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Abstract
While many age-associated immune changes have been reported, a comprehensive set of

metrics of immune aging is lacking. Here we report data from 243 healthy adults aged 40–

97, for whom we measured clinical and functional parameters, serum cytokines, cytokines

and gene expression in stimulated and unstimulated PBMC, PBMC phenotypes, and cyto-

kine-stimulated pSTAT signaling in whole blood. Although highly heterogeneous across

individuals, many of these assays revealed trends by age, sex, and CMV status, to greater

or lesser degrees. Age, then sex and CMV status, showed the greatest impact on the

immune system, as measured by the percentage of assay readouts with significant differ-

ences. An elastic net regression model could optimally predict age with 14 analytes from dif-

ferent assays. This reinforces the importance of multivariate analysis for defining a healthy

immune system. These data provide a reference for others measuring immune parameters

in older people.

Introduction
Many changes have been reported in the aging human immune system, or implicated from
work on aging mice. One of the earliest observations of immune aging was decreased antibody
production in response to vaccination or other challenge, including germinal center dysfunc-
tion and decreased somatic hypermutation [1,2]. It is also well-appreciated that naïve T cell
numbers decline with age, as a result of decreased thymic output [3]. Selective reductions in
hematopoietic stem cells committed to lymphoid development further reduce the pool of naïve
lymphocytes [4,5], and this in particular reduces the number of naïve B cells with age [6].
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A loss in naïve B and T cell numbers can contribute to defects in the acquired immune
response, simply as a result of loss in antigen receptor diversity [7]. However, there are also
many age-associated functional defects reported on the cellular level. These seem to be mostly
associated with naïve cells, as memory T cell functions appear to be largely preserved through-
out life [8]. A number of naïve CD4+ and CD8+ T cell signaling defects were recently reported
in a study of pSTAT signaling in aging [9]. Defects in the Erk signaling pathway, mediated at
least in part by increased DUSP4 activity in the elderly, have also been reported [10].

Perhaps as a result of signaling defects, along with the influence of repeated antigen encoun-
ter, a trend towards cellular immune senescence in the elderly has been described [11]. This is
evidenced by progressive loss of costimulatory receptors such as CD28 on CD8+ T cells, with
concomitant increases in regulatory receptors or markers of exhaustion [12,13]. While the phe-
notype of aged and antigen-exhausted T cells show some differences [11], it is tempting to
speculate that replicative senescence is a consequence of the long-term expansion of effector
T cells to chronic antigens, in combination with a lack of naïve T cell replacements.

Clearly, other factors besides age play into the development of terminally differentiated
and/or exhausted T cells; chief among these is CMV exposure. The CMV response in otherwise
healthy individuals is large and dominated by terminally differentiated (CD28-CD27-CD45RA
+) CD8+ T cells [14–16]. Indeed, the entire CD8+ T cell compartment is skewed toward more
mature and terminally differentiated cells in individuals with long-term CMV exposure [17].
CMV infection has further been shown to reduce telomere lengths in circulating T cells [18], as
well as to increase CD8 clonality [19]. These are all phenomena typically associated with aging.
However, it is possible to dissect at least some effects of age from those of CMV infection alone
[7,20].

Receptors for sex hormones can be found on various immune cells, so sex would also be
expected to influence the composition and function of the aging immune system. Indeed, sig-
nificant differences in certain serum cytokine levels between males and females have been
described [21–23]. Sex as well as age differences have also been noted in response to immuno-
genic cancers such as melanoma [24,25].

In the current study, we sought to create a resource of immune measurements in aging
adults, with specific attention to the influence of age, sex, and CMV status on the immune sys-
tem. Rather than test specific hypotheses, we aimed to develop a database from which metrics
of immunological health could be gleaned. We chose assays to comprehensively examine the
immune system at the level of secreted proteins, cells, and gene expression. These included
assays based on stimulation with cytokines (for phospho-epitope analysis) or with a cocktail of
LPS, IFNα, CD3+CD28 beads, and anti-IgM+IgG (for cytokine secretion and gene expression
analysis). Our results probe the independent and combined effects of age, sex, and CMV on
multiple readouts of immune phenotype and function. We use multivariate approaches to
examine relationships between these readouts, and to build a model of the most significant pre-
dictors of age. However, we fully expect our data to be mined in many additional ways, and
have therefore made the entire data set available through ImmPort (SDY420, http://immport.
niaid.nih.gov), with a visual overview of analyzed immune parameters available at http://
earlybird.cytoanalytics.com.

Results

Clinical Demographics of the Healthy Aging Cohort
We recruited 740 individuals aged 40–97, in and around Palo Alto, California. To avoid the
confounders of overt disease, a defined list of exclusion criteria was developed (Table 1). Partic-
ipants were enrolled to ensure age and sex balance, and the resulting cohort approximately
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mirrored San Francisco Bay Area ethnic demographics (Fig 1). Participants completed a set of
functional assessments and clinical laboratory tests, as described in the Methods. Additional

Table 1. Study inclusion and exclusion criteria.

Inclusion criteria

Age 40+ years

Ability to informed consent

Ability to complete questionnaires

Willingness to be followed up over several years.

Exclusion criteria

Cancer (except skin cancer)

Any infection in the past 3 months

Active allergy or hay fever

HIV

Hepatitis A, B, C

Organ transplant recipient

Autoimmune diseases such as Rheumatoid Arthritis, SLE, Multiple Sclerosis

Uncontrolled diabetes or thyroid problems

Stroke/ heart attack in the last 1 month

Cirrhosis of liver

Active herpes of mouth or genitals

Alcoholism

Active Psoriasis; use of steroid creams in the past 4 weeks.

Prescription anti-inflammatories, anti-allergy, antibiotic or steroid use in the past 3 months

Lifetime use of Chemotherapy especially cytotoxic agents.

Alcohol consumption more than 2 cans of beer/2 shots of whiskey/2 glasses of wine daily in the past
30 days

doi:10.1371/journal.pone.0133627.t001

Fig 1. Demographics of the cohort of 740 participants, including age band, race/ethnicity, and sex.Results are representative of the aging population
in the San Francisco Bay Area. A subset of 240 of these individuals was selected for further immunological analysis; this subset included all individuals age
78 and above, with an equal number of 40–50 year olds, and lower representation of the middle age bands.

doi:10.1371/journal.pone.0133627.g001
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blood was used for our specialized immunological tests and for banking of serum, PBMC,
RNA, and DNA.

Summary of Significant Associations with Age, Sex, and CMV Status
We completed comprehensive immunophenotyping and functional analyses on 243 subjects,
chosen to include a continuum of all age groups, but with emphasis on the youngest and oldest
individuals (all subjects age 78 and above were included, balanced by an equal number of 40–
50 year olds). This selection allowed us the greatest likelihood of finding immunological
differences with age. The assays applied to this subset included immunophenotyping by mass
cytometry (CyTOF); phospho-epitope flow cytometry; gene expression analysis on unstimu-
lated and stimulated PBMCs; and Luminex cytokine assays on the supernatants of those
PBMC, as well as on serum. PBMC stimulation was done with a cocktail of IFNα, LPS, CD3
+CD28 beads, and anti-IgM+IgG antibodies. These stimuli were chosen to trigger largely
mutually exclusive signaling pathways in immune cells (see PBMC Stimulation Assays in the
Methods).

An overview of the combined analysis results from these different assays is shown in Fig 2.
Here the percentage of assay readouts with particular P values for age, CMV status, or sex is
graphed as a histogram. From this summary, it is apparent that different assays revealed age,
CMV, and sex differences to varying degrees. For example, a high proportion of readouts for
the clinical, stimulated/unstimulated Luminex, and immunophenotyping assays had P values
<0.05; but this was not the case for serum Luminex or phospho-flow. Immunophenotyping
appeared to be most influenced by CMV status, while immunophenotyping and clinical assays
had the most significant changes with sex.

Another way to gauge the output of these assays is to examine the readouts with the lowest
P values for each assay (Table 2). Here, clinical laboratory tests and functional assessments are
both included as separate “assays”. While this compilation ignores the fact that some assays
may have many more significant readouts than others, it highlights what each assay is “best” at.
For example, phospho-flow uniquely identified only CMV differences among the five readouts
with lowest P value. Immunophenotyping identified age and CMV differences among its “top
five”, while the other assays identified a combination of mostly age and sex differences. A com-
plete list of all readouts with P values for age, sex, and CMV status is provided in S1 Table.

Examples of significant readouts from each assay or assay group are shown in Fig 3. Fig 3A
shows the relationship of a clinical laboratory test, urea nitrogen, with age, sex, and CMV sta-
tus. This analyte showed a significant relationship with age, but not sex or CMV status. By con-
trast, Fig 3B shows associations for an immunophenotyping analyte, CD27+CD8+ T cells. This
analyte showed a highly significant relationship with age, sex, and CMV status. Finally, Fig 3C
shows these associations for a phospho-flow analyte, IL-6-stimulated pSTAT3 in CD8+ T cells.
Here, the only significant relationship appears to be with CMV status. These examples further
demonstrate the different “strengths” of each assay in identifying significant relationships with
age, sex, or CMV.

Cytokines in Serum versus Stimulated PBMC
An interesting comparison is the differing age associations of cytokines when measured in
serum versus stimulated PBMC supernatants. Many cytokines display a pattern similar to that
shown for MCP3 in Fig 4. When analyzed in the supernatant of PBMC incubated without stim-
ulation, this cytokine shows a slight upward trend with age (driven in part by some high outli-
ers among the oldest individuals). However, when stimulated with a cocktail of IFNα, LPS,
CD3+CD28, and anti-IgM+IgG, a strong downward trend with age emerges (after subtraction
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of the unstimulated levels). Finally, when MCP3 levels are analyzed in serum, there is no signif-
icant trend with age. Thus, a requirement for in vitro activation of cells in order to uncover
functional differences with age is revealed in this example.

Fig 2. Overview of age, sex, and CMV-status associations with laboratory and clinical assay results.
Histograms show the distribution of P values for the analytes within each assay category. Clinical = all clinical
variables; LuSe = serum Luminex; LuSuptStim-Un = PBMC supernatant Luminex, Stimulated-Unstimulated
values; LuSuptUnstim = PBMC supernatant Luminex, Unstimulated values only; Pheno = CyTOF immune
phenotyping; PhopshoFC = phospho-flow cytometry. It is apparent that the clinical variables yield low P
values primarily for age and sex. Stimulated Luminex assays yield more low P values than serum Luminex
assays, and those P values are largely restricted to age. Flow cytometry phenotyping reveals a higher
proportion of sex and CMV effects, while phospho-flow cytometry did not yield many low P values for any
covariate (age, sex, or CMV status).

doi:10.1371/journal.pone.0133627.g002
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Stimulated Gene Expression
For analysis of gene expression in stimulated PBMC, we analyzed a subset of younger (<60 y;
n = 58) and older (> = 80 y; n = 33) individuals, and randomly split them into internal training
and validation groups in a ~3:2 ratio, respectively. Of the 20,000 genes probed in the arrays, we
identified 4114 significantly expressed genes that were age-associated (Fig 5A). 2128 genes
were down-regulated and 2286 were up-regulated with age (S2 Table). A further analysis of 64

Table 2. Five analytes with lowest unadjusted P value for age, sex, or CMV status, by assay or assay group.

Assay Analyte Covariate Covariate Coefficient1 P

Hematology and blood chemistry

hemo Sex 1.432 1.00E-21

hema Sex 3.8713 4.80E-19

ureanitrog Age 0.1634 5.60E-15

rbc Sex 0.3761 1.70E-12

creatinine Sex 0.1909 3.40E-12

Functional assessment

grip_r Sex 14.8652 3.10E-41

grip_r Age -0.2933 1.10E-19

promisscore Age 0.0111 5.00E-10

wk8ft_time Age 0.0536 8.10E-10

pe_wc Sex 3.5334 4.00E-09

Serum cytokines

LEPTIN Sex -0.7837 1.40E-10

MIG Age 0.0245 1.30E-09

ENA78 Sex -0.428 9.50E-04

RANTES Sex -0.3667 5.00E-03

IFNA CMV 0.3424 1.10E-02

PBMC cytokines (Stimulated-Unstimulated)

MCP3 Age -0.0322 4.20E-12

ENA78 Age -0.0271 3.80E-10

IL7 Age -0.0187 1.90E-08

ICAM1 Age -0.0185 9.00E-08

VCAM1 Age -0.0212 1.80E-07

PBMC cytokines (Unstimulated only)

MCP3 Age 0.0151 6.00E-05

VCAM1 Age 0.0123 2.20E-04

ENA78 Age 0.0094 1.30E-03

MCP3 Sex 0.3084 6.80E-03

IL15 Age 0.0072 8.00E-03

Immunophenotyping

CD27+CD8+ T cells CMV -20.6371 1.80E-18

naive CD8+ T cells Age -0.5944 1.40E-14

CD94+CD8+ T cells CMV 15.4194 1.70E-09

CD8+ T cells CMV 9.1306 5.80E-09

B cells Age -0.3764 7.50E-09

Phospho-epitope flow cytometry

CD8+: pSTAT3.IFNa CMV -0.3306 3.80E-04

CD8+: pSTAT1.IFNa CMV -0.2367 1.10E-03

CD8+: pSTAT3.IL-6 CMV -0.4443 1.10E-03

CD4+: pSTAT3.IFNa CMV -0.288 4.60E-03

CD8+: pSTAT5.IFNa CMV -0.1774 5.90E-03

1
“Covariate Coefficient” is the estimated value for the adjustment associated with the indicated covariate. For Age, the coefficient indicates the estimated

amount by which the analyte increases (or decreases, if negative) for each year of age. For CMV, the coefficient indicates the estimated amount by which

the analyte increases (or decreases) for study participants who are CMV positive. For Sex, the coefficient indicates the estimated amount by which the

analyte increases (or decreases) for study participants who are male. Units of measure are specific to the assay or analyte.

doi:10.1371/journal.pone.0133627.t002
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Fig 3. (A) Example of a clinical laboratory assay, urea nitrogen, which shows a significant correlation with age (unadjusted P value = 5.8x10^-15),
but not with sex or CMV status. All p-values are unadjusted p-values from a multiple linear regression as described in the methods. The p-values test the
significance of the indicated predictor variable, while adjusting for the other two variables. The left most panel (age) shows age versus urea nitrogen, with
fitted regression lines for CMV negative females (Fe_neg, solid), CMV positive females (Fe_pos, dash), CMV negative males (Ma_neg, dot), and CMV
positive males (Ma_pos, dot dash). Observations from each of these four groups are indicated by different symbols. The second panel (Sex) shows
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immune-related genes is shown in Fig 5B. All of these genes are present in the immune-related
KEGG pathways falling either in the cytokine-receptor interaction or hematopoetic cell system.
The top canonical pathways were “role of pattern recognition receptors in recognition of bacte-
ria and viruses” and “role of cytokines in mediating communication between immune cells”.
The top regulators were IFNγ, TLR3, and LPS (S1 File). Consistent with previously reported
observations, our data revealed a number of inflammatory cytokine genes with 2-fold or greater
up-regulation in older versus younger individuals. These included IL-6, IL-1A, IL-21, IL-12B,
IL-4, IL-2 as well as the chemokines CCL20, CCL23, and CCL8. Strikingly, a large number of
up-regulated genes with enhanced expression are involved in immune response modulation by
IFNγ, TLR3, LPS, TLR4, IRF7, IFNα2, TREM1, IRF1, IRF8, TCR and STAT1 (S1 File). While
genes with higher or lower expression in older individuals were fairly balanced (Fig 5A), there
was a tendency towards a more elevated transcriptional signature for immune genes in elderly
individuals (Fig 5B).

Multianalyte Visualization
In analyzing such a comprehensive data set, it is of course interesting to examine relationships
among multiple analytes, rather than single analytes in isolation. This process is aided by

observations by sex, with horizontal reference lines at group means. The third panel (CMV) shows observations by CMV status, with horizontal reference
lines at group means. (B) Example of a cell subset (CD27+CD8+ T cells) that has significant correlations with age, sex, and CMV status. The Y axis
represents the percentage of CD27+CD8+ T cells within all CD8+ T cells. The CMV effect is the most dramatic (unadjusted P value = 1.7x10^-18). (C)
Example of a phospho-flow cytometry readout (IL-6 stimulated pSTAT3 in CD8+ T cells) that has a significant CMV effect (P = .0035), but no significant age
or sex relationship. The Y axis represents the fold change in pSTAT3 in CD8+ T cells, unstimulated/IL-6 stimulated.

doi:10.1371/journal.pone.0133627.g003

Fig 4. Example of a cytokine, MCP-3 (also known as CCL7) that shows differing trends with age depending upon the type of assay. Left panel,
supernatant levels from unstimulated PBMC incubated for 4 hours. Middle panel, supernatant levels from PBMC stimulated with a cocktail of IFNα, LPS,
CD3+CD28, and anti-IgM+IgG, after subtraction of unstimulated supernatant levels. Right panel, serum levels. All cytokines were measured by a 63-plex
Luminex panel. Y-axis values represent the z score of median fluorescence intensity (MFI), after log2 transformation. Black line shows fitted regressions of
analyte readout versus age. While CMV effects were not significant in any assay, age effects were significant for both unstimulated and stimulated-
unstimulated supernatant assays.

doi:10.1371/journal.pone.0133627.g004
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visualizations such as the parallel coordinates view shown in Fig 6. In this Figure, the top ten
cytokines with highest variance in serum were chosen for display, with individuals colored by
sex. From the top panel, it is apparent that a relatively small number of high outliers account
for most of the variance of these cytokines. Furthermore, these high outliers are almost exclu-
sively females (except for PDGFββ, known to be higher in males [23]). By selecting those outli-
ers that are high for one cytokine (IFNβ, bottom panel), we see that these IFNβhigh individuals
are also high outliers for at least some of the other most variable cytokines. Thus, there are pat-
terns of high expression of multiple cytokines, found exclusively in females, and revealed by
the parallel coordinates visualization tool (see http://earlybird.cytoanalytics.com).

Fig 5. Differentially expressed genes by age in stimulated PBMC. After 4 hours incubation of PBMCwith or without a cocktail of IFNα, LPS, CD3+CD28,
and anti-IgM+IgG, RNA was extracted and used for gene expression microarray analysis (Agilent, 4x44K, 2-color). Subjects <60 y and > = 80 y were
randomly divided into a training set (53 subjects) and validation set (38 subjects). 4114 genes were identified in the training set as differentially expressed in
the older vs. younger subset. (A) Differentially expressed genes are ordered by decreasing fold change between older and younger groups in the training set
(left panel). A similar segregation is seen in the validation group (right panel). In these panels, expression values are represented as log2 expression
(stimulated/unstimulated). (B) Display of 64 immune-related genes from the 4114 gene signature. In these panels, expression values are represented as fold
change compared to the mean level of each gene in the young group. While many genes were associated with age, no gene signature was found to be
specifically associated with CMV or sex (data not shown).

doi:10.1371/journal.pone.0133627.g005
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Multivariate Modeling
We further sought to build a model for predicting age that included analytes from multiple
assays, We used the elastic net regression method [26], which estimates a linear relationship
minimizing mean squared error (MSE) while using a small number of predictors that are
uncorrelated with each other. The number of predictors is related to lambda, a term which
penalizes the inclusion of additional predictors. The larger the lambda, the smaller the number
of predictors. Lambda is usually selected to be the largest value within one standard error of the
lambda which minimizes MSE. This is illustrated in Fig 7A, which also illustrates the relative
performance of the various models. The 14-parameter model, with resulting coefficients for the
chosen parameters, is shown in Fig 7B. Interestingly, of the 14 analytes chosen by the model, 6
are clinical laboratory or morphometric tests, and 3 are immunophenotyping subsets. The
remainder include cytokines, sex, and CMV status. Of note, we did not include gene expression
analytes, in order to avoid overwhelming the model and to keep it focused on immunological
predictors. The fact that the immunological assays contribute at some level to the model sug-
gests that they have some degree of prediction for age. A measure of performance of the model
is shown in Fig 7C, which plots actual versus predicted age. It is apparent that the model tends
to overestimate the age of younger individuals and underestimate the age of older individuals.

We also built elastic-net logistic regression models for sex and CMV status. Plots of lambda,
coefficients for the chosen analytes, and performance versus true sex and CMV status are
shown in S1 and S2 Figs. While the sex prediction model achieved nearly 100% accuracy, the
CMV prediction model was slightly less accurate. While the CMVmodel was heavily depen-
dent on immunophenotyping analytes, the sex prediction model contained a mixture of ana-
lytes from clinical, immunophenotyping, and other assays.

Fig 6. Example of multivariate visualization using parallel coordinates (http://earlybird.cytoanalytics.com). Results for the ten serum cytokines with
highest variability are shown, with individuals colored by sex. Each analyte is displayed on its own vertical axis, with the axis range corresponding to the data
range. Each line represents one person, and intersects each axis at the appropriate value (MFI) for that person. With the exception of PDGFββ, it is clear that
the highest outliers are all females. By selectively highlighting the top individuals for IFNβ (bottom panel), it becomes apparent that many of these individuals
are “serial outliers”, i.e., high for other cytokines as well. This implies a minority phenotype of females with multiple high serum cytokine levels.

doi:10.1371/journal.pone.0133627.g006
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Fig 7. (A) Profile of mean-squared error of elastic-net regression for various values of lambda. For a
range of lambdas, an elastic-net regression is fit using 10-fold cross-validation. Vertical dotted lines indicate
the value of lambda for which MSE is minimized, and the largest value of lambda within one standard error of
that minimum. The numbers along the top border of the graph indicate the number of non-zero parameters
that are included in the model for corresponding values of lambda. (B) Results of elastic-net regression
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Cross-Assay Associations
To further explore cross-assay associations, we looked for significant associations between
pairs of analytes, after accounting for the effects of age, sex, and CMV status. We then focused
on statistically significant associations in which the two analytes were from different assays,
with the 3 Luminex assays considered a single assay. We then identified the strongest 0.5% of
the associations (n = 160, spanning 120 analytes), as defined by smallest p-values. P-values ran-
ged from 2.6x10-16 (waist circumference association with serum leptin) to 1.0x10-3 (IL-10 in
PBMC supernatant and CD94+CD4+ T cells). The largest effect size (0.71, measured in stan-
dard deviations) was for the association between waist circumference and leptin, suggesting
that after accounting for age, gender, and CMV status, waist circumference increased by an
average of 0.71 standard deviations for each SD increase in serum leptin. Details are provided
in S4 Table. Analytes that appeared in the largest number of pairwise associations included the
total score of the Instrumental Activities of Daily Living Scale (n = 15), C-reactive protein
(n = 9), serum GroA (n = 9), and IgD+CD27+ B cells (n = 9). Fig 8 illustrates these connec-
tions. It includes 9 highly connected analytes having at least 7 associations as described above,
and the analytes to which these primary analytes are connected. A total of 61 analytes are
shown. This data suggests a high degree of relatedness between immunological readouts, espe-
cially between different types of assays, and also between clinical/morphometric measurements
and immune assays.

Discussion
In this study, we describe a large immunological data set based on about 240 individuals from a
clinical cohort of 740 healthy aging adults. Data from cellular, protein, and genomic assays are
described, with particular emphasis on stimulation-response assays (phosphoepitope analysis
of cytokine signaling, and cytokine production and gene expression from stimulated PBMC).
Our emphasis in this paper was to describe the features of each assay with regard to discovering
differences based on age, sex, and CMV status. Further analysis of the data is welcomed, via a
parallel coordinates visualization tool (http://earlybird.cytoanalytics.com), or via download
from ImmPort (SDY420, http://immport.niaid.nih.gov).

One common theme among nearly all our immunological readouts is that there is consider-
able heterogeneity at every age, which is generally greater than the mean change across ages.
This is exemplified by the CD27+CD8+ T cell subset (Fig 3B). While the downward trend with
age is highly significant, the breadth of values at every age is very high. In this regard, there are
essentially no “clock” analytes, which would accurately and independently predict age, since
there is so much overlap in the distributions among young and old individuals. The corollary
to this is that many, if not most, elderly individuals still fall within the range of the younger

combining data frommultiple assays. Each bar represents the coefficients for a particular predictor of age.
Predictors are selected by the algorithm, with 14 out of 312 analytes chosen. Analytes frommultiple assays
(clinical, serum Luminex, flow phenotyping, and the stimulated PBMC supernatant Luminex) were selected.
Sex and CMV status were explicitly included in the model. Predictors were converted to Z-scores prior to
model fitting so that all analytes could be interpreted on a common scale. Each unit represents one standard
deviation for that particular analyte. Coefficients represent adjustment to a mean age of 69, based on the
scaled value of the analyte. Thus, for example, the estimated age increases by approximately 1.6 years for
every unit increase in absolute monocyte count (the analyte with the largest positive coefficient), holding all
other values constant; and decreases by approximately 4.5 years for every unit increase in naïve CD8+ T
cells (the analyte with the largest negative coefficient). (C) Comparison of predicted versus actual age for the
elastic-net model. Each point represents one person. The blue diagonal line represents predicted
age = actual age. Interestingly, the resulting model overestimates the age of younger participants, and
underestimates the age of older participants.

doi:10.1371/journal.pone.0133627.g007
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Fig 8. Associations between clinical and immunological analytes, after accounting for the effects of
age, sex, and CMV status. Initially, associations were limited to the strongest 0.5% of the cross-assay
associations, as defined by smallest p-values. The 3 Luminex assays were considered a single assay. We
then looked for analytes having the largest numbers of associations, hereafter called connections. The
diagram includes all analytes connected to at least 7 other analytes (n = 9), and the analytes to which these
analytes are connected, for a total of 61 analytes. Node size is proportional to the number of connections.
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adults. In fact, we often observed a broadening of the distribution with age. This is exemplified
by the cytokine MCP3 (Fig 4), for which high or low outliers are seen at increasing frequency
with age, for all three assay methodologies; and by urea nitrogen (Fig 3A), for which high
outliers are seen among the oldest participants. Trends of this type lead to an encouraging
hypothesis, namely, that these outliers among the elderly might predict those at risk for immu-
nologically-related diseases, and could perhaps provide diagnostic markers for immune inter-
vention among the elderly. In this regard, it is important to note that this study had strict
exclusion criteria (Table 1), such that overt diseases of aging were not clinically present.
Although our data provide a relatively clean description of the range of immunological values
associated with healthy aging, they represent a cross sectional analysis and as such may include
individuals at risk for or developing disease.

By performing a series of assays at the cellular, protein, and genomic level, we were able to
compare how the different assays performed with regard to identifying differences in age and
other variables. We chose sex and CMV status as major covariates, due to the plethora of exist-
ing literature on immunological differences associated with them. Trends by age, sex, and
CMV status were captured by all the immune assays, to greater or lesser degrees. For example,
phospho-flow was most strongly associated with CMV status (Table 2), while stimulated cyto-
kine production showed strong associations with age (Table 2, Fig 2). CyTOF phenotyping was
associated with both age and CMV status (Table 2, Fig 2). Thus, in order to best quantify the
effects of all three of these covariables, a comprehensive set of immune assays is most
informative.

CMV serostatus was used as an endpoint for the model of S2 Fig This was because we were
most interested in defining immune differences between those with CMV infection and those
without. However, CMV IgG titers are included in our online data (www.immport.niaid.nih.
gov), so one could also choose to model immune predictors of CMV antibody titer. Of note, we
did not measure CMV viral load, which is generally undetectable in healthy donors, even those
with apparently frequent reactivation [27].

As a result of quantifying significant readouts by age, sex, and CMV status, one can pose the
question, “Which of these three variables has the greatest impact on the immune system as we
measured it?” From the summary of P values in Fig 2, it seems reasonable to conclude that age,
then sex and CMV status, show the greatest effects. Taken another way, it is impressive to see
that the changes in the immune system brought about by a single pathogen, CMV, rival the dif-
ferences seen between the sexes, in terms of the number of significantly affected analytes. Of
course, the presence of statistically significant measurements should not be confused with bio-
logically relevant changes, which are more difficult to quantify.

Another conclusion from our data is that there is a clear interaction of age, sex, and CMV
status. For example, cell subsets (like CD27+CD8+ T cells, Fig 3B) are highly influenced by all
three. In this case, the effect of CMV appears to be a downward broadening of the distribution,
such that a subset of CMV+ individuals shows markedly lower levels of these cells. However,
females and younger individuals have, on average, higher levels of these cells, so that a younger
female with CMV is likely to have more CD27+CD8+ T cells than an older male with CMV.
When all the immunological and clinical readouts were used to create an age prediction model,
a series of 28 analytes spanning all the assays emerged. Thus, the most accurate prediction of
age is achieved when data from multiple assays are combined.

Solid lines represent positive correlation, dotted lines negative. Line width is proportional to absolute
magnitude of correlation, with thicker lines representing stronger correlations. Line color differs for each of the
9 highly connected analytes.

doi:10.1371/journal.pone.0133627.g008
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The associations shown in Fig 8 and S4 Table also highlight the connectedness between dif-
ferent immune assays and between the immune system and clinical and morphometric tests.
For example, we were struck by the high number of associations of immune readouts with an
index of daily living activities. These types of associations can be taken as further evidence of
the strong influence of environment on the immune system, as recently highlighted in a study
of immunological characteristics of twins [28].

The interaction of multiple variables on the immune system, along with the heterogeneity
seen in any single analyte among healthy individuals, suggests another important conclusion.
Clinicians are accustomed to reference ranges for laboratory tests, with clear upper and lower
limits, beyond which lies “abnormal”. But for most measurements in the immune system, the
reference range for any one analyte is both wide and possibly dependent upon extrinsic factors,
like sex, CMV status, and/or other covariables that may or may not be measured. In fact, given
the data presented in Fig 6, the “normal” range for cytokines may in fact be dependent on the
levels of other cytokines in that individual. This complicates the definition of normal immune
parameters; but reinforces the importance of a highly comprehensive data set such as this one,
when making comparisons to specific disease states.

Materials and Methods

Study Participant Recruitment and Measurements
740 participants, aged 40–97, were recruited in and around Palo Alto, CA. Exclusion criteria
were modeled on The Baltimore Aging Longitudinal Study (http://www.blsa.nih.gov). We
excluded individuals with common and clinically identifiable conditions that could directly
affect the immune system (such as infections in the preceding 3 months and cancer in the past
2 years), or who were on medications that have such an effect (glucocorticoids, antihistamines).
A complete list of inclusion/exclusion criteria is shown in Table 1. Non-institutionalized study
volunteers aged 40 years and over who were in self determined good health were invited to con-
tact the study center by phone, using traditional methods of recruitment such as local newspa-
per advertisements, flyers and brochures. Respondents underwent a brief telephone screening
to determine eligibility. Those interested and eligible to participate were scheduled for a visit
with a study coordinator. This visit was scheduled such that there was at least an 8-hour fast
prior to blood sample collection. A consent form was mailed in advance of the visit, and the
signed copy was collected during the visit. We enrolled participants in such a way that age-gen-
der numerical balance was achieved.

Study-related assessments included a specific questionnaire, phlebotomy and selected func-
tional tests listed below. The consent packet included HIPPAA authorization for access to
medical records and the consent allows re-contact of participants for future research visits. The
key components of the study visits were: consent process, a patient-administered review of sys-
tems, medical and immunization history (corroborated by review of medical records), a Health
Assessment Questionnaire [29], and Godin Leisure-time physical activity questionnaire [30].
Participants 65 years in age or older also underwent additional evaluation for Frailty using 3
metrics: (a) the 7-point Clinical Frailty Scale [31], (b) Cardiovascular health Study Frailty
index [32], and (c) Rockwood Criteria [31]. Phlebotomy was performed on fasting individuals
and a 55 mL blood sample was obtained. The blood sample was transported to the Human
Immune Monitoring Center (HIMC) laboratory for processing and storage. A small portion
was sent for clinical laboratory testing including a complete blood count, ESR, high resolution
C-reactive protein, a comprehensive metabolic panel, a fasting lipid panel and CMV serology.
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The study was approved by the Stanford University Institutional Review Board for the Pro-
tection of Human Subjects (Stanford IRB). All participants provided written informed consent
and the study was performed under the supervision of the Stanford IRB.

Luminex Assays
This and all of the following assays were performed in the Human Immune Monitoring Center
at Stanford University. Human 51-plex kits were purchased from Affymetrix (Santa Clara, CA)
and used according to the manufacturer’s recommendations with modifications as described
below. Briefly, samples were mixed with antibody-linked polystyrene beads on 96-well filter-
bottom plates and incubated at room temperature for 2 h followed by overnight incubation at
4°C. Room temperature incubation steps were performed on an orbital shaker at 500–600 rpm.
Plates were vacuum filtered and washed twice with wash buffer, then incubated with biotiny-
lated detection antibody for 2 h at room temperature. Samples were then filtered and washed
twice as above and re-suspended in streptavidin-PE. After incubation for 40 minutes at room
temperature, two additional vacuum washes were performed, and the samples re-suspended in
Reading Buffer. Each sample was measured in duplicate. Plates were read using a Luminex 200
instrument with a lower bound of 100 beads per sample per cytokine. Custom assay control
beads by Radix Biosolutions (Georgetown, TX) were added to all wells.

CyTOF Immunophenotyping
PBMCs were thawed in warm media, washed twice, resuspended in CyFACS buffer (PBS sup-
plemented with 2% BSA, 2 mM EDTA, and 0.1% soium azide), and viable cells were counted
by Vicell. Cells were added to a V-bottom microtiter plate at 1.5 million viable cells/well and
washed once by pelleting and resuspension in fresh CyFACS buffer. The cells were stained for
60 min on ice with 50 uL of the following antibody-polymer conjugate cocktail: [insert Ab list
here]. All antibodies were from purified unconjugated, carrier-protein-free stocks from BD
Biosciences, Biolegend, or R&D Systems. The polymer and metal isotopes were from DVS Sci-
ences. The cells were washed twice by pelleting and resuspension with 250 uL FACS buffer.
The cells were resuspended in 100 uL PBS buffer containing 2 ug/mL Live-Dead (DOTA-mal-
eimide (Macrocyclics) containing natural-abundance indium). The cells were washed twice by
pelleting and resuspension with 250 uL PBS. The cells were resuspended in 100 uL 2% PFA in
PBS and placed at 4C overnight. The next day, the cells were pelleted and washed by resuspen-
sion in fresh PBS. The cells were resuspended in 100 uL eBiosciences permeabilization buffer
(1x in PBS) and placed on ice for 45 min before washing twice with 250 uL PBS. If intracellular
staining was performed, the cells were resuspended in 50 uL antibody cocktail in CyFACS for 1
hour on ice before washing twice in CyFACS. The cells were resuspended in 100 uL iridium-
containing DNA intercalator (1:2000 dilution in PBS; DVS Sciences) and incubated at room
temperature for 20 min. The cells were washed twice in 250 uL MilliQ water. The cells were
diluted in a total volume of 700 uL in MilliQ water before injection into the CyTOF (DVS/Flui-
digm, Toronto, Canada). Data analysis was performed using FlowJo v9.3 (CyTOF settings) by
gating on intact cells based on the iridium isotopes from the intercalator, then on singlets by
Ir191 vs cell length, then on live cells (Indium-LiveDead minus population), followed by cell
subset-specific gating.

PhosphoFlow Staining
Smart Tubes (Smart Tube Inc., Palo Alto, CA) containing 10,000 U IFNα, or 50 ng IL-6, IL-10,
or IL-21, were incubated with 1 ml/tube of heparinized whole blood within two hours of draw.
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After 15 min at 37C, Proteomic Stabizer was automatically added by the Smart Tube base sta-
tion, and samples were cooled to 4C, followed by freezing at -80C.

Prior to thawing samples, PBS (Phosphate Buffered Saline), FACS Buffer (PBS+0.5% BSA),
and 1X Thaw Lyse Buffer 2 (Smart Tube, Inc.; diluted from 5X concentrate with ddH2O) were
pre-warmed to room temperature. Smart Tubes were thawed in a 10‐12°C water bath for 25
minutes. Approximately 0.25 ml of the contents of each Smart Tube were put through a cell
strainer (~70 micron mesh) into a 15 ml conical tube, washed with 12 ml of 1X Thaw‐Lyse
Buffer, and incubated at room temperature for 10 minutes. Cells were then pelleted at 600 x g
for 5 minutes at room temperature. Supernatant was discarded and the pellet resuspended in
Thaw‐Lyse Buffer again, followed by centrifugation at 600 x g for 5 minutes at room tempera-
ture. Supernatant was discarded and the pellet was resuspended in 0.5 ml PBS and transferred
to a deep well plate and washed once with PBS. The sample was then stained with the following
cell surface marker panel for 30 minutes at room temperature: PerCP cy5.5 CD66b (Biolegend
305108), PE‐Cy7 CD33 (BD 333946), Pac Blue CD3 (BD 558117), Ax 700 CD4 (BD557922),
AX 700 CD19 (BD557921), Pac Blue CD14 (BD558121). After washing with FACS buffer, cells
were permeabilized by adding 600μl cold MeOH to each well of the deep well block using a
multichannel pipette, and mixing by pipetting up and down in each well. After further washing,
the different stimulus conditions were barcoded using a 3x3 matrix with Pacific Orange and
Alexa Fluor 750 (Invitrogen Corp.) at 0.03 and 0.04 mg/ml for low and 0.2 and 0.3 mg/ml for
high staining, respectively. Incubation with barcoding dyes was performed at 4C for 30 min.
After several washes with FACS buffer, stimulated and barcoded cells were pooled into single
tubes and stained for 30 min at 4C with the following intracellular antibody panel: Ax488
pSTAT‐1 10 (BD 612596), Ax647 pSTAT‐3 (BD557815), PE pSTAT‐5 (BD612567). After two
further washes with FACS buffer, samples were resuspended in PBS and acquired on an LSRII
flow cytometer (BD Biosciences). Data was analyzed with FlowJo software (TreeStar).

PBMC Stimulation Assay
We analyzed both gene expression and secreted cytokines from a PBMC stimulation assay. For
this we chose a cocktail of LPS, IFNα, CD3+CD28 beads, and anti-IgM+IgG antibodies, to
interrogate TLR, cytokine, T cell receptor, and immunoglobulin receptor signaling, respec-
tively. We initially showed that the genes responsive to these individual stimuli were largely
independent after 4 h stimulation, resulting in mostly additive results when using the stimula-
tion cocktail. Furthermore, gene expression changes generally tracked well with changes in the
corresponding protein by Luminex.

To perform this assay, PBMC were thawed in media in a 37°C water bath then 1 ml of warm
media containing 20 uL benzonase (1:10000, 25U/ml) was slowly was slowly added. The cells
were transferred to a 15ml centrifuge tube (with 8 ml of warm media), then another 1ml of
warm media was added to retrieve all cells. Cells were centrifuged at 490 g for 8 mins at room
temperature, supernatant removed, and the pellet resuspended in 1ml warmed benzonase
media by tapping the tube. 9 ml warmed media were then added to the tube, and the cells cen-
trifuged at 490 g for 8 mins at room temperature. Supernatant was decanted, and cells again
resuspend in 1ml of warm media. The cell concentration was adjusted to 1�10^6 cell/mL by
adding warm media, then the cells were rested for 1 hour in a 37 degree, 5% CO2 incubator.
The stimulation cocktail (see S3 Table) was added to each well, gently mixed, and incubated at
37oC in a 5% CO2 incubator for 4 hours. Cells were then transferred to 1.75 mL Ependorf
tubes, centrifuged at 500 g for 10 mins, and the supernatant collected for Luminex analysis.
The cell pellet was stored in 800 μL Trizol reagent for RNA extraction and microarray analysis.
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Each pair of stimulated and unstimulated supernatant was analyzed on the same Luminex
plate.

RNA Extraction—PBMC
RNA sampling and extraction: PBMC or sorted cell populations (< 1x10^7 viable cells) were
collected in 1ml TRIzol (Invitrogen) and stored at -80c until use). Total RNA was isolated
according to the TRIzol protocol (Invitrogen) or RNeasy Mini Kit (Qiagen). For using the
RNeasy Mini Kit, the entire procedure was carried out at room temperature with the QIAcube
automated robot (Qiagen). Total RNA yield was assessed using the Thermo Scientific Nano-
Drop 1000 micro-volume spectrophotometer (absorbance at 260 nm and the ratio of 260/280
and 260/230). RNA integrity was assessed using the Agilent’s Bioanalyzer NANO Lab-on-Chip
instrument (Agilent).

Microarray Processing and Analysis
Cy3 and/or Cy5 labeled, amplified antisense complementary RNA (cRNA) targets were pre-
pared from 20 to 500 ng of the total RNA using the QuickAmp Labeling kit or the Low Input
Quick Amp Labeling Kit (Agilent). 850 ug of labeled cRNA was hybridized overnight to Agi-
lent Whole Human Genome 4 x 44 K slides, which contain 44,000 probes, including 19,596
Entrez Gene RNAs; or to SurePrint G3 Human Gene Expression 8x60k slides, which contain
60,000 probes, including 27,958 Entrez Gene RNAs and 7,419 lincRNAs. The arrays were then
washed, blocked, stained and scanned on the Agilent microarray scanner following the manu-
facturer’s protocols. Data were extracted using Agilent Feature Extraction Software. Microarray
normalization was performed by GeneSpring GX 11.0 software. Further statistical and bioin-
formatic analyses were done with Ingenuity Pathway Analysis software (Ingenuity Systems,
Redwood City, CA).Transcripts meeting the filtering criteria were subjected to hierarchical
clustering using GeneSpring.

Data Analysis of Serum Luminex, Supernatant Luminex, CyTOF
Phenotyping, and PhosphoFlow
To mitigate batch and plate effects, data from both Luminex assays was normalized at the plate
level. The two median fluorescence intensity (MFI) values for each sample for each analyte
were averaged, and then log-base 2 transformed. Z-scores ((value–mean)/standard deviation)
were computed, with means and standard deviations computed for each analyte for each plate.
For the PBMC supernatant assay, a fold change value was computed as the difference between
the stimulated and unstimulated z-scores. For phospho-flow data a fold change value was com-
puted as the stimulated readout divided by the unstimulated readout (e.g. 90th percentile of
MFI of CD4+ pSTAT5 IFNa stimulated / 90th percentile of CD4+ pSTAT5 unstimulated cells).
Thus, units of measurement were Zlog2 for serum Luminex, Zlog2 for unstimulated superna-
tant, stimulated–unstimulated Zlog2 for supernatant, percent of parent population for CyTOF
phenotyping, and stimulated/unstimulated (stim/unstim) for phopshoFlow.

Assay data were combined with metadata, including age, gender, and CMV status. The
resulting data contained measurements for the following numbers of participants: Luminex
serum, n = 241; Luminex stimulated supernatant, n = 219, flow phenotyping, n = 213; and
phospho-flow, n = 173. For each analyte, we performed a linear regression with the readout
modeled as a function of age, sex, and CMV status. Female sex and negative CMV titers were
the reference levels. Coefficient p-values are based on t-tests. No correction was made for mul-
tiple comparisons. For the elastic-net regression, we modeled age as a function of sex, CMV
status, and a subset of 309 analytes measured by clinical, serum Luminex, supernatant Luminex
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(both unstimulated and fold change values), CyTOF phenotyping, and phospho-flow assays.
There were 110 people for whom we had this complete data set. Using the glmnet package in
R, we set alpha to 0.8 (allowing for a small amount of correlation among the covariates selected
for the model) and set lambda (the penalty term on the coefficients of the selected covariates)
to the largest value within one standard error of the minimummean squared error identified
by cross-validation (cv.glmnet).

2-Color Microarray Analysis
Normalization: Agilent human 4x44k two-color microarrays were pre-processed with Limma
(Bioconductor) using the following procedure: (i) median expression values were background
corrected with an offset of 1 using the normexp method, (ii) between-array normalization was
performed using quantile normalization, (iii) within-array normalization was performed using
the Loess method, and (iv) between-array normalization was again performed using quantile
normalization. Genes with multiple probes were consolidated by retaining the probe with the
highest mean expression level across all arrays.

Analysis: subjects were divided into younger (<60yrs) and older (> = 80yrs), and randomly
split into internal training and validation groups in a ~3:2 ratio, respectively. Statistical signifi-
cance between groups was calculated using an unpaired t-test with unequal variance corrected
for multiple hypothesis testing using the Storey and Tibshirani false discovery rate (PNAS,
2003), which was controlled at 25% (that is, all q-values< = 0.25). T-test results were also cal-
culated using a permutation scheme in which class labels were randomized and the t-test statis-
tic was recalculated 1000x for each gene, yielding an adjusted p-value and corresponding q-
value. All adjusted statistics were highly concordant with their corresponding unadjusted val-
ues, and the maximum adjusted q-value did not exceed 0.3, or an FDR of 30%.
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S1 File. Results of Ingenuity Pathway Analysis of stimulated/unstimulated PBMC gene
expression.
(PDF)

S1 Fig. Elastic-net regression model to predict sex. (A) Relationship of lambda and predictive
power as measured by area under the curve (AUC). (B) Analytes selected by the model and
their coefficients (see Fig 7 legend for details). (C) Performance of the model as seen by the dis-
tribution of predicted probabilities for each true sex.
(TIFF)

S2 Fig. Elastic-net regression model to predict CMV status. (A) Relationship of lambda and
predictive power as measured by area under the curve (AUC). (B) Analytes selected by the
model and their coefficients (see Fig 7 legend for details). (C) Performance of the model as seen
by the distribution of predicted probabilities for each CMV category.
(TIFF)

S1 Table. Complete list of all readouts with P values for age, sex, and CMV status.
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S2 Table. List of all significantly age-associated genes in stimulated/unstimulated PBMC.
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