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A Novel 85-Gene Expression Signature
Predicts Unfavorable Prognosis in Acute
Myeloid Leukemia

Yanli Lai1, Lixia Sheng1, Jiaping Wang1, Miao Zhou1 ,
and Guifang OuYang1

Abstract
Aim: Acute myeloid leukemia (AML) is a heterogeneous disorder with complex genetic basis and adverse prognosis. Cytoge-
netics risk, somatic mutations and gene expression profiles are important prognostic factors for AML patients. However, accurate
stratification of patient prognosis remains an unsolved problem in AML. This study was to to develop a novel gene profile to
accurately classify AML patients into subgroups with different survival probabilities. Methods: Survival-related genes were
determined by Kaplan–Meier survival analysis and multivariate analysis using the expression and clinical data of 405 AML patients
from Oregon Health & Science University (OHSU) dataset and validated in The Cancer Genome Atlas (TCGA) database. Feature
selection was performed by using the Least Absolute Shrinkage and Selection Operator (LASSO) method. With the LASSO
model, a prognostic 85-gene score was established and compared with 2 known gene-expression risk scores. The stratification of
AML patients was performed by unsupervised hierarchical clustering of 85 gene expression levels to identify clusters of AML
patients with different survival probabilities. Results: The LASSO model comprising 85 genes was considered as the optimal
model based on relatively high area under curve value (0.83) and the minimum mean squared error. The 85-gene score was
associated with increased mortality in AML patients. Hierarchical clustering analysis of the 85 genes revealed 3 subgroups of AML
patients in the OHSU dataset. The cluster1 AML patients were associated with more female cases, higher percent of bone
marrow blast cells, 85-gene score, cytogenetics risk, more frequent FLT3-ITD, DNMT3A, NP1 mutations, less frequent TP53,
RUNX1 mutations, poorer overall survival than cluster2 tumors. The 85-gene score had higher AUC (0.75) than the 5-gene risk
score and LSC17 score (0.74 and 0.65). Conclusions: The 85-gene score is superior to the 2 established prognostic gene
signatures in the prediction of prognosis of AML patients.
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Introduction

AML is a cancer of the myeloid line of blood cells character-

ized by acquired gene mutations, abnormalities in bone mar-

row, morphology, karyotype and alterations in gene

expression.1 Over the last 3 decades, the incidence rate of AML

rose by 87.3%, with 119.57 � 103 new cases diagnosed in

2017.2 Despite significant progresses in the therapy of AML,

the median survival time of AML is as short as 8.5 months. The

disease has a poor prognosis, with 2-year and 5-year overall

survival (OS) rates less than 35%.3 Elderly AML patients are

more likely to have a relatively poor survival, with above 70%
of patients die from the disease within 1 year of diagnosis.4,5

European Leukemia-Net (ELN) has been commonly used in

clinical settings for the diagnosis and patient prognosis strati-

fication, AML patients are classified into 3 distinct subgroups

with different survival probabilities based on presence or

absence of specific chromosomal aberrations.6 In recent years,
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the prognostic values of somatic mutations have been charac-

terized, for instance, certain mutations are negative prognostic

markers, such as internal tandem duplication in Fms-like tyr-

osine kinase 3-internal tandem duplication (FLT3-ITD), and

Tumor protein p53 (TP53) mutations. In contrast, mutations

in other genes are associated with favorable outcome, such as

CCAAT Enhancer Binding Protein Alpha (CEBPA) and iso-

citrate dehydrogenase 2 (IDH2).7 Furthermore, a number of

gene expression profiles have been established for prognostic

stratification, such as the 5-gene risk score8 and the 17-gene

leukemia stem cells (LSCs) score (LSC17).9 These risk scores

are computed based on linear combination of a set of gene

expression and promising for clinical application. However,

accurate stratification of patient prognosis remains an

unsolved problem in AML.

In the present study, our goal was to identify a novel gene

profile to accurately classify AML patients into subgroups with

different survival probabilities. We performed various survival

analyses to detect survival-related genes in the OHSU dataset10

and validated the results in the AML patients of the TCGA

database.11 We created a novel 85-gene score which is a linear

regression model with 85 gene expression levels as explanatory

variables to accurately predict the OS of AML patients. Finally,

we performed hierarchical clustering of 85 genes and identified

3 distinct subsets of AML patients with significant differences

in overall survival.

Methods and Materials

Data Acquisition

We obtained clinical data and gene expression of AML patients

from 2 different sources. The first is the Tyner’s study compris-

ing 405 AML patients (hereafter referred to as the OHSU data-

set). The second source comes from the TCGA database which

provides researchers with RNA-seq expression data, and

detailed clinical data of 173 AML patients (hereafter referred

to as the TCGA dataset).11 For the TCGA dataset, we removed

those genes which have no expression values in more than 90%
AML samples, leaving the final set of18366 genes for the

downstream analysis.10

Survival Analyses

We utilized the pROC package to determine the optimal cut-

off value for each gene12 and divided AML patients into 2

subgroups: the “high-expression” and “low-expression”

groups according to the cut-off value of the gene. Then we

performed Kaplan–Meier survival analysis and logistic

Table 1. Association Between the Clinical Features and Patients’ Mortality in 405 AML Patients of the OHSU Dataset.

Variables Group Alive Dead P value Statistical method

Age 49.18 61.82 <0.001 Student t test

PBMBC 58.84 58.6 0.95 Student t test

Gender Female 26 54 0.09 Fisher’s exact test

Male 77 94

European Leukemia Net classification Favorable 69 40 <0.001 Fisher’s exact test

Intermediate 48 94

Poor 42 103

TP53 mutation Mutant 3 29 <0.001 Fisher’s exact test

Wild-type 164 209

ASXL1 mutation Mutant 11 20 0.57 Fisher’s exact test

Wild-type 156 218

RUNX1 mutation Mutant 15 31 0.27 Fisher’s exact test

Wild-type 152 207

FLT3-IDT Negative 130 176 0.09 Fisher’s exact test

Positive 29 61

CEBPA mutation Negative 61 82 0.83 Fisher’s exact test

Positive 12 14

IDH1 mutation Negative 61 88 0.19 Fisher’s exact test

Positive 14 11

DNMT3A mutation Negative 35 53 0.61 Fisher’s exact test

Positive 25 31

NP1 mutation Negative 116 178 0.56 Fisher’s exact test

Positive 43 57

Chemotherapy Yes 157 211 0.01 Fisher’s exact test

No 1 14

Bone marrow transplant Yes 70 42 <0.001 Fisher’s exact test

No 88 183

Targeted therapy Yes 15 55 <0.001 Fisher’s exact test

No 143 170
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regression model to investigate the prognostic value of gene

expression using the survival package.13,14 Survival-related

genes were further stratified into risk genes with odd ratio

(OR) greater than 1 and protective genes with OR ranging

from 0 and 1.

Development and Validation of the 85-Gene Score

We performed 10-fold cross-validation of the LASSO model to

select the optimal combination of genes for the prediction of

OS in the OHSU dataset using the R package glmnet.15 Using

the 85 gene expression levels as explanatory variables, a prog-

nostic 85-gene score formula was created. 85-gene score ¼
7.76 þ expression of gene 1 � b1 þ expression of gene 2 �
b2 þ . . .þ expression of gene n � bn. b values were the coef-

ficients generated by the LASSO model of the OHSU dataset.

We performed Kaplan–Meier survival analysis and logistic

regression analysis to analyze the association of 85-gene score

with OS following the same method as described in the survival

analysis. The associations between clinical characteristics and

85-gene score were analyzed by linear regression model. In

order to compare the performance of our 85-gene score with

those of 5-gene risk score and LSC17 score, we first conducted

multivariate survival analysis using overall survival as

response variable, prognostic scores and survival-related clin-

ical features as prediction variables. Then, we computed area

under curve (AUC) values accordingly by the R pROC package

for the 3 prognostic scores. P < 0.05 was predefined to be

statistically significant.

Unsupervised Hierarchical Clustering Analysis

We performed hierarchical clustering of 85 genes using the R

package pheatmap16 and identified distinct subsets of AML

patients with significant differences in overall survival. We

utilized different statistical methods to compare the differences

in clinical characteristics between subgroups of AML patients.

For quantitative variables, the student t test was used. Fisher

exact test was applied to the comparison of categorical vari-

ables. With respects to the comparison of OS, we used the

Kaplan-Meier survival analysis method as described in the

survival analyses section. P<0.05 was predefined as statisti-

cally significant.

Gene Set Enrichment Analysis

In order to understand why 85-gene score is predictive of AML

patients’ survival, we partitioned the AML samples into 2 dis-

tinct groups: the high and low risk groups according to the

cutoff value of 85-gene score determined by the pROC pack-

age. Gene set enrichment analysis (GSEA)17 was performed to

analyze the altered signaling pathways between the 2 different

risk groups. The default parameters were used in the GSEA

analysis.

Results

Characteristics of AML Patients

In the OHSU dataset, we found 3 risk factors for overall sur-

vival, including older patient’s age, higher ELN classification

and TP53 mutation (P<0.05 for all cases, student t test or fisher

exact test, Table 1). As expected, treatments such as che-

motherapy, bone marrow transplant and targeted therapy were

protective factors for OS (P<0.05 for all cases, fisher exact test,

Table 1). Results in the TCGA dataset validated that patient’s

age, ELN classification and TP53 mutation were risk factors

for OS (P<0.05 for all cases, student t test or fisher exact test,

supplementary Table 1). No significant correlation was found

between other characteristics and OS in the 2 datasets (P values

>0.05 for all cases, student t test or fisher exact test, Table 1 and

supplementary Table 1).

Survival Analyses Between Patient Mortality and Gene
Expression in AML

Kaplan-Meier survival analysis exhibited that high expression

levels of 4077 genes and 2435 genes were indicative of

improved and inferior prognosis respectively (P <0.05 for all

Figure 1. The overlap of prognosis-associated genes between OHSU

and TCGA datasets. A. The overlap of protective type genes between

OHSU and TCGA datasets. B. The overlap of risk type genes between

OHSU and TCGA datasets.
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cases, log rank test, Figure 1). Then logistic regression model

was performed between patients’ OS and the survival-

associated features, including ELN classification, patients’ age,

bone marrow transplant, chemotherapy, targeted therapy and

6512 gene expression levels. Multivariate analyses confirmed

1130 protective genes and 948 risk genes after the adjustment

of prognosis-associated features. Furthermore, Kaplan-Meier

survival analysis and multivariate analysis confirmed 138

Figure 2. The 85-gene score is a risk prognostic factor in AML. A. The relationship between AUC and log scaled lambda values and number of

genes with non-zero coefficients in the LASSO model. The x and y labels denoted log scaled lambda values and AUC, respectively. The

numbers on the top were the number of genes with non-zero coefficients reserved in the LASSO model. The left and right vertical dotted lines

indicated the lambda.min and lambda.1se for l, respectively. The former is the one which minimizes out-of-sample loss in cross validation. The

latter is the one which is the largest lambda value within 1 standard error of the minimum. B. The relationship between mean squared error and

log scaled lambda values and number of genes in the LASSO model. C. Kaplan-Meier survival analysis between patients’ OS and the 85-gene

score in the OHSU cohort. D. Kaplan-Meier survival analysis between patients’ OS and the 85-gene score in the TCGA dataset. E. The

difference of the 85-gene scores between deceased and living AML patients in the OHSU and TCGA cohorts. F. The ROC curves of the 85-gene

scores in the OHSU and TCGA datasets.
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genes and 79 genes were positively and negatively correlated

with overall survival in the TCGA cohort respectively (P <0.05

for all cases, log rank test, Figure 1).

Eight-Five Score Is a Risk Factor for Prognosis in AML

We performed 10-fold cross validation of LASSO model to

determine the optimal model for the prediction of OS in the

OHSU dataset. When the log (lambda) was equal to -4.2 and

the number of genes with non-zero coefficients was 85, the

AUC value of LASSO model was 0.83 and the mean squared

error was minimum (Figure 2A-B). Therefore, the LASSO

model comprising 85 genes was considered as the optimal

model. The association of 85 genes with OS, intercept and

coefficients of 85 genes were presented in the supplementary

Tables 2-4. A prognostic 85-gene score formula was created

using the coefficients of 85 genes generated by the optimal

LASSO model. Kaplan-Meier survival analysis showed the

AML patients with high 85-gene scores exhibited higher mor-

tality rates than those with low 85-gene scores in the OHSU

cohort (P< 0.001, log rank test, Figure 2C). Logistic regression

model analysis verified that the 85-gene score was a risk factor

for prognosis in AML patients (P<0.001, OR: 16.79, 95% con-

fidence interval [CI]: 8.75-38.8, Table 2). The negative corre-

lation between OS and 85-gene score was validated in the

TCGA dataset (Table 2 and Figure 2D). Furthermore, the dead

AML patients showed significantly higher 85-gene scores than

those living patients in the 2 cohorts (P< 0.05 for all cases,

student t test, Figure 2E). The AUC values were 0.92 and

0.75 in OHSU and TCGA datasets respectively (Figure 2F),

indicating the the 85-gene score performs well in predicting OS

in AML patients.

Eight-Five Score Is Associated With Clinical Factors
in AML

Linear regression model was used to investigate the association

between 85-gene score and each clinical factor in the OHSU

and TCGA cohorts. In the OHSU cohort, 85-gene score was

significantly positively correlated with ELN Classification,

age, TP53 mutation, targeted molecular therapy, FLT3-ITD,

gender, RUNX1 mutation and negatively correlated with che-

motherapy and transplant (p<0.05 for all cases, Figure 3A).

Furthermore, the 85-gene score exhibited significantly positive

correlation with NP1, FLT3, DNMT3A, ELN Classification,

BMBPC, neoadjuvant treatment (p<0.05 for all cases,

Figure 3B). The 85-gene score also showed negative correla-

tion with RUNX1 and ASXL1 mutation, however, the associa-

tion was not statistically significant (p > 0.05 for all cases,

Figure 3B).

Unsupervised Hierarchical Clustering Analysis

Three subsets of AML patients were identified by hierarchical

clustering of the 85 genes in the OHSU dataset (Figure 4A).

The cluster1 AML tumors exhibited more female cases, higher

BMBPC, 85-gene score, cytogenetics risk, more frequent

FLT3-ITD, DNMT3A, NP1 mutations, less frequent TP53,

RUNX1 mutations, poorer OS than cluster2 tumors (P values

<0.05 for all cases, student t test, fisher exact test or log-rank

test, Figure 4B and supplementary Table 5). The other factors

somatic mutations in IDH1, IDH2, CEBPA, ASXL1 genes and

treatment didn’t exhibit significant difference between sub-

groups of AML patients in the OHSU cohort (P values >0.05

for all cases, fisher exact test, supplementary Table 5). We also

found 3 clusters of AML patients in the TCGA dataset

(Figure 4C). Cluster1 tumors were significantly associated with

higher 85-gene score, higher cytogenetics risk, lower frequen-

cies of NP1 and FLT3 mutations, inferior OS than cluster2 and

cluster3 tumors (P values <0.05 for all cases, student t test,

fisher exact test or log-rank test, Figure 4D and supplementary

Table 6).

Eight-Five Score Related Pathway Analysis

Eleven signaling pathways were significantly enriched in the

high 85-gene score group of the OHSU cohort, with long term

depression, glycerolipid metabolism, vascular endothelial

growth factor (VEGF) signaling pathway, phosphatidylinositol

signaling system and gap junction the top 5 most enriched

pathways (Figure 5, p < 0.05 for all cases). In contrast, genes

in the pathways of glycosaminoglycan degradation, RNA poly-

merase were significantly enriched in the low 85-gene score

Table 2. Multivariate Analyses Between OS and the Risk Score in the TCGA and OHSU Datasets.

OHSU dataset TCGA dataset

Variable OR 2.5%-97.5%CI P value Variable OR 2.5-97.5%CI P value

Age 1.03 1.00-1.06 0.06 Age 1.04 1.02-1.07 <0.001

Cytogenetics risk 0.35 0.16-0.72 0.01 Cytogenetics risk 1.27 0.68-2.41 0.46

Chemotherapy 1.31 0.03-25.2 0.88 TP53 10447140 3.40E-21-NA 0.99

Transplant 0.16 0.05-0.46 <0.001 Risk score 1.61 1.33-1.99 <0.001

Targeted therapy 2.84 0.72-12.87 0.15

TP53.mutation 5.05 0.66-50.91 0.14

Risk score 16.79 8.75-38.8 <0.001

Notably, OR and CI refer to odds ratio and confidence interval, respectively.
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group of the OHSU cohort (supplementary Figure 1, p < 0.05

for all cases). These results suggest that the overall survival of

AML patients could be accurately predicted by the 85-gene

score, the above-mentioned pathways might play a critical role

in the association of 85-gene score with survival.

Comparisons of Prognostic Significance of the 85-Gene
Score With Established Prognostic Gene Signatures

We compared the survival impact of the 85-gene score with

other established gene expression-based prognostic

signatures. We performed multivariate analysis of the 85-

gene score, 5-gene risk score and LSC17 score as well as

prognosis-associated features in the TCGA cohort. The 85-

gene score and 5-gene risk score remained significant prog-

nostic factors independently of prognosis-associated features.

Notably, 85-gene score achieved a higher OR than the 5-gene

risk score and LSC17 score in the multivariate survival anal-

ysis (supplementary Table 7). Furthermore, ROC analysis

showed the 85-gene score had higher AUC (0.75) than the

5-gene risk score and LSC17 score (0.74 and 0.65, Figure 6).

Our data suggested the 85-gene score is superior to the 2

Figure 3. The associations of clinical characteristics with the 85-gene score. A. The associations between clinical characteristics with the 85-

gene score in the OHSU cohort. B. The associations between clinical characteristics with the 85-gene score in the TCGA cohort. Of note, *, **

and *** stand for P value <0.05, <0.01 and 0.001, respectively.
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established prognostic gene signatures in the prediction of

prognosis of AML patients.

Discussion

The 2017 ELN guidelines which incorporate cytogenetic

abnormalities and driver gene mutations are widely applied

to the evaluation of prognostic risk.18 In recent years, several

gene expression profiles have been demonstrated to be poten-

tial prognostic biomarkers in AML. Sha et al developed a

5-gene risk score based on the linear combination of expression

levels of 5 genes, including PLA2G4A, CALCRL, DOCK1,

FCHO2 and LRCH4 and found the 5-gene score was effec-

tively predictive of inferior prognosis in AML patients.8 Stan-

ley developed a LSC17 score on the basis of 17 differentially

expressed genes between 138 LSCþ and 89 LSC-cell fractions.

The LSC17 score was highly prognostic and accurately predict

initial therapy resistance.9 Though the risk classification of

AML has remarkably advanced, the accuracies of these meth-

ods are still needed to be improved.

In this study, the 85-gene score remained significantly asso-

ciated with inferior OS after adjustment of survival-related

clinical characteristics. Moreover, we have demonstrated that

the 85-gene score performed better than the 5-gene risk score

and the LSC17 score in the estimation of patient prognosis. The

mechanisms by which higher 85-gene score is implicated in the

poor prognosis of AML patients remain to be characterized.

The GESA analysis revealed the VEGF signaling pathway and

gap junction were significantly enriched in the high 85-gene

score group. Gap junctions consist of clusters of intercellular

channels that are critical to the direct communication between

adjacent cells. The pathway plays pivotal roles in the regulation

of cell growth, invasion, metastasis and differentiation and in

the maintenance of tissue homoeostasis.19 The VEGF family of

soluble protein growth factors are implicated in the angiogen-

esis and lymphangiogenesis.20 We believe the gap junctions

and VEGF pathways in part contribute to the prognostic

Figure 4. Hierarchical clustering of the 85 genes uncovered 3 classes of AML patients. A. Hierarchical clustering of the 85 genes uncovered 3

classes of AML patients in the OHSU cohort. B. The difference in overall survival between the 3 subsets of AML patients in the OHSU cohort.

C. Hierarchical clustering of the 85 genes uncovered 3 classes of AML patients in the TCGA cohort. D. The difference in overall survival

between the 3 clusters of AML patients in the TCGA cohort.
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importance of 85-gene score in AML. Further mechanistic

studies are needed to investigate its role in modulating poor

prognosis in AML.

Of the 85 genes, many genes have oncogenic functions in

cancers. Take PLA2G4A and SLC2A5 for example, the

PLA2G4A is over-expressed in various cancer types.21-24

PLA2G4A depletion dramatically inhibits the proliferation and

viability of glioblastoma cells,21 lung cancer cells, colon cancer

cells.24 SLC2A5 encodes GLUT5 which plays an important role

in the transportation of fructose in mammalian cells.25

Up-regulated expression of SLC2A5 has been reported in a

wide range of cancer types.26-29 In consistent with this study,

overexpression of SLC2A5 is associated with poor prognosis in

lung cancer26 and AML.28 Depletion of SLC2A5 expression

caused reduction in cellular proliferation, invasion and promo-

tion of cellular apoptosis. In contrast, enhanced expression of

SLC2A5 facilitated cellular proliferation, invasion, and

enhanced tumorigenicity in lung cancer.26

Furthermore, considering the 85-gene expression signature

effectively predicts AML patient prognosis independently of

known prognosticators, such as somatic mutations in

DNMT3A, IDH1, IDH2 and CEBPA, the 5-gene expression

signature may have applicability to the faction of AML patients

without somatic mutations in these driver genes. Though we

have demonstrated the 85-gene score is a risk factor for prog-

nosis in AML patients, the potential of prognosis prediction is

needed to be validated in a large cohort of clinical samples. The

verification of the efficacy of the 85-gene score will be the

focus of our future studies.

Lastly, of the 85 prognosis-associated genes, some genes

may become druggable targets for AML patients. Take the

PLA2G4A and SLC2A5 genes for example, knockdown of the

2 genes enabled significant inhibition of cellular proliferation,

invasion and tumorigenic capability, indicating targeting these

genes might make it possible for potential cure of AML

patients.

Figure 5. GSEA based on the expression of the OHSU dataset identified significantly up-regulated signaling pathways in the high 85-gene score

group, including long term depression (A), glycerolipid metabolism (B), VEGF signaling pathway (C), phosphatidylinositol signaling system

(D) and gap junction (E).
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Conclusion

In summary, this study presented a new 85 gene expression

signature that has prognostic values and effectively stratifies

AML patients into subgroups of AML patients. The 85-gene

score is superior to established gene-expression risk scores and

indicative of an unfavorable prognosis in AML patients.
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