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Abstract
Background: Robustness, maintaining a constant phenotype despite perturbations, is a
fundamental property of biological systems that is incorporated at various levels of biological
complexity. Although robustness has been frequently observed in nature, its evolutionary origin
remains unknown. Current hypotheses suggest that robustness originated as a direct consequence
of natural selection, as an intrinsic property of adaptations, or as a congruent correlate of
environment robustness. To elucidate the evolutionary origins of robustness, a convenient
computational package is strongly needed.

Results: In this study, we developed the open-source integrated system EvoRSR (Evolution of
RNA Structural Robustness) to explore the evolution of robustness based on biologically
important landscapes induced by RNA folding. EvoRSR is object-oriented, modular, and freely
available at http://biotech.bmi.ac.cn/EvoRSR under the GNU/GPL license. We present an overview
of EvoRSR package and illustrate its features with the miRNA gene cel-mir-357.

Conclusion: EvoRSR is a novel and flexible package for exploring the evolution of robustness.
Accordingly, EvoRSR can be used for future studies to investigate the evolution and origin of
robustness and to address other common questions about robustness. While the current EvoRSR
environment is a versatile analysis framework, future versions can include features to enhance
evolutionary studies of robustness.

Background
Robustness is a fundamental and ubiquitous phenome-
non in biological systems, in which phenotypes are resist-
ant to change in the presence of various perturbations.
When these perturbations are inherited, such as genetic
mutations, the phenomenon is known as genetic robust-
ness. Alternatively, when the perturbations are due to

environmental factors, the phenomenon is called envi-
ronmental robustness [1]. Both types of robustness
appear at various levels of biological organization, affect-
ing gene expression, protein folding, metabolic flux, phys-
iological homeostasis, development, and organism fitness
[2]. Biologists' long-standing interest in robustness has
roots in Fisher's work on dominance [3-5] and Wadding-
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ton's developmental canalization research [6,7]. Despite
being found throughout nature, the evolutionary origins
of robustness remain unclear. Current competing expla-
nations for the origins of robustness include that it
evolves as a direct consequence of natural selection, as an
intrinsic property of adaptations, or as congruent correlate
of environment robustness. Additionally, it is unknown
how robustness evolves and how the robustness varies
along the Hamming distance from the WT sequence.

Addressing these questions requires a convenient compu-
tational package that will fully elucidate the evolutionary
origins of robustness. A good example to study for clarify-
ing the origins of robustness is RNA folding from
sequences into secondary structures. RNA folding pro-
vides a convenient biophysical model of a genotype-phe-
notype map that has been used in studies for robustness,
evolvability, and epistasis. In such studies, RNA folding
can be precisely defined and statistically measured, reveal-
ing simultaneous and non-independent effects of natural
selection [8,9]. These studies have focused on the robust-
ness of RNA folding in viruses [10-12], viroids [13,14],
and microRNAs [15-18].

Given a quantitative measure of structural robustness
[15,18,19], we developed an integrated system named
EvoRSR (Evolution of RNA Structural Robustness) to
explore the evolution of robustness based on important
landscapes induced by RNA folding. EvoRSR is object-ori-
ented, modular in design and freely available at http://
biotech.bmi.ac.cn/EvoRSR under the GNU/GPL license.
This open-source package inspects the evolution and ori-
gin of robustness through sampling genotype (sequence)
space at each Hamming distance from the WT sequence.
Here, we describe the EvoRSR package and analyze the
miRNA gene cel-mir-357 to illustrate how EvoRSR works.

Implementation
Mechanism and workflow of EvoRSR
Figure 1 illustrates the mechanism of EvoRSR. EvoRSR
studies the evolution of robustness based on landscapes
that result from mapping micro-configurations to scalar
or nonscalar entities. Here, the micro-configurations are
sequences of nucleotides. The scalar properties include
free-energy of secondary structure and neutrality. Free-
energy of secondary structure describes the thermody-
namic stability of RNA secondary structure (conferring
environmental robustness) [15,16,19]. Neutrality (see
Figure 1a) quantitatively measures the genetic robustness
of RNA secondary structure [15,16,18,19]. Based on these
two scalar properties, we defined the free-energy land-
scape and neutrality landscape, respectively. The nonsca-
lar structure landscape is generated from the RNA
secondary structure. Based on these three landscapes,
EvoRSR investigates the evolution of robustness in the
phenotype space by sampling on genotype (sequence)

space at each Hamming distance from the WT RNA
sequence (see Figure 1b).

The EvoRSR package is a free package written in C, which
runs in a command-line mode within a Linux/Unix envi-
ronment. The Vienna RNA package [20] is required to run
the program. Detailed installation instructions for
EvoRSR are provided on its web site. Currently, three pro-
grams are included in this package. Figure 2 shows the
workflow of EvoRSR.

Evaluation of genetic and environmental robustness
Formally, the neutrality η of an RNA sequence with length
l is defined as

where d is the base-pair distance between the secondary
structures of the WT sequence and its mutant, averaged
over all 3 × l one-mutant neighbors. d is calculated by
RNADISTANCE in Vienna RNA package [21]. Thus, η rep-
resents the average fraction of the structure that remains
unchanged after a mutation occurs. The free-energy, dG, is
quantitatively measures the thermodynamic stability
(which confers environmental robustness) of a WT RNA
sequence [15-17,19]. dG is calculated as the minimum
free-energy of secondary structure obtained by RNAFOLD
in Vienna RNA package [21]. In the EvoRSR package,
Evoneu is applied to calculate the η s and dGs of the
sequences in a Fasta file (see Figure 2).

Because RNA molecules may function in dynamical, struc-
tural reconfigurations [22,23], an RNA molecule is better
described by an ensemble of secondary structures, that
have free energies close to the minimum of free-energy. In
this case, we revise the quantitative definition of genetic
and environmental robustness. The base-pair distance d in
equation (1) is replaced by the general multi-structure dis-
tance between the ensemble of secondary structures of the
WT sequence and its mutant [24], and the minimum free-
energy dG is replaced by the ensemble free-energy.

Landscape and its density surfaces
For each WT RNA sequence, we employ a Monte Carlo
method to sample sequences in the genotype space at
each Hamming distance from the WT RNA sequence. The
set of total sampling sequences is denoted by S, which can
be divided into subsets Si, i = 1, 2, ..., l that represent the
set of sampling sequences within a Hamming distance of
i from the WT sequence. All the subsets have an identical
size, (|Si| = N, i = 1, 2, ..., l).

As a generic tool for the study statistical properties of land-
scapes, we propose the use of a two-dimensional proba-
bility density surface [25,26]. A density surface P(t|h) is

h = −l d
l
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The mechanism of EvoRSRFigure 1
The mechanism of EvoRSR. (a) Evaluation of genetic robustness. (b) Sampling and folding on genotype space at each Ham-
ming distance.
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the conditional probability that given two sequences
Hamming distance h from each other, the two configura-
tions have either a base-pair distance t or a free-energy dif-
ference t. The density surface describes how the
distributions of free-energy values and configuration dif-
ferences change along the Hamming distance from the
WT sequence. Furthermore, the density surface condenses
statistical aspects of the correlation between sequences
and structures and provides a tool to derive and calculate
local and global properties of sequence-structure rela-
tions.

Autocorrelation function and correlation length
Landscape can be characterized statistically by autocorre-
lation functions [27,28], which can be expressed in terms
of mean squared distance:

r( )
( )

h
d h

d
= −1

2

2

The workflow of EvoRSRFigure 2
The workflow of EvoRSR.
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�d2� is the mean squared distance sampled over the entire

sequence space, and  is the conditional mean

squared distance. Autocorrelation functions of base-pair

distances ρ(h) are approximated by an exponential fit to
calculate a correlation length � for secondary structures in
sequence space:

The correlation length increases roughly with the
sequence length l [25]. Autocorrelation functions and cor-
relation lengths of structures characterize the sequence-
structure relation by a single function or a single value,
respectively. They provide a useful measure for the sensi-
tivity of RNA structures against point mutations. In the
EvoRSR package, they are computed by the program Evo-
autocf (see Figure 2).

P-value curve of robustness

For each WT RNA sequence, EvoRSR measures the neutral-

ity of the WT sequence, ηWT, and evaluates the neutralities

, i = 1, 2, ..., l, j = 1, 2, ..., N of the corresponding sam-

pling sequences in Si, i = 1, 2, ..., l,. To evaluate the level of

the increased neutrality for each WT sequence at each
Hamming distance separately, the rank of the neutrality of
WT sequence, ri i = 1, 2, ..., l, among the neutralities of the

sampling sequences in Si, i = 1, 2, ..., l, is calculated. This

order statistics measure has no requirements on the
nature of the neutrality value distribution. The signifi-
cance level of robustness of WT sequence at each Ham-
ming distance is then defined as the P-value curve

, i = 1, 2, ..., l, which estimates the probability of

observing an equal or higher neutrality value by chance at
each Hamming distance. The same analysis applies to the
environmental robustness, in which the neutrality of a WT
RNA sequence is replaced by its free-energy, dG. The sig-
nificance analysis process is realized by the program
Evopval in the EvoRSR package (see Figure 2).

Results and discussion
To illustrate how EvoRSR can be used to study the evolu-
tion of robustness, we analyzed the C. elegans miRNA mir-
357 (see Figure 2). The detail results are presented as Addi-
tional file available on the website of EvoRSR [see Addi-
tional file 1]. Our result indicates that along the Hamming
distance from the WT sequence the genetic and environ-
mental robustness of miRNA gene cel-mir-357 vary in a
consistent way, and the sub-optimal structures may have
little effect on our conclusions [see Additional file 1].

Robustness reduces an organism's susceptibility to genetic
and environmental perturbations. To understand the evo-
lutionary origins of robustness, we needed to know how
phenotype and genotype are related, and how the geno-
type-phenotype map interacts with evolution. We devel-
oped a convenient computational package EvoRSR to
fully elucidate the evolutionary mechanisms of the
genetic robustness in RNA structure. EvoRSR can investi-
gate the statistical details of RNA structure and the free-
energy landscapes, providing the corresponding autocor-
relation function and correlation length. Based on these
landscapes, EvoRSR explored the evolution of genetic
robustness along the Hamming distance from the WT
sequence. By providing the P-value curves of both genetic
and environmental robustness, EvoRSR presents a sce-
nario of how, and how fast, significant levels of robust-
ness vary along the Hamming distance from the WT
sequence. Additionally, EvoRSR helped examine the sta-
tistical relationship between genetic and environmental
robustness along the Hamming distance from the WT
sequence.

EvoRSR is a novel and flexible package for exploring the
evolution of genetic robustness. EvoRSR was used to study
the robustness of RNA secondary structures, providing a
promising framework to examine central issues concern-
ing the evolution of robustness [15,16]. Recently, we
examined the neutrality of the structural element in 1,082
native miRNA genes from six species and demonstrated
that the structural elements within native miRNA genes
exhibited a significantly higher level of genetic robustness
[18]. An examination of miRNAs of several eukaryotic
species revealed that the stem-loop structures of miRNA
genes exhibits a significantly higher level of genetic
robustness compared to randomly reshuffled pseudo
miRNAs [15,16]. This finding indicated that the excess
robustness of miRNAs goes beyond the intrinsic robust-
ness of the stem-loop structure. Our results indicate that
the increased genetic robustness of miRNAs may result
from congruent evolution for environment robustness
[16]. However, Borenstein and Ruppin suggested that the
excess robustness of miRNA stem-loops results from
direct evolutionary pressure for increased robustness [15].
Furthermore, these studies do not solve how both genetic
as well as environmental robustness evolve or how envi-
ronmental and genetic robustness correlate with each
other along the evolutionary path from the WT sequence.
EvoRSR will elucidate the evolutionary mechanisms of
genetic robustness.

While the EvoRSR environment is a versatile analysis
framework already in the present version, there have
many options for further enhancement. The mechanisms
underlying robustness are diverse, ranging from thermo-
dynamic stability at the RNA and protein level to behavior

d ht
2( )

ln ( )r = −1

h i
j

pi
ri

N= +1
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at the organismal level [2]. The increased neutrality and
thermodynamic stability of RNAs examined by EvoRSR
can be conceived as first-order robustness, based only on
RNA folding map that that assigns each sequence to a
minimum-free-energy structure. The simplicity of this
form of robustness, the full tractability of RNA secondary
structure, and the complete control of reference back-
ground facilitate the exploration of its evolutionary ori-
gins. Protein structures, a step up in complexity, may
possess similar features to test the evolution of robustness.
With a better understanding of protein folding and more
accurate prediction algorithms [29], our methodology can
be applied to the evolution of robustness in protein struc-
tures. Based on the understanding of the first-order
robustness, we can further explore the evolution of
higher-level robustness.

Conclusion
In this study, we developed the open-source integrated
system EvoRSR (Evolution of RNA Structural Robustness)
to explore the evolution of robustness based on biologi-
cally important landscapes induced by RNA folding.
EvoRSR is object-oriented, modular, and freely available
at http://biotech.bmi.ac.cn/EvoRSR under the GNU/GPL
license. EvoRSR can be used for future studies to investi-
gate the evolution and origin of robustness and to address
other common questions about robustness. While the
current EvoRSR environment is a versatile analysis frame-
work, future versions can include features to enhance evo-
lutionary studies of robustness.
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