, PI3K, and MAPK). These signaling pathways ultimately lead to cancer cell invasion and metastasis. On the other hand, high adiponectin concentration
leads to MAPK inhibition and AMPK inactivation which is responsible for its pro-apototic and anti-tumoral activities.

adaptive immune system in the adipose tissue take part in this
process (Figure 3) and are described below.

Innate Immunity
Initial evidence to understand the connection between obesity
and inflammation came from the finding that IR in the adipocytes
is induced by macrophages (Pekala et al., 1983). Later, tumor
necrosis factor-α (TNF-α) was identified as the molecule which
mediated obesity-linked IR (Hotamisligil et al., 1993). Adipose
tissue macrophages (ATMs) from lean mice show a different
profile than ATMs of mice with obese phenotype. DIO shifts the
activation state of ATMs from M2 anti-inflammatory state to M1
pro-inflammatory state exemplified by an increased expression
of genes encoding TNF-α and NOS-2, which contribute to
pathophysiological repercussions of obesity (Lumeng et al.,
2007). Studies suggest that MCP-1/CCR2 axis is responsible for
adipose tissue inflammation and development of obesity and IR
(Kanda, 2006; Weisberg et al., 2006). Factors secreted from ATMs
blocks the insulin action in adipocytes by down-regulating IRS-1
and GLUT4. Additionally, TNF-α neutralizing antibodies could
partially reverse the IR induced by macrophage- conditioned
media in vitro (Lumeng et al., 2007). ATMs isolated from mice
and humans with obese phenotype have markers for increased
de novo synthesis of phosphotidylcholine (PC) biosynthesis.

Deletion of phosphocholine cytidylyltransferase A (a rate-
limiting enzyme in de novo PC synthesis) in a macrophage-
specific manner improved adipose tissue inflammation and IR
(Petkevicius et al., 2019). Additionally, Galectin-3 (Gal-3), a lectin
secreted by macrophages, has been found to directly bind to
insulin receptor and inhibit the downstream insulin signaling.
Gal-3 could be used as an important target for treatment of IR
as its inhibition in mice improved insulin sensitivity and glucose
tolerance (Li P. et al., 2016). Latest studies have also started to
identify epigenomic alterations in macrophages that determine
their sensitivity upon metabolic stress induced by obesity. A co-
repressor complex containing G protein pathway suppressor
2 (GPS2) was identified as one such epigenomic modifier
whose function and expression in macrophages is dependent
on the disease state (Fan et al., 2016). Moreover, activation
of inflammasome (a protein complex facilitating maturation
of pro-inflammatory cytokines IL-1β and 1L-18 by caspase-1
mediated cleavage) is crucial for impairment of insulin signaling
in target tissues. It is observed that the presence of free fatty acids
in HFD triggers the activation of NLRP3-ASC inflammasome
in macrophages by AMPK autophagy-ROS signaling pathway
resulting in impaired insulin signaling (Wen et al., 2011). The role
of melatonin in alleviating inflammasome-induced pyroptosis
by blocking NF-κB/gasdermin D (GSDMD) signal in adipose
tissue of mice has also been observed (Liu et al., 2017). Receptor
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FIGURE 3 | Immune cell distribution in lean and obese state. In lean adipose tissue with normal metabolic function, M2 macrophages are uniformly distributed
throughout the tissue. The lean AT milieu also consists of CD4+ T cells and Treg cells having anti-inflammatory properties. Adiponectin to leptin ratio is high which
contributes to the insulin responsive state of the adipocytes. In obese state, macrophages switch to M1 type which forms a crown like structure (CLS) around the
adipocytes. Adipocyte hypertrophy results in the rupture of adipocytes and releases FFAs. In addition to M1 macrophages, obese state is also associated with an
increase in CD8+ T cells, dendritic cells and IgG antibody producing B cells responsible for pathogenic state of AT. Obesity is also associated with abnormal
adipokine profile, i.e., increased release pro-inflammatory adipokines. Aberrant secretion of adipokines (leptin, IL-6, adipsin, RBP-4, and IL-1β), chemokines (CCL2
and CXCL1) and macrophage factors (TNF-α) causes metabolic dysfunction and insulin resistance.

for advanced glycation end products (RAGE), which is highly
expressed in monocytes and macrophages and its ligand, high
mobility group box 1 (HMGB1), are also found to be associated
with development of obesity. Blockage of RAGE or neutralization
of HMGB1 prevented HFD induced weight gain and improved
glucose tolerance in mice model (Song et al., 2014; Montes et al.,
2015). Also, the depletion of visceral adipose tissue macrophage
from mice downregulated the genes involved in gluconeogenesis
and lipogenesis which conferred protection from HFD induced
obesity, IR and hepatic steatosis (Bu et al., 2013).

HFD is also reported to change the gut microbiome and
cause dysbiosis which is considered one of the main factors
contributing to colorectal cancer (CRC) susceptibility. Activation
of MCP-1/CCR2 axis mediated by HFD-induced dysbiosis
accelerated the incidences of advanced colorectal neoplasia (Liu
et al., 2020). Specific gut bacteria also serve as a source of
lipopolysaccharide (LPS) and increase the intestinal permeability
along with the increase in systemic concentration of TNF-α and
IL-6 in patients with T2D (Jayashree et al., 2014). A recent study
demonstrated the role of TLR4 in LPS and saturated fatty acid
mediated adipocytes dysfunction by stimulating inflammatory
changes in adipocytes and macrophages (McKernan et al., 2020).

In addition to macrophages, other cells of innate immune
system such as dendritic cells, mast cells, and neutrophils also
contribute to development of obesity and IR. Accumulation
of plasmacytoid DCs (pDCs) during obesity induces AT
inflammation and T2D through their IFN-producing ability.
IFNAR−/− mice and the mice lacking pDCs failed to develop
obesity and other metabolic complication upon feeding with
HFD (Hannibal et al., 2017). Recently, a gene ontology
(GO) analysis identified the association of obesity with
increased percentage and gene activation of neutrophils
in young African-American male population (Xu et al.,
2015). Additionally, genetic deficiency or pharmacological
stabilization of mast cells was found to ameliorate glucose
homeostasis as well as weight gain due to obesity (Liu
et al., 2009). However, a novel study in human subjects
identified the role of mast cells in cold-induced subcutaneous
WAT beiging independent of BMI. This adipose beiging was
attributed to release of histamine during mast cell degranulation
(Finlin et al., 2019).

In total, macrophages along with other cells of innate
immune system contribute in the development of obesity and
insulin resistance.
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Adaptive Immunity
While most of the studies on obesity, inflammation and
IR are majorly directed toward the role of macrophages,
recent investigations points to the significant participation
of adaptive immune system in regulating obesity associated
metabolic anomalies (Nishimura et al., 2009). A study reported
that in obese state, CD8+ T cells helped in macrophage
recruitment and caused adipose tissue inflammation. Moreover,
genetic or immunological depletion of CD8+ T cells lowered
the macrophage infiltration and adipose tissue inflammation,
thereby ameliorated systemic IR. On the contrary, adoptive
transfer of CD8+ T cells to CD8-deficient mice exacerbated
AT inflammation (Nishimura et al., 2009). Mice with obese
phenotype and lacking αβ T cell (TCRb−/− mice) exhibited
reduced inflammation of adipose tissue and skeletal muscle
suggesting the important role of TH1 cells in regulating
inflammation and IR in obesity (Khan et al., 2014). Recently,
a unique population of regulatory T cells, i.e., CD4+Foxp3+
Treg cells, having anti-inflammatory properties were found
to be highly enriched in visceral fat of mice with lean
phenotype (Feuerer et al., 2009) and PPARγ was the central
molecular initiator for accumulation and functioning of Treg
cells (Cipolletta et al., 2012). In addition to T cells, B cells also
promote IR through activation of proinflammatory macrophages,
T cells and production of pathogenic IgG antibodies. Depletion
of B cells using anti-CD20 mAb in early stage of the disease
can have therapeutic benefits in managing IR and associated co-
morbidities (Winer et al., 2011). Also, B-cell null mice were found
to be protected from obesity and systemic inflammation and
had an increased ratio of anti-inflammatory regulatory T cells
(DeFuria et al., 2013).

Altogether, these studies highlight the importance of both
arms of immune system in adipose tissue inflammation and
systemic IR in obese condition. Understanding the relationship
between adipose tissue and immune cells could provide
therapeutic targets for treating obesity and IR in future.

TRANSCRIPTIONAL REGULATION OF
ADIPOCYTE DIFFERENTIATION

Multistage differentiation of pre-adipocytes or mesenchymal
stem cells to adipocytes involves numerous transcription
factors. The expression of these wide ranges of transcription
factors regulates the differentiation process either positively or
negatively. The core factors, PPARγ and C/EBP-α, along with
several other proteins regulate the expansion of pre-adipocytes
and thereby formation of lipid droplets in mature adipocytes
(Figure 4; Herrera et al., 1989; Wu et al., 1999; Birsoy et al., 2008).

Positive Regulators of Adipogenesis
PPARγ and C/EBPs
PPARγ and C/EBPα are considered as the key regulators of
adipogenesis that are vital for adipocyte differentiation both
in vitro and in vivo (Rosen et al., 1999; Linhart et al.,
2001). The initial stages of adipocyte differentiation require
C/EBPβ and C/EBPδ that triggers the mitotic cell division and

clonal expansion (Tang et al., 2003). During the cell cycle
progression from G1 to S phase, C/EBPβ is hyper-phosphorylated
which leads to the activation GSK-3β and MAPK followed
by mitotic division (Tang et al., 2005). Activation of GSK-3β

and MAPK induces the transcription of PPARγ and C/EBPα

for terminal differentiation of adipocytes. Although C/EBPα is
an essential factor for adipocyte differentiation but it requires
the presence of PPARγ to establish the adipogenic phenotype.
In PPARγ−/− fibroblasts, C/EBPα was unable to induce any
lipid accumulation whereas PPARγ could induce adipogenesis
in C/EBPα−/− fibroblasts (Rosen et al., 2002). However, the
complexity of adipogenesis in vivo is quite different and is
temporally regulated. While C/EBPα is important for all white
adipogenic requirement of an adult, the terminal adipogenesis in
an embryo is completely independent of C/EBPα but requires
PPARγ (Wang Q.A. et al., 2015). Although important, the
presence of C/EBPα is not essential for adipocytes survival
in adult stage (Wang Q.A. et al., 2015). The significance of
PPARγ was also observed in Pparg null mice wherein these mice
eventually developed diabetic nephropathy (Toffoli et al., 2017).
The loss-of-function mutations in human PPARG results in the
development of familial partial lipodystrophy type 3 (FPLD3)
and other serious metabolic anomalies. Recently, a study reported
that patients with FPLD3, harboring Arg308Pro (R308P) and
Ala261Glu (A261E) PPARγ variants responded satisfactorily to
synthetic PPARγ agonists (Agostini et al., 2018). Additionally,
the systemic deletion of PPARγ in mice caused total lipoatrophy
accompanied by organomegaly and hypermetabolism. Pparg1

/1 mice also developed severe T2D and showed metabolic
inflexibility (Gilardi et al., 2019). Altogether, the experimental
data from different studies suggest that PPARγ is the master
regulator of adipogenesis and the main role of C/EBPα is to
maintain the expression of PPARγ .

Zinc Finger Proteins (ZFPs)
The family of ZFPs is known to regulate various biological
functions and some of the ZFPs that play significant role in
adipocyte differentiation are also well elucidated. Adipogenic
stimulus results in increased expression of ZFP423 at both
transcript and protein level in 3T3-L1 cells. Over expression
of ZFP423 in non adipogenic cell line (NIH-3T3) resulted in
their adipogenic differentiation via robust activation of PPARγ

(Gupta et al., 2010). Furthermore, the overexpression of ZFP423
in low adipogenic cells resulted in increased competence of
the cells to differentiate into mature adipocytes. However,
the knockdown of ZFP423 in high adipogenic cells prevented
their adipogenic differentiation. This differential regulation of
ZFP423 in low and high adipogenic cells was found to be
associated with DNA methylation of its promoter (Huang
et al., 2012). Moreover, the recruitment of ZFP30 and its
co-activator KRAB-associated protein 1 (KAP1) on PPARγ2
enhancer activates its expression and thus promotes adipogenesis
(Chen et al., 2019).

Many other transcription factors like Sterol regulatory
element-binding protein 1 (SREBP1), Cyclic AMP Response
Element-Binding Protein (CREBP) and several proteins from
Kruppel-like factor family (KLFs) like KLF4, KLF5, KLF9,
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FIGURE 4 | Cascade of transcription factors in adipocyte differentiation. Many transcription factors act as positive regulators that express at different stages of
adipocyte differentiation (pre-adipocytes to mature adipocytes). The differentiation process initiates upon induction of cells with adipogenic cocktail which helps in
activation of certain transcription factors like CREBP, KLF4, 5, and 9, and CEBPβ/δ. CEBPβ and CEBPδ triggers the second wave of adipogenesis by activating
PPARγ, CEBPα and SREBP. The PPAR proteins dimerizes with retinoic X receptor (RXR) for interaction with target promoters containing PPAR-response elements.
PPARγ and CEBPα are the key proteins that targets the essential genes required for adipogenesis. To regulate the process of adipogenesis, some transcription
factors like KLF2 and GATA2/3 act as negative regulators and inhibits the expression of CEBPα and PPARγ by direct or indirect repression of the transcription
cascade.

KLF15 positively regulate the adipocyte differentiation at various
stages by binding to the promoter of either PPARγ or C/EBPs
(Tontonoz et al., 1993; Zhang et al., 2004; Oishi et al., 2005;
Birsoy et al., 2008). For example, overexpression of SREBP1 in
adipocytes as well as in HepG2 cells can induce PPARγ transcript
expression suggesting that SREBP1 enhances PPARγ expression
(Fajas et al., 1999). Likewise, CREBP positively regulate the
expression of C/EBPβ by interacting with its promoter (Zhang
et al., 2004). While KLF5 and KLF9 are known to bind to PPARγ2
promoter, KLF4 binds to C/EBPβ promoter along with Krox20,
thereby regulating its expression in early phase of adipogenesis
(Oishi et al., 2005; Pei et al., 2011).

Negative Regulators of Adipogenesis
Various signaling pathways and transcription factors help in
maintaining the expression of positive regulators. The intricate
balance between the positive and negative regulators is required
for the efficient and regulated conversion of pre-adipocytes
to lipid loaded mature adipocytes. The absence of negative
regulators or increased expression of positive regulators may
result in obesity and related disorders. These transcription factors
are potential targets to control obesity and metabolic disorders.

GATA-Binding Factors
These zinc finger proteins bind to various promoters to regulate
the cellular development and differentiation. GATA2 and GATA3

are abundantly expressed in pre-adipocytes and their expression
decreases during adipocyte differentiation (Tong et al., 2000).
Constitutive expression of GATA2 and GATA3 results in their
interaction with either C/EBPα or C/EBPβ thereby inhibiting
their activity (Tong et al., 2005). In general, GATAs subdues
the adipogenesis process by two pathways, i.e., by interaction
with PPARγ promoter and by protein-protein interaction which
hinders the expression of C/EBP protein (Tong et al., 2000, 2005).
GATA protein works along with cofactor Friend of GATA (FOG)
and C-terminal binding proteins (CTBPs). FOG and CTBP
protein interact with GATA2 in pre-adipocytes and inhibits the
terminal differentiation of adipocytes (Jack and Crossley, 2010).
Downregulation of GATA2 led to the pathogenesis of diseases like
aplastic anemia, which was reported to have elevated expression
of PPARγ (Xu et al., 2009). A recent study described GATA3
as a target gene of KLF-7 which inhibits chicken adipogenesis
(Sun et al., 2020). Altogether, the interaction of GATAs with
numerous proteins at different stages of adipogenesis keeps
the positive adipogenic regulators in check and maintains the
metabolic homeostasis.

In addition to GATA- binding factors, several other proteins
like Pref-1, SIRT1, HDAC9 and transcriptional modulator
TAZ also negatively regulate the differentiation of adipocytes
by inhibiting the positive regulators at different stages of
adipogenesis (Moon et al., 2002; Kurtev et al., 2004; Hong et al.,
2005; Chatterjee et al., 2011). In contrast to other KLFs, KLF-2
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inhibits the differentiation of adipocytes by interaction with a
consensus motif 5′-CNCCC-3′ present in PPARγ2 promoter,
thus limiting its expression (Sen Banerjee et al., 2003).

EPIGENETIC REGULATION OF
ADIPOGENESIS

There are numerous epigenetic events involved at specific
stages of adipocyte differentiation that eventually decide the
fate of adipogenesis. Post Translational Modifications (PTMs)
of histones such as Histone acetyltransferases (HATs), Histone
deacetylases (HDACs), Histone methyltransferases (HMTs), and
Histone demethylases (HDMs) have been reported to be crucial
in shaping the adipogenesis process (Lizcano et al., 2011; Okuno
et al., 2013). Along with histone PTMs, DNA methylation,
chromatin remodeling and several microRNAs (miRNAs) also
guide the adipogenesis program (Figure 5; Salma et al., 2004;
Sakamoto et al., 2008; Peng et al., 2013). This part of the
review focuses on the role of epigenetic regulation that ultimately
dictates the adipocyte differentiation in normal scenarios and
during metabolic disorders.

Histone Modifications
The constantly varying histone modifications are responsible for
controlling the expression of various regulators of adipogenesis
process namely Pref-1, C/EBP(α/β), PPARγ2 and aP2 (Zhang
et al., 2012). MLL3/MLL4 are the most important H3K4
methyltransferases that are known to prime the enhancer before
their activation thereby determining the ultimate cell fate (Wang
et al., 2016). MLL3/MLL4 and CBP/p300 are also known as the
super enhancer epigenomic regulators and activators that control
the chromatin landscaping during adipocyte differentiation (Lai
et al., 2017). Additionally, the mutations associated with MLL2
are responsible for lowering glucose tolerance in mice that could
result in T2D (Goldsworthy et al., 2013). Similarly, cases of
congenital hyperinsulinemia were observed in human infants
having mutated MLL2 gene (Yap et al., 2019). A genome
wide histone modification examination uncovered the histone
modification pattern of H3 that is frequently associated with
obesity and diabetes (Jufvas et al., 2013). A study conducted on
hyperphagic (ob/ob) mice and in mice with DIO has shown an
increase in the acetylation level of lysine (K9, K18) on histone
H3 at the gene promoter of TNF α and CCL2 in the liver tissue
(Mikula et al., 2014). Moreover, a decreased methylation pattern
of histone H3 (H3K4me3) was observed under high Isocitrate
Dehydrogenase 1– α-Ketoglutarate (IDH1–α-KG) conditions,
thus regulating the brown adipocyte differentiation in mice
(Kang et al., 2020). This could be used as a therapeutic
target for various metabolic syndromes. In a recent experiment
conducted on human VAT, enhanced H3K4me3 marks were
observed on the promoter region of various genes that are
involved in adipogenesis, lipid metabolism and inflammatory
pathways (Castellano-Castillo et al., 2019a). There are various
protein arginine methyltransferases (Prmts) that are involved in
regulating the expression of numerous regulators of adipogenesis.
Studies revealed that overexpression of Prmt5 eventually

promotes adipocyte differentiation by upregulating PPARγ2 gene
expression via forming an immature Promoter-enhancer looping
(LeBlanc et al., 2012; Leblanc et al., 2016). Whereas, Prmt6 acts
as a negative regulator of adipogenesis and is known to repress
the activity of PPARγ (Hwang et al., 2019). Unlike Prmt5 and
Prmt6, knockdown and overexpression of Pmrt7 did not affect
the adipocyte differentiation; hence not all Prmts are important
for regulating adipogenesis (Imbalzano et al., 2013).

Differential expression of HDACs is known to be associated
with various metabolic conditions. For example, a case control
experiment conducted on women with normal weight and
women with obesity, showed a differential expression of
HDAC2/4/5/6 that could be associated with obesity and
inflammatory reactions related to obesity (Shanaki et al., 2020).
Also, mice lacking Hdac9 or Hdac11 gene were found to have
an increased whole-body energy consumption which protected
them against DIO (Chatterjee et al., 2014; Sun et al., 2018).
Moreover, the alteration in class I HDAC activity has been
shown to shift the white adipocytes phenotype toward brown-like
phenotype by modifying the histone marks (Ferrari et al., 2020).
In addition to other HDACs, Class III HDACs (Sirtuins) are also
known to regulate the adipocyte differentiation. Studies involving
HFD-fed, Sirt1 knockout mice model showed an increase in
adipose tissue mass by promoting PPARγ activity, indicating a
negative correlation between Sirt1 and adipogenesis (Mayoral
et al., 2015). Complete Sirt7 knockout in mice resulted in
reduction of white adipose tissue which indicates that Sirt7 is a
positive regulator of adipocyte differentiation (Fang et al., 2017).
Additionally, mutation in Sirt6 has been found to disturb the
adipogenesis phenomenon, as Sirt6 is essential for regulating the
mitotic clonal expansion in cells via suppressing the expression
of Kinesis heavy chain isoform 5C (Chen et al., 2017). A study
in human SAT and VAT has shown that reduced Sirt1 and
Sirt2 expression was associated with increased visceral adipose
stem cells differentiation ability (Perrini et al., 2020). Similarly,
knockdown of Jumonji domain containing protein 6 (JMJD6),
a histone arginine demethylase, results in reduced expression
of PPARγ2 and C/EBPα both at transcript as well as post
transcription level, thereby inhibiting adipocyte differentiation
(Hu et al., 2015). Later, studies revealed that the positive
regulation of adipogenesis by JMJD6 is independent of its
catalytic domain and requires its AT-hook like domain to interact
with other important adipogenesis regulators by acting as a
scaffold protein for them (Reyes-Gutierrez et al., 2019).

Statins are DNA methylation inhibitors and are known to
regulate blood cholesterol but recently they are also found
to be associated with a high risk of causing T2D. Statin
treatment tends to reduce the methylation pattern on HDAC9
promoter that results in a reduced expression of key regulators
of adipogenesis (Khamis et al., 2020). Keeping in consideration
all the information obtained from various studies, modification
of histone marks appears to be a potential therapeutic target for
addressing numerous metabolic disorders.

DNA Methylation
The DNA methyltransferase (DNMT) family comprises of five
main enzymes which regulate the de novo DNA methylation

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 January 2021 | Volume 8 | Article 619888

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-619888 January 7, 2021 Time: 12:25 # 11

Pant et al. Adipose Tissue Dysfunction and Metabolic Syndrome

FIGURE 5 | Epigenetic modification of genes involved in adipogenesis. Methylation of gene promoters, that are necessary for adipogenesis, results in inactivation of
the genes leading to reduced adipogenesis, whereas acetylation of promoter region brings about active adipocyte differentiation. Histone modification through HATs
or HMTs that are recruited at the gene promoter by CEBPβ results in either activation or repression of the genes that are essential for adipogenesis. Chromatin
remodeling complexes, such as SWI/SNF, tends to change the chromatin structure, thereby making the DNA either accessible or inaccessible for the transcription of
adipogenesis specific genes to happen. Non-coding RNAs also govern the transcription of master regulators of adipogenesis by activating (miR-143,
RP11-142A22.4) or repressing (miR-27, ADNCR) the transcription of key genes required for adipogenesis. Uncontrolled expression of genes involved in
adipogenesis could ultimately lead to metabolic disorders.
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(DNMT3A/3B) and adds methylation marks during replication
(DNMT1) (Weber et al., 2007; Lyko, 2018). Earlier it was reported
that reduced expression of DNMT1 by a novel miRNA (ACL-
miR-148a) in 3T3-L1 cell line resulted in the promotion of
adipogenesis by decreasing the DNA methylation marks on
PPARγ (Londono Gentile et al., 2013). Later, it was revealed that
DNA methylation has a biphasic effect on adipogenesis process
where in the early stage, inhibition of methylation by 5-aza-
dC promoted the adipocyte differentiation, while in late stage
it inhibited the adipogenesis (Yang et al., 2016). Additionally,
an altered global DNA methylation pattern during metabolic
disorders has been observed on various genes involved in
adipocyte differentiation, lipid metabolism, and inflammation
(Castellano-Castillo et al., 2019b). A novel methylase enzyme,
METTL4, responsible for the methylation of N6- methyladenine
(6ma) was found to promote adipogenesis in 3T3-L1 cells (Zhang
Z. et al., 2020).

Modified cytosine(C) residue, 5-methylcytosine (5mC),
established by DNMTs could easily be reverted to unmodified
C by ten eleven translocation (TET) enzymes (Wu and Zhang,
2017). The mouse model having TET1/2 double knockout
was found to have developmental abnormalities along with
adipocyte differentiation defects because of the associated
epigenetic instabilities (Wiehle et al., 2016). Recently global
levels of 5mC were examined in the genome of 3T3-L1
cells. Among all the DNA demethylases, TET2 exhibited the
major effect on adipocyte differentiation studies. Knockdown
of Tet2 resulted in enhanced adipogenesis and hence it is
considered as an anti-adipogenic demethylase (Hou et al.,
2020). Still a detailed gene knockout study in mice model is
needed to further determine the involvement of TET1/2 in
regulating adipogenesis.

Chromatin Dynamics and Remodeling
A dynamic chromatin is indispensable for an effective replication
and transcription process to take place. Various ATP-dependent
remodeling factors are required to carry out the chromatin
remodeling. The SWItch/Sucrose Non Fermentable (SWI/SNF)
is one such ATP-dependent family of chromatin remodeling
complex which by utilizing brahma (BRM) or brahma-related
bromodomain protein (BRG) makes the chromatin access
easy through the rearrangement of nucleosomes (Kadoch
and Crabtree, 2015). A study showed that involvement of
C/EBP is essential in recruiting the SWI/SNF enzymes on
PPARγ2 promoter in order to proceed with the adipogenesis
process (Salma et al., 2004). Another study demonstrated
that C/EBPα transactivation element III (TE-III) interacts
with SWI/SNF chromatin remodeling complex to collaborate
with TBP/TFIIB for adipocyte differentiation (Pedersen et al.,
2001). Knockdown of Prmt5 has been found to decrease the
binding of BRG1, a SWI/SNF ATPase that is required for
activating PPARγ2. It eventually resulted in reduced adipogenesis
because BRG1 failed to interact effectively with the PPARγ2
chromatin locus in the absence of Prmt5 (Leblanc et al.,
2016). Although, the role of SWI/SNF for the activation of
enhancers during cancer development has been widely studied
(Nakayama et al., 2017), but its involvement in activating

adipogenesis related enhancers for effective gene expression is
yet to be explored.

Non-coding RNAs
There are several non-coding (nc) RNAs, small nuclear RNAs
(snRNAs), microRNAs (miRNAs), and long nc RNAs (lncRNAs)
that are extensively involved in regulating various essential
genes or transcription factors involved in numerous biological
processes (Mercer et al., 2009; O’Brien et al., 2018). Many of
these miRNAs and lncRNAs are also known to control the
adipogenesis process by regulating the expression transcription
factors involved in adipocyte differentiation during normal and
diseased conditions (Hilton et al., 2013; Arner and Kulyté, 2015;
Chen et al., 2018).

Initial miRNA microarray studies highlighted the increased
expression of miR-143 in preadipocytes where it promoted
the adipocyte differentiation via controlling the levels of ERK5
protein (Esau et al., 2004). An intronic miRNA, miR-33, which
is present within the SREBP-2 gene has come up as an essential
non coding RNA which transcriptionally controls the cholesterol
homeostasis by inhibiting the adenosine triphosphate–binding
cassette (ABC) transporter (Najafi-Shoushtari et al., 2010; Rayner
et al., 2010). Further study conducted on miR-33 knockout
mice has revealed an enhanced expression of SREBP-1 in these
mice which leads to obesity and various hepatic complications
(Horie et al., 2013). Additionally, miR-27 as well as miR-
130 gene family were found to inhibit the master regulators
(PPARγ, C/EBPα) of adipocyte differentiation and therefore
considered negative regulators of adipogenesis (Lin et al., 2009;
Lee et al., 2011). A microarray study has shown the presence
of PPARγ regulated differential miRNA expression profile in
human subcutaneous and visceral fat tissues. An increase in
the expression of miR-378 has been observed upon pioglitazone
(PPARγ agonist) treatment, where it was found to enhance
the adipocyte differentiation in the subcutaneous tissue but no
effect was seen on visceral tissue (Yu et al., 2014). miR-146
and miR-93 were found to inhibit the expression of Sirtuins
(Sirt1, Sirt7, respectively) in order to regulate adipogenesis (Ahn
et al., 2013; Cioffi et al., 2015). Another mi-RNA that came up
as a positive regulator of adipocyte differentiation is miR-125-
5p. It has been found to suppress the genes involved in cell
cycle progression (G1/S) and results in enhanced expression of
key adipogenesis associated genes (Ouyang et al., 2015). Recent
transcriptome analysis performed on human mesenchymal stem
cells focused upon those miRNAs that are somehow involved
in the lipid droplet formation during adipogenesis and could
be used as disease biomarkers for various metabolic disorders
(Yi et al., 2020). A miRNA originated from hepatic exosome,
miR-130a-3p, was found responsible for mediating a tissue cross-
talk in order to regulate the glucose intolerance by inhibiting
the PH domain leucine -rich repeat protein phosphatase 2
(PHLPP2) during adipocyte differentiation (Wu et al., 2020).
Also, the novel role of miR-196b-5p in promoting adipogenesis
by inhibiting the expression of tuberous sclerosis 1 (Tsc1)
and transforming growth factor-β receptor 1 (TGFBR1) was
established (Shi et al., 2020).
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A few circulating lncRNAs, despite having no functional
outcome, have also been found to be differentially expressed
among lean people and in people with obesity. A transcriptome
study carried out in bovine preadipocytes found a lncRNA,
adipocyte differentiation-associated long non-coding RNA
(ADNCR), that suppressed adipogenesis by inhibiting miR-
204 which is a known repressor of Sirt1 (Li M. et al., 2016).
Also, silencing of lncRNA H19 in BAT reduced adipocyte
differentiation, whereas its absence enhanced adipogenesis in
WAT (Schmidt et al., 2018). A global expression pattern study
resulted in the identification of RP11-142A22.4, expression
of which was found to be highly increased during adipocyte
differentiation and hence it could be used as a therapeutic target
for obesity (Zhang T. et al., 2020). Despite of all the available
literature, a lot is yet to be explored in order to implement the
findings for the treatment of metabolic disorders.

ENVIRONMENT-EPIGENETIC
INTERACTION

The prevalence of obesity in modern environment can be
understood with regard to evolution (Lev-Ran, 2001). Our
primeval ancestors favored “thrifty” genotype that enabled them
to efficiently store fat during a period of famine. The hunter
gatherers had the cycles of feast and famine interspersed with
cycles of physical activity and rest. Their ability to conserve
energy by storing fat provided them with genetic advantage for
selecting this genotype for unfavorable conditions (food scarcity).
Therefore, these individuals were more likely to survive the
periods of famine than lean individuals who were more prone to
infectious diseases (Eaton et al., 1988; Chakravarthy and Booth,
2004). We, the modern day humans, have the continuous supply
of food and are relatively physically inactive which abrogates
the evolutionary programmed feast-famine and physical activity-
rest cycles. So, carrying the thrifty genotype, turned out to
be a risk factor for developing obesity and metabolic diseases
(Chakravarthy and Booth, 2004).

The pathophysiology of obesity is highly complex and
involves the interplay of environmental factors, lifestyle changes
(nourishment, exercise, exposure to noxious substances) and
gene expression factors. Additionally, the gene expression
changes are believed to have associated epigenetic changes
that link epigenetics with obesity (Figure 6; Youngson and
Morris, 2013; Albuquerque et al., 2017). Several medications
and environmental toxins are known to induce adiposity.
For example administration of valproic acid (VPA; a histone
deacetylase) in children for treatment of epilepsy lead to an
increased risk of developing metabolic and endocrine disorders
(Carmona-Vazquez et al., 2015). Sodium VPA is also linked
with an increase in BMI, increased leptin levels, IR and
hyperinsulinemia in these children (Rehman et al., 2017).

Nutrition and the type of diet directly influence epigenetic
marking and have a role to play in obesity and related metabolic
disorders. DNA and histone methyltransferases uses S-adenosyl-
methionine (SAM) as methyl donors, availability of which is
directly influenced by diet (Zeisel, 2009). SAM is formed by the

diet supplemented with folate, Vitamin B6, B12, choline, and
methionine and is critical for fetal development where it help in
DNA methylation and proper brain development of the child.
Deficiency of methyl donors might result in lifelong changes in
gene expression and results in several health problems like IR and
fatty liver (Sinclair et al., 2007). Moreover, supplementation of
methyl donors can improve NAFLD in rats fed on obesogenic
diet pointing to the fact that methyl supplementation might
prove to be protective against obesity (Cordero et al., 2013).
Some food components such as polyphenols and organosulfur
compounds have also shown positive results in lowering obesity,
inflammation, oxidative stress and cancers (Milagro et al.,
2013). One such organosulfur compound is sulforaphane which
is naturally present in cruciferous vegetables. Sulforaphane
administered as broccoli extract reduced the fasting blood glucose
and glycated hemoglobin (HbA1c) in patients with obesity and
T2D (Axelsson et al., 2017).

Chemicals present in our environment, termed as obesogens,
can also affect a person’s susceptibility to obesity by helping
in adipocyte differentiation in vitro and storage of fat in vivo
(Gru et al., 2006). One of the ubiquitous obesogen is organotin,
like tributyltin (TBT) which is widely used in industries and
agriculture. Human exposure to organotin is possible through
consumption of seafood contaminated with TBT used in marine
shipping applications (Mattos et al., 2017). TBT activates all
three RXR–PPAR-α, -γ, -δ heterodimers, mainly through its
interaction with RXR and thereby promotes adipogenesis and
lipid accumulation (le Maire et al., 2009). Other obesogens
include phthalates, persistent organic pollutants, components of
plastics and epoxy resins. In addition to acting through nuclear
receptors, these obesogens can also induce epigenetic changes
and alters the chromatin accessibility or architecture in adipose
tissue (Chamorro-Garcia et al., 2017). RXR activation also alters
the expression of enhancer of zeste homolog 2 (EZH2) which
results in genome-wide reduction and redistribution of histone
3 lysine 27 trimethylation (H3K27me3) repressive marks and
promote adipose-lineage commitment (Shoucri et al., 2017).

Apart from the above listed factors, there are numerous other
societal factors such as sleep patterns, sleep deprivation, chronic
shift working which alter the circadian clock genes and disrupt
metabolic integrity. Even a single night of sleeplessness can
alter the transcriptional and epigenetic profile of circadian clock
genes consequently resulting in reduced glucose tolerance and
increased insulin sensitivity (Donga et al., 2010; Cedernaes et al.,
2015; Morris et al., 2016).

TRANSGENERATIONAL INHERITANCE
OF OBESITY

Environmental stress/exposure can reprogram the epigenetic
patterns of germ cells (egg and sperm) which associate with
the development of altered phenotypes in future generations
through epigenetic transgenerational inheritance (Anway et al.,
2005; Skinner et al., 2013). As a result of early life developmental
plasticity, the risk of obesity begins in utero. This idea is
in accordance with the Developmental Origins of Health
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FIGURE 6 | Interaction between environment/genetic factors and epigenetic changes in establishment of obesity and obesity-associated metabolic disorders.
Environmental factors like exposure to drugs/toxic chemicals, lack of physical activity, sedentary lifestyle, poor and unhealthy diet, stress/anxiety, smoking/alcohol
abuse along with genetic makeup of an organism can have direct influence on epigenetic marks and result in increased adiposity. The changes in epigenetic
landscape through various histone modifications, changes in chromatin accessibility and DNA methylation results in obesity and other metabolic disorders like
diabetes, hypertension, lipodystrophy, cardiovascular diseases, NAFLD, cancer, etc.

and Diseases (DOHaD) hypothesis which seeks to understand
the relationship between perinatal environmental conditions
and disease manifestation in adulthood (Barker et al., 1989;
Ravelli et al., 1999). Adipose tissue is regarded as the main
target of developmental programming in a sex- and depot-
specific manner. Despite of the difference in developmental time
windows, similar mechanisms of adipose tissue programming
exist across species. Nutritional status of mother largely affects
the reprogramming of offspring’s adipose tissue resulting in
increased adipogenesis and lipogenesis, increased inflammation
and impaired sympathetic activity thereby rendering them to
disproportionate fat accumulation (Lecoutre et al., 2018). The
excessive fat accumulation results in leptin and insulin resistance
in these individuals predisposing them to metabolic syndrome
(Muhlhausler and Smith, 2009). Maternal obesity in mice reduces
the DNA methylation on Zfp423 promoter (i.e., reduced histone

modification H3K27me3), which is correlated with enhanced
Zfp423 expression and adipogenesis in fetal progenitor cells
which thereby predisposes the offspring to obesity and metabolic
dysfunction later in life (Yang et al., 2013). Gestational obesity
(OB) in rats is responsible for broad changes in lipogenic and
adipogenic genes in the WAT of offspring. OB-dam offsprings
shows an increased mRNA expression of SREBP-1, GLUT4 and
a greater AKT phosphorylation. They also exhibit increased
expression of adipogenic regulators like PPARγ, C/EBP-α and
C/EBP-β associated with differentiation of WAT stromal-vascular
cells. These transcriptional changes are also associated with
certain epigenetic changes like alteration in DNA methylation
of CpG sites and CpG island (CGI) shores proximal to
developmentally important factors including Zfp234 and C/EBP-
β (Borengasser et al., 2013). Evidence suggests that the ratio of
omega-6 (n-6) relative to omega-3 (n-3) polyunsaturated fatty
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acids (PUFA) is essential in regulating perinatal adipogenesis
(Rudolph et al., 2018). A diet rich in n-3 PUFA decreased
adipose tissue mass and prevented the development of obesity
in rodents (Madsen et al., 2005). Moreover, offsprings of
transgenic mothers with low n-6/n-3 PUFA ratio in plasma
during gestation and lactation had smaller adipocytes, reduced
gene expression of certain pro-adipogenic markers (Pparg2,
Fabp4, and Plin1), elevated circulating levels of adiponectin and
hypermethylated proximal promoter of Pparg2 (Rudolph et al.,
2018). Exposure to HFD during pregnancy may affect glucose and
lipid metabolism of female offsprings through epigenetic changes
in Leptin (methylation of H4K20) and Adiponectin (decrease
in acetyl H3K9 levels and increase in dimethyl H3K9 levels)
genes for multiple generations. These epigenetic changes result
in metabolic abnormalities like weight gain, glucose and insulin
intolerance, hypertension, abnormal adipocytokine levels, etc.
The effects are much stronger if the HFD in utero continues for
multiple generations. However, a switch to normal diet in utero
may prevent the epigenetic changes caused by HFD and eliminate
the metabolic effects after the normal diet is restored for three
generations (Masuyama et al., 2015). Not only maternal obesity
but paternal obesity also contributes to metabolic disturbances
in future generations. Diet induced paternal obesity modulates
the sperm miRNA profile and methylation status of germ cell
which initiate the transmission of obesity and metabolic diseases
to future generations and adversely affect the health of offspring
(Fullston et al., 2013).

Apart from the dietary factors, several other environmental
insults that have been identified in recent times which induce
transgenerational inheritance of obesity and related metabolic
disorders are listed in Table 1.

THERAPEUTIC STRATEGIES FOR
OBESITY TREATMENT

Several clinical and epidemiological studies identify behavioral
patterns including dietary habits as well as individual genetics
to have direct correlation with metabolic syndrome and obesity.
Apart from this, gut microbiome and environmental conditions
also play a vital role in onset of obesity (Sonnenburg and Bäckhed,
2016). Additionally, if the calorie uptake is lowered, then the
metabolic flux shifts toward catabolism of adipose tissues and
glycogenolysis resulting in weight loss (Anton et al., 2018).
Most of the strategies to control or treat obesity rely on calorie
restriction. Drugs are designed either to lower the appetite for
food or inhibit the absorption of tri-acyl glycerols. After several
decades of research only a few drugs have been FDA approved
for treatment of obesity and its associated disorders. Treatment
of obesity is highly complex because most of the targets are
either undruggable or have pronounced side effects due to their
function in cellular homeostasis. Most of the available appetite-
suppressant drugs act on the peripheral nervous system, targeting
noradrenergic receptors resulting in reduced food intake by
modulating the signaling of monoamine neurotransmitters such
as serotonin and norepinephrine. Sibutramine (Meridia, Abbott),
an appetite suppressant, first approved in November 1997 for the TA
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long-term treatment of obesity, showed some promising results.
It works by inhibiting 5-HT and norepinephrine reuptake in
the hypothalamus (Astrup et al., 1998). However, in the year
2010 the drug was withdrawn from the market due to increased
cardiovascular complications (James et al., 2010). Fenfluramine is
another drug which targets serotonergic 5-HT2 receptor agonist
and σ1 receptor antagonist. Fenfluramine and dexfenfluramine
were also withdrawn from United States in the year 1997 because
of heart valve damage (Connolly et al., 1997; Smith et al., 2006).
Phentermine is structurally similar to amphetamine which is
prescribed for short term weight loss. It stimulates the central
nervous system to release norepinephrine in the hypothalamus
which increases the heart rate and blood pressure and decreases
appetite (Rothman et al., 2001). The combination of phentermine
with fenfluramine or dexfenfluramine was once used to treat
obesity. Due to their side effects and contradictions such as
dizziness, insomnia, dry mouth and cardiovascular problems, it
is classified as schedule IV drug and could only be prescribed
for short term usage. CB1 receptor, which is widely expressed
in the central nervous system, is another target for treatment of
obesity. Rimonabant, an inhibitor of CB1, increases adiponectin
production in adipocytes leading to increased fatty acid oxidation
(Pagotto et al., 2005). Rimonabant was approved in Europe
in 2006, but it was withdrawn due to its adverse effect on
patients such as anxiety, depression and suicidal tendencies in the
clinical trials.

Apart from appetite suppression, other strategies were derived
which inhibited nutrient uptake and assimilation through
suppression of gastrointestinal lipase. Orlistat is an approved
drug in the United States and Europe for long term obesity
treatment, targeting triacylglycerol lipase thereby reducing
dietary fat uptake and weight gain. Orlistat is a safe drug, but it
does have some gastrointestinal side effects such as stomach pain
and uncontrolled bowel movement (Ballinger, 2000). Topiramate
is a sulfamate-substituted monosaccharide generally prescribed
for migraine treatment. Topiramate works by inhibiting fructose
1,6-bisphosphatase, a rate limiting enzyme for gluconeogenesis,
and controls blood glucose levels. Topiramate, however, has also
been shown to suppress appetite and is found to be effective
in weight reduction. Although, not FDA approved for the
treatment of obesity, studies have demonstrated that it helps
in weight reduction in individuals affected with obesity when
administered in combination with phentermine (Colman et al.,
2012; Cosentino et al., 2013).

Apart from classical therapeutic approaches, targeting the
epigenetic regulators and factors governing adipogenesis is
becoming a new hot spot for obesity treatment. The role of
PPAR, an important component of adipogenesis and fatty acid
oxidation, is investigated as a drug target for obesity. PPAR
agonist bezafibrate showed efficacy in adipocyte dedifferentiation
to preadipocytes by regulating the metabolic flux and β-oxidation
(Cabrero et al., 2001; Vázquez et al., 2001). Also, treatment
of another PPAR agonist GI259578A to AKR/J (AKR) mice
resulted in increased mean size of WAT in the group of
mice with obese phenotype as compared to the control group.
Conversely, in mice with diabetic phenotype (db/db), treatment
of PPARγ agonist GW347845X resulted in 96.1% increased

lipid storage in BAT and 15.4% decrease in WAT indicating
a more complex mechanism of adipogenesis which needs to
be understood before taking this drug to the clinics (Okamoto
et al., 2007). Carnitine palmitoyltransferase 1 (CPT1) is another
target for treatment of obesity as it helps in the entry of long-
chain fatty acids into mitochondria for β-oxidation. Etomoxir,
a CPT1 inhibitor, blocks the lipid transport thereby shifting
metabolism toward glycolysis and oxidative phosphorylation
(Schmidt-Schweda and Holubarsch, 2000).

Identification of blood-based epigenetic markers is emerging
as a promising approach in early diagnosis of obesity and
metabolic diseases. Such cell-free DNA (cfDNA)-based epigenetic
markers are already under clinical evaluation for early detection
of cancer (Xu et al., 2017; Oussalah et al., 2018). Additionally,
the analysis of placenta-specific cf-DNA/RNA during early
pregnancy could also be used for detection of adverse
pregnancy outcomes prior to appearance of specific clinical
features (Del Vecchio et al., 2020). Recent studies suggest
that obesity may influence the changes in DNA methylation
(Feinberg et al., 2010; Xu et al., 2013; Dick et al., 2014)
which could possibly predict the future development of
metabolic diseases. A genome-wide DNA methylation study
in offsprings of women with high pre-pregnancy maternal
BMI and gestational diabetes mellitus (GDM) identified 76
differentially methylated CpGs including several genes which
are known to be associated with metabolic diseases. The
study suggested that the methylation changes in the circulating
blood cells could serve as a biomarker for prediction of
metabolic diseases in offsprings of women with obesity and
GDM (Hjort et al., 2018). A different study identified the
differential methylation status of circulating cell-free CHTOP
and INS1 DNA fragments as potential biomarkers for possible
islet death in youths with obesity and diabetes (Syed et al.,
2020). A study by Nishimoto et al. investigated the role
of cfDNA in development adipose tissue inflammation. The
study demonstrated that obesity induced cfDNA release from
adipocytes promoted macrophage accumulation in the adipose
tissue via TLR9 (Nishimoto et al., 2016). This novel mechanism
for the development of adipose tissue inflammation may provide
therapeutic target for obesity related metabolic disorders. Since
the cell-free epigenetic markers are non-invasive, they may
consequently be of greater clinical relevance for better prediction
of metabolic disorders.

Histone acetylation and methylation are two of the most
important epigenetic changes that regulate gene expression.
Targeting these chromatin modifiers using small molecules and
inhibitors has huge potential in treating obesity. HDAC inhibitors
such as sodium butyrate and Trichostatin A, significantly
decreased body weight in DIO mice (Gao et al., 2009). Other
inhibitors targeting DNMTs, protein arginine methyltransferases,
HDMs, and HATs are widely studied and have great potential
in treating obesity, if used in systemic and strategic manner.
However, the side effects and collateral damages caused by
them due to their involvement in other cellular processes
cannot be neglected thereby making their use challenging. Drug
engineering for their controlled release and to enhance their
specificity, could potentially reduce the side effects and toxicity.
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TABLE 2 | Drugs and their modes of action in treatment of obesity.

Drug Mode of Action Status Side effects References

Metreleptin Activates OB receptor in peripheral tissues Phase II Headache, low blood sugar, abdominal pain,
and dizziness

Heymsfield et al., 1999

Orlistat (Xenical R©) Pancreatic lipase inhibitor EMA, FDA, ANVISA Flatulence, oily stool, frequent bowel movement Harp, 1999

Naltrexone/bupropion (Contrave R©) Opioid receptor antagonist/Noradrenaline and
dopamine reuptake inhibitor

EMA, FDA Nausea, constipation and headache *NCT01601704

Topiramate (Topamax R©) Inhibits excitatory glutamate receptors and carbonic
anhydrase

Phase II Tiredness, drowsiness, coordination problems *NCT01859013

Phentermine (Adipex R©) Noradrenergic sympathomimetic amine EMA, FDA Dizziness, dry mouth, insomnia, constipation,
irritability and cardiovascular side effects

Hendricks et al., 2011

Phentermine/topiramate (Qsymia R©) Release of catecholamines and inhibits excitatory
glutamate receptors and carbonic anhydrase

FDA Paraesthesia, change in taste (dysgeusia) and
metabolic acidosis

Allison et al., 2012

Sibutramine (Biomag R©, Sibus R©, Saciette R©) Inhibits 5-HT and norepinephrine reuptake ANVISA high blood pressure, shortness of breath James et al., 2010

Rimonabant (Acomplia R©, Redufast R©) Inverse agonist on the cannabinoid receptor CB1 Withdrawn after phase III Nausea, diarrhea, and dizziness *NCT00481975

Lorcaserin (Belviq R©) Serotonin receptor agonist Withdrawn after phase III Headache, dizziness, nausea, dry mouth,
constipation, and increased risk of cancer

*NCT03353220

Liraglutide (Victoza Saxenda R©) GLP-1 receptor agonist EMA, FDA, ANVISA Nausea with vomiting are the principal adverse
effects; acute pancreatitis

Gough, 2012

Empagliflozin (Jardiance R©) Sodium–glucose cotransporter 2 inhibitor Phase I Hypoglycemia, urinary problem *NCT02798744

Cetilistat (Cetislim R©) Inhibits pancreatic lipase Phase II Loose stools, fecal incontinence and frequent
bowel movements

Gras, 2013

Beloranib Inhibitor of methionine aminopeptidase 2 Phase II and III Diarrhea, abdominal pain *NCT02324491

*Information retrieved from clinicaltrials.gov.

Frontiers
in

C
elland

D
evelopm

entalB
iology

|w
w

w
.frontiersin.org

17
January

2021
|Volum

e
8

|A
rticle

619888

http://clinicaltrials.gov
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-619888 January 7, 2021 Time: 12:25 # 18

Pant et al. Adipose Tissue Dysfunction and Metabolic Syndrome

Some drugs and their modes of action in treating obesity are listed
in Table 2.

CONCLUDING REMARKS

The past two decades of research in adipose biology made
us acquainted with the fact that adipose tissue is not mere
inert depot for fat storage, but is a highly complex and
biologically active organ which plays vital roles in whole body
energy metabolism and various physiological processes. The
cooperative interplay between different transcription factors,
specifically PPARγ and C/EBPα, is critical for understanding
adipogenesis at molecular level. Any defects in the adipose
function or adipogenesis process may result in severe metabolic
abnormalities. Sometimes, genetic and acquired defects like
familial lipodystrophy and diet induced obesity may also result
in IR and diabetes. Therefore, understanding the heterogeneity
and plasticity of adipose tissue is utmost important for targeting
them to reap therapeutic benefits. Adipose tissue also serves
as an endocrine organ and secretes many adipokines which
associate them with different cancers. Apart from adipokines,
they also secrete batokines which have been shown to improve
insulin sensitivity and glucose tolerance. Thus, precise selection
of batokines could serve the purpose of identifying candidates
for drug development and ameliorating metabolic disorders
(Villarroya et al., 2017). In recent years, there have been
a number of clinical trials with anti-inflammatory agents in
targeting obesity related metabolic diseases. However, none of
them met the approval criteria due to small cohort size and

shorter period of the trials (Mclaughlin et al., 2017). The ominous
connection between epigenetic changes and environmental
factors contributes largely to adult onset of obesity and metabolic
disorders. Therefore, targeting epigenetic modulators using
inhibitors and small molecules holds a great potential in treating
obesity but their limited clinical efficacy and certain unavoidable
side-effects make them difficult to use. Pharmacological therapy
is used as an add-on anti-obesity therapy for the patients
who fail to respond to lifestyle modifications. Some drugs,
though successful, have variable response rates attributing to
the individual variations. Therefore, future pharmacotherapy
may include the use of personalized drugs to target obesity at
individual level.
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