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Abstract: Natural killer (NK) cells are attractive within adoptive transfer settings in cancer
immunotherapy due to their potential for allogeneic use; their alloreactivity is enhanced under
conditions of killer immunoglobulin-like receptor (KIR) mismatch with human leukocyte antigen
(HLA) ligands on cancer cells. In addition to this, NK cells are platforms for genetic modification,
and proliferate in vivo for a shorter time relative to T cells, limiting off-target activation. Current
clinical studies have demonstrated the safety and efficacy of allogeneic NK cell adoptive transfer
therapies as a means for treatment of hematologic malignancies and, to a lesser extent, solid tumors.
However, challenges associated with sourcing allogeneic NK cells have given rise to controversy
over the contribution of NK cells to graft-versus-host disease (GvHD). Specifically, blood-derived
NK cell infusions contain contaminating T cells, whose activation with NK-stimulating cytokines
has been known to lead to heightened release of proinflammatory cytokines and trigger the onset of
GvHD in vivo. NK cells sourced from cell lines and stem cells lack contaminating T cells, but can also
lack many phenotypic characteristics of mature NK cells. Here, we discuss the available published
evidence for the varying roles of NK cells in GvHD and, more broadly, their use in allogeneic adoptive
transfer settings to treat various cancers.
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1. Introduction

In recent years, results from clinical studies have demonstrated safety and efficacy of allogeneic
infusions of natural killer (NK) cells for immunotherapy of hematological malignancies and solid
tumors [1]. NK cells are innate immune effectors whose anti-tumor activity is regulated by a complex
interplay of a large variety of inhibitory and activating receptors [2]. These inhibitory receptors, which
include killer immunoglobulin-like receptors (KIRs) and CD94/NKG2A, are able to recognize major
histocompatibility complex (MHC) class I molecules determined by human leukocyte antigen (HLA)
HLA-A, HLA-B, HLA-C or HLA-E allotypes [3]. Encoded by genes on different chromosomes, this
allows for donor and recipient mismatching between KIRs and their ligands, allowing control of NK
cell activation in immune responses and their alloreactivity as allogeneic effectors.

The use of NK cells in allogeneic immunotherapy benefits from these cells’ short persistence, their
assumed role in the depletion of alloreactive T cells, and their alloreactivity induced by the mismatch
between KIR receptors and their ligands on target cells [4]. In addition, alloreactive NK cells do not
express inhibitory receptors specific for HLA-class I alleles on target cells [5,6]. Allogeneic NK cells
have shown clinical benefits against a number of cancers, particularly against acute myeloid leukemia
(AML), after both hematopoietic stem cell transplantation (HSCT) and allogeneic infusions of isolated
NK cells [7]. Allogeneic NK cells from healthy donors have the advantage of being fully functional.
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In allogeneic HSCT settings, donor T cells are responsible for contributing to graft-versus-host disease
(GvHD) and graft-versus-tumor (GvT) responses [8]. NK cells, on the other hand, are thought to
mediate GvT effects in the presence or absence of donor T cells with a limited induction of GvHD [9]
and have been used in settings of T cell-depleted or T cell replete HSCT. Sources of allogeneic NK cells
include peripheral blood, cord blood, and bone marrow [10].

Despite the immune-protective effect that NK cells appear to exert following adoptive transfer
in both transplant and non-transplant settings, their roles within GvHD and anti-tumor immune
responses are not fully clear. Traditionally, the GvHD suppressive role of NK cells has been thought
to be exerted by their cytolysis of T and dendritic cells [11–13]. However, conflicting reports have
questioned their exact contributions to GvHD. More specifically, reports have shown that cytokine
stimulation required for NK cell expansion and activation can mediate GvHD through activation of T
cells and NK cells’ secretion of pro-inflammatory cytokines [14–16], thereby limiting safe, efficacious
use of peripheral and cord blood-derived NK cells in adoptive transfer settings.

Other NK cell sources, such as induced-pluripotent and human embryonic stem cells (iPSCs and
hESCs) and NK cell lines offer the benefit as a source of NK cells, free of contaminating T and B cells,
mitigating any alloreactive effects and GvHD associated with blood-derived NK cells [1]. However,
challenges in procurement and sourcing of these cells currently limit their widespread use as clinical
NK cell therapies. Nonetheless, NK cell lines in particular have proven promising for use in adoptive
transfer setting, with a number of currently ongoing clinical trials.

2. Immunobiology of Target Recognition by Natural Killer Cells

2.1. Target Recognition and NK Cell Activation

NK cells mediate their anti-tumor immunity based on the net balance of inhibitory and activating
receptors (Figure 1) [17,18]. Target cell killing mediated by NK cells does not occur by default in the
absence of inhibitory receptor engagement, but requires the presence of activating receptors to stimulate
cytotoxicity. Traditional inhibitory receptors involved in NK cell responses belong to either KIRs or
CD94/NKG2A families. KIRs include KIR2DL1, KR2DL2, KIR2DL3 as well as KIR3DL2 and KIR3DL3.
They bind to HLA-C (KIR2DL1, KR2DL2, KIR2DL3) or HLA-A and HLA-B (KIR2DL1, KIR3DL2 and
KIR3DL3) on target cells, while NKG2A—expressed both on mouse and human NK cells—recognizes
the non-classical ligand HLA-E. The extent of such NK cytotoxicity is inversely proportional to the
level of expression of HLA ligands on target cells [19]. However, MHC class I ligands are not the only
inhibitory ligands detected by NK cells, as other inhibitory receptors that recognize MHC-independent
self molecules on cancerous and distressed cells have been identified, including 2B4, CEACAM1,
KLRG1, and LAIR1 [20]. In addition to these receptors, NK cells express a variety of other MHC class
I-independent surface molecules which have been recognized as checkpoints with roles in further
directing NK cell cytotoxicity, such as T cell immunoreceptor with Ig and ITIM domains (TIGIT) and
programmed death-1 (PD-1) [21].
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Figure 1. Activation of natural killer (NK) cells by inhibitory and activating receptors and modes of 
killing of target cells. (A) Recognition by inhibitory killer immunoglobulin-like receptors (KIRs) of 
major histocompatibility complex (MHC) class I molecules on cancer cells inhibits NK cell killing due 
to “missing self” recognition despite the presence of activating receptors. The balance between 
inhibitory and activating signals does not induce NK cell activation. However, NK cells are triggered 
to kill their targets when no matching KIR ligand is present, which shifts the balance toward NK cell 
activation. (B) The lack of MHC molecules prevents inhibition of NK cytotoxicity and promotes NK-
induced killing of targets by activating receptor engagement. However, MHC ligand mismatch is not 
by itself sufficient to trigger NK cell killing in absence of signals from activating receptors. (C) Many 
cancer cells dowregulate the expression of MHC ligands. Even with the lack of MHC ligand 
expression, the balance of activating receptors in favor of killing signals can trigger NK-mediated lysis 
of cancer targets. Activation is further promoted by the recognition of stress ligands on cancer cells, 
as well as “induced self” ligands, such as MICA/B and ULPB1-6 for NKG2D. Conversely, a balance 

Figure 1. Activation of natural killer (NK) cells by inhibitory and activating receptors and modes of
killing of target cells. (A) Recognition by inhibitory killer immunoglobulin-like receptors (KIRs) of
major histocompatibility complex (MHC) class I molecules on cancer cells inhibits NK cell killing due to
“missing self” recognition despite the presence of activating receptors. The balance between inhibitory
and activating signals does not induce NK cell activation. However, NK cells are triggered to kill their
targets when no matching KIR ligand is present, which shifts the balance toward NK cell activation.
(B) The lack of MHC molecules prevents inhibition of NK cytotoxicity and promotes NK-induced
killing of targets by activating receptor engagement. However, MHC ligand mismatch is not by itself
sufficient to trigger NK cell killing in absence of signals from activating receptors. (C) Many cancer cells
dowregulate the expression of MHC ligands. Even with the lack of MHC ligand expression, the balance
of activating receptors in favor of killing signals can trigger NK-mediated lysis of cancer targets.
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Activation is further promoted by the recognition of stress ligands on cancer cells, as well as “induced
self” ligands, such as MICA/B and ULPB1-6 for NKG2D. Conversely, a balance between activating
(e.g., KIR2DS) and inhibitory KIRs promotes NK tolerance and results in no killing. (D) The process of
NK cell education imparts NK cells with functional maturation and self-tolerance. The example of
the TIGIT/CD155 interaction is shown: Only educated NK cells can mediate killing by engagement of
CD155/TIGIT ligation. The hyporeactivity of uneducated NK cells, similarly to recognition of MHC
class I by inhibitory KIRs, ensures NK self-tolerance.

Upon recognition of a target cell, NK cells form an immunological synapse guided by the
interaction between their many receptors and cognate ligands on target cells [22]. Synapse formation
following ligand engagement is accompanied by rearrangement of the actin cytoskeleton, and triggers
phosphorylation of immunoreceptor tyrosine-based inhibition motifs (ITIMs) in the cytoplasmic tail of
inhibitory receptors by Src family tyrosine kinases [23]. It bears mentioning that clustering of KIRs
and NKG2A is independent of actin polymerization and ATP [24]. This results in the recruitment of
Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and SHP-2 [25], which
drive and are required for inhibition of NK cell function [26]. The presence of inhibitory receptors
on NK cells and the corresponding ligands on target cells act as a sort of safeguard mechanism to
prevent unfettered cytotoxicity of NK cells in vivo. Expression of stress ligands on target cells can
further shift the balance toward NK cell activation, ultimately resulting in lysis of those cells via the NK
cell-mediated release of cytotoxic granules. NK cell inhibitory receptor accumulation at immunological
NK-target cell synapses is rapid [27].

2.2. NK Cell Activation by Receptors, Ligands, and Co-Receptors

“Missing self” is not by itself sufficient to induce killing of targets by NK cells. It is the
overall balance between inhibitory receptors including KIRs and NKG2A with the level of expression
of activating KIRs (for example, KIR2DS or KIR3DS) or NK receptors such as NKG2D, NKp44,
NKp46, NKp30, NKp65, NKp80, CRACC or LFA-2 as well as DNAX accessory molecule 1 (DNAM1)
that determines the extent of NK-mediated cytotoxicity [28]. NKG2D is capable of recognizing
stress-induced self-ligands (“induced self”), which are not present or expressed at low levels on healthy
cells, but are upregulated on distressed or cancerous cells [29], such as MHC class I polypeptide-related
sequence A/B (MICA/MICB) and UL16 binding protein 1-6 (ULBP1-6) in humans, and has been shown
to mediate in cancer killing. Additionally, the Fc receptor CD16 expressed on NK cells functions to
mediate cytolytic activity through recognition of antibody-coated cancerous cells [30]. The NK cell
natural cytotoxicity receptors, NKp30, NKp46, and NKp44, have also been implicated in playing a
key role in NK cell effector function, but corresponding ligands have yet to be clearly identified [31].
DNAM1 interacts with the adhesion receptor leukocyte function-associated antigen-1 (LFA-1), which
is expressed on healthy cells, but largely inhibited through MHC class-I regulation, and upregulated
on cancerous and distressed cells, and, therefore, mediates NK cell adhesion with target cells [31].
The tolerance to self and the activation of NK cells in response to pathogens is regulated by the process
of education. NK cell education determines how NK cells respond to infected, stressed or pathogenic
cells [32]. Since the process of NK cell education varies among individuals, responses to pathogens
vary widely, resulting in divergent responses to disease and treatment. Donor selection based on
education status enables modulation of NK alloreactivity. Recent evidence has shown that education
via expression of inhibitory KIRs drives the lysosomal rearrangement of lytic granules which in turn
drive powerful NK effector responses [33].

2.3. Challenges with Solid Tumors

Despite the highly-controlled activation of NK cells in response to infected targets, NK cell
activation in solid tumors presents particular challenges not present with hematological malignancies.
Solid tumors are very heterogeneous, characterized by different gene profiles and mutations, which
result in differing metastatic and proliferative potentials [34]. Solid tumor microenvironment-specific
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immunomodulators such as hypoxia, adenosine, lactate, and transforming growth factor-β (TGF-β)
rearrange the repertoire of NK receptors and are able to induce down-modulation of activating NK
receptors, further compromising NK cell-mediated cytotoxicity [35,36]. Additional complicating
factors, such as poor intra-tumoral infiltration of NK cells and severe metabolic reprogramming that
occurs in response to rapid glycolytic fueling by cancer cells leads to a dysregulated NK cell immune
response and poor efficiency of adoptive immunotherapies. Though NK cell-mediated anti-tumor
responses have been described for a number of cancers [37], with some studies showing correlation
between intra-tumoral presence of infiltrating NK cells and better disease prognosis [38], insights into
many cancers are either not known or are inconclusive. Exact mechanisms and manipulation strategies
to durably and reproducibly enhance NK cell function in vivo are not known.

Strategies aimed at improving adoptive transfer of NK cells to solid tumors have included
combination treatments with checkpoint inhibitors [39], genetic engineering to improve the targeting of
NK cells via the expression of synthetic genes such as chimeric antigen receptors [40] or the expression
of chemokines which can improve NK cell migration and trafficking into tumors [41], and combination
treatments with cytokines, immunomodulatory drugs, antibodies, and oncolytic viruses [42,43]. With
all that said, alloreactivity of NK cells in solid tumors remains a topic of high interest [44].

3. Allogeneic NK Cell Immunotherapy

3.1. Allogeneic NK Cells in Hematopoietic Stem Cell Transplantation

Autologous NK cell activity is inhibited in cancer patients largely due to KIR ligand (KIR-L)
match [45]. On the other hand, KIR-L/HLA-C mismatch in hematopoietic transplants was shown
to mediate a more powerful anti-tumor response by triggering NK cell alloreactivity, augmenting
HSCT, and potentially limiting GvHD [46–48]. NK cells are the first lymphocytic population to
be reconstituted following allogeneic HSCT [49]. Peripheral blood is the most common source of
cells for HSCT. It is commonly mobilized using granulocyte-macrophage colony-stimulating factor
(GM-CSF) to produce hematopoietic stem cells [50]. Other than peripheral blood, cord blood or bone
marrow are also used as sources of cells for HSCT. Typical immune suppression of recipients prior to
HSCT involves a nonmyeloablative lymphodepleting conditioning regimen with cyclophosphamide
and fludarabine [51]. After HSCT, reconstitution of NK cells occurs within one month irrespective
of whether the cells for HSCT have been sourced from the bone marrow, umbilical cord blood or
GM-CSF-mobilized peripheral blood, and regardless of donor type or patient age. Four selection
approaches have been described for selection of HSCT (or NK cell) donors based on donor and
recipient KIR and/or KIR-ligand genotypes: ligand–ligand mismatch, receptor–receptor mismatch,
receptor–ligand mismatch, and by haplotype B score [52]. Following HSCT, the CD56bright subset
was reported to be the first to appear post-transplantation—this was particularly true for patients
lacking GvHD—with CD56int NK cells (which represent an intermediate state between CD65bright

and CD56dim) appearing three months post-HSCT, followed by CD56dim cells. Unlike the former,
expression marker profiles of CD56dim cells were shown to differ in expression of KIRs, CD62L, NKG2A,
and CD57 compared to those of CD56bright and CD56int cells [53]. A number of clinical trials are
currently ongoing evaluating such an allogeneic NK-based immunotherapeutic modality (Table 1).

The contributions of NK cells to GvT effects post HSCT have been described. HLA-haploidentical
HSCT (haplo-HSCT) for high-risk acute leukemia patients transplanted from NK-alloreactive donors
has shown robust clinical outcomes [54]. NK cells reconstituted after haplo-HSCT into patients
with acute myeloid, chronic myeloid or chronic lymphoblastic leukemia displayed the same KIR
repertoire as the donor, developed tolerance for the host a few months after the transplant, and
engaged in alloreactive target killing in the absence of GvHD [47]. Separate studies have demonstrated
alloreactivity of NK cells in other settings as well: in the context of both HLA-matched [55] and
HLA-mismatched [46] hematopoietic transplants. KIR genes, it should be noted, are likely to remain
mismatched even for fully-matched HLA transplants [56].
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Table 1. Currently active and ongoing clinical trials with allogeneic natural killer (NK) cells within
hematopoietic stem cell transplantation (HSCT).

Source of NK
Cells

NK Cell
Dosage Disease Treatment Phase Clinical Trial

Identifier Sponsor

Matched related
or unrelated,
NK-enriched

donor
lymphocytes

N/A
Myeloid and

lymphoid
malignancies

NK-cell enriched
infusions with or

without DUK-CPG-001
following allogeneic

HSCT

II NCT02452697 Duke University

Donor-derived
allogeneic NK

cells

1−2 × 108
−

5 × 108 NK
cells/kg

Acute myelogenous
leukemia

NK infusions following
human leukocyte

antigen
(HLA)-haploidentical

hematopoietic cell
transplantation

II NCT02477787 Asan Medical
Center

Donor-derived
allogeneic NK

cells
N/A

Lymphoma, leukemia,
and lymphoid
malignancies

NK cell infusions
following

administration of
GM-CSF

(granulocyte-macrophage
colony-stimulating

factor) and rituximab

I NCT00383994 M.D. Anderson
Cancer Center

Related,
HLA-haploidentical

donor NK cells
N/A

Ewing sarcoma,
neuroblastoma,

rhabdomyosarcoma,
osteosarcoma, and

central nervous
system (CNS) tumors

NK cell infusions
following

HLA-haploidentical
bone marrow transplant
and reduced-intensity

chemo- and
radiotherapy

II NCT02100891

Monica Thakar,
MD Medical

College of
Wisconsin

Donor-derived
allogeneic NK

cells
N/A

Recurrent B cell
childhood acute
lymphoblastic
leukemia and

recurrent childhood
B-lymphoblastic

lymphoma

Haploidentical NK cell
infusions following
chemotherapy and

rituximab

II NCT01700946
St. Jude

Children’s
Research Hospital

Donor-derived
allogeneic NK

cells
N/A Lymphoma and

leukemia

NK cell infusions
following fludarabine

and cyclophosphamide
conditioning, bone

marrow transplant, and
post-transplant

immunosuppression

I and II NCT00789776
Fred Hutchinson
Cancer Research

Center

Cytokine induced
memory-like NK

cells
>4 × 106/kg

Acute myeloid
leukemia

NK cell infusion after
HSCT following

fludarabine,
cyclophosphamide, and

total body irradiation

II NCT02782546
Washington

University School
of Medicine

Safety and tolerability of alloreactive NK cells post-HSCT have been the subject of much work.
Though NK cells reconstitute rapidly after HSCT, they show delayed functional maturation for at
least six months, which is reflected in lower production of pro-inflammatory cytokines interferon-γ
(IFN-γ) and tumor necrosis factor-α (TNF-α) [57]. Generally, engraftment of NK cells from donor
peripheral blood progenitors following non-myeloablative conditioning has been shown to correlate
with a lower risk of relapse, independent of donor match or disease [58]. To improve safety and prevent
the onset of GvHD in HSCT, recent strategies have included administration of post-transplantation
cyclophosphamide [59]. Pende et al. [6] showed that alloreactive NK cells post-haplo-HSCT in pediatric
leukemia patients persisted for years, and their anti-leukemia effect was dependent on activating
receptor KIR2DS1 alongside alloreactivity induced by inhibitory receptors. While other studies have
also indicated that NK cell infusions post-HSCT had no effect on tumor relapse or graft failure and
were well-tolerated [60–64], more recent evidence hints at a potentially more complex relationship
between KIR-mismatch and safety profile. Hosokai et al. [65] described the incidence of grade IV
GvHD in A/A haplotype patients transplanted from HLA-mismatched donors with KIR haplotype
B/x. In general, however, many studies have reported that better treatment outcomes correlated to
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higher NK cell numbers [65–69]. Donor selection was cited as a factor in a recent Phase II study which
reported good safety and no GvHD, but no significant efficacy, in patients with relapse of persistent
myeloid malignancies treated with haploidentical NK cells [70]. Though most of these studies were
carried out in the context of hematologic malignancies, successes with solid tumors remain limited [71].

3.2. Allogeneic NK Cell Infusions

Adoptive transfer of autologous NK cells has been carried out to treat a number of diseases,
including various solid tumors clinically (Table 2). However, autologous infusions of NK cells have
failed to show a sustained anti-tumor response, despite demonstrated safety [72–75]. Combination
with chemotherapy has, nonetheless, shown somewhat more promising results in patients with colon
carcinoma [76]. Similarly, a number of clinical studies have demonstrated the safety of infused
allogeneic NK cells to treat both hematologic malignancies and solid tumors [1]. These studies
utilize allogeneic NK cell products that include in vitro cytokine and feeder cell expanded NK cells,
non-expanded cytokine-activated NK cells, and cytokine-induced memory-like NK cells, which are
generated after a pre-activation period with combinations of the cytokines interleukin (IL)-12, IL-15,
and IL-18 and have the ability to functionally persist long-term in vivo [77].

It has been widely reported that NK cell functionality is heavily influenced by their pre-activation
regimen prior to adoptive transfer [78]. Commonly, combinations of one or more cytokines including
IL-2, IL-12, IL-15, IL-18, and IL-21 [79,80] are used to activate NK cells, with or without anti-CD3
stimulation [81]. Among them, IL-2 [82] has been associated with increased NKG2D expression,
while IL-15 [83] is a powerful driver of NK cell differentiation and proliferation and, when used in
combination with IL-2, has been shown to improve NK cell viability ex vivo. IL-18 was shown to
stimulate IFN-γ production by NK cells and provide co-stimulatory activation [84], while IL-21 [85]
was able to enhance maturation of NK cells without promoting proliferation. Feeder cells employed
for expansion and activation of peripheral blood NK cells ex vivo have included irradiated autologous
peripheral blood mononuclear cells (PBMCs) [83] and K562 cells expressing membrane bound 4-1BB
ligand [86] and/or IL-15 or IL-21 [87,88]. Optimal protocols, and the interplay between specific cytokine
programs with anti-CD3 stimulation, is, however, not fully clear.

Ex vivo-expanded, allogeneic NK cells have to be cultured until sufficient numbers of
cells for infusion have been obtained. The first demonstration of the feasibility and safety of
adoptively-transferred NK cells into patients was made by Miller et al. [89]. Their trials showed that
adoptively transferred human NK cells derived from haploidentical related donors could persist in vivo
and mediate anti-tumor effects in acute myeloid leukemia patients when KIR ligand-mismatched donors
with recipient tumor MHC were used. Since then, additional studies with mismatched adoptively
transferred NK cells were shown effective in high-risk elderly patients, adults, and children with acute
myeloid leukemia [90–92] and non-small cell lung cancer [93], while limited in vivo persistence was
described for haploidentical NK cell infusion with and without total body irradiation in patients with
ovarian and breast cancer [94]. Conditioning regimens in these trials have included high-intensity and
high-dose cyclophosphamide and fludarabine administration. Yang et al. [95] reported results of a
recent Phase I trial evaluating the safety and efficacy of unrelated mismatched NK cells adoptively
transferred into patients with either lymphoma or solid tumors. They found the maximum tolerated
dose of NK cells to be 3 × 107 cells/kg (triple infusion), while these cells persisted in the peripheral
blood of recipients for up to four days. Despite the cells’ relatively short lifespan in vivo, the study
demonstrated that these cells were both safe and somewhat efficacious, with 8 out of 18 treated patients
showing stable disease.
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Table 2. Currently active and ongoing clinical trials with allogeneic NK cell infusions (no-HSCT).

Source of NK Cells NK Cell Dosage Disease Treatment Phase Clinical Trial
Identifier Sponsor

Haploidentical
PBMC-NK cells N/A Acute myeloid

leukemia

Decitabine and
aldesleukin in

combination with NK
cells

I NCT02316964
Ohio State
University

Medical Center

mRNA-electroporated
NKG2D-chimeric

antigen receptors (CAR)
allogeneic NK cells

(from parent or sibling
donor)

N/A Metastatic solid
tumors CAR-NK cell infusion I NCT03415100

The Third
Affiliated

Hospital of
Guangzhou

Medical
University

CD19-CAR-NK-92 cells N/A CD19+ leukemia
and lymphoma

CAR-NK-92 cell
infusion I/II NCT02892695 PersonGen

BioTherapeutics

Cytokine-induced
memory-like (CIML)

NK cells

Up to 10 × 106

CIML-NK cells/kg

Pediatric acute
myeloid leukemia

(relapse after
allogeneic HSCT)

Fludarabine, Ara-C,
and G-CSF followed

by T cell DLI 24 hours
prior to infusion of

CIML-NK cells

I NCT03068819

Washington
University
School of
Medicine

Allogeneic PBMC-NK
cells from first- or

second-degree relative

3 × 105, 1 × 106 or
3 × 106 NK

cells/kg

Acute myeloid
leukemia

Preparative
chemotherapy prior
to NK cell infusion

I/II NCT01520558 Coronado
Biosciences

HLA-mismatched
PBMC-NK cells

9.9 × 106
−

14.9 × 106 NK
cells/kg

Neuroblastoma Cyclophosphamide
and Hu3F8 MAb I NCT02650648

Memorial Sloan
Kettering

Cancer Center

Allogeneic
haploidentical CD3−

CD56+ NK cells

5 × 107
− 5 × 108

NK cells/kg
Acute myeloid

leukemia

Flu + Cyc followed by
NK cell infusions with

IL-2
II NCT02763475

La Paz
University
Hospital

Allogeneic
haploidentical CD3−

CD56+ NK cells

1.5 × 106
− 1 × 108

NK cells/kg
Multiple myeloma

Ex vivo expanded NK
cell infusions over 30

days
I/II NCT01040026 University

Hospital Basel

Allogeneic activated
NK cells (MG4101)

2 × 109
− 5 × 109

NK cells/kg
Acute myeloid

leukemia

Flu + Cyc followed by
NK cell infusions over

56 days with IL-2
II NCT03349502

Seoul National
University
Hospital

Haploidentical CD3−

CD56+ PBMC-NK cells
from family donors

N/A Acute myeloid
leukemia

Flu + Cyc followed by
NK cell infusions with

IL-2
II NCT02229266

Dresden
University of
Technology

Membrane-bound
interleukin 21 expanded
haploidentical NK cells

N/A Acute myeloid
leukemia

Fludarabine,
high-dose cytarabine,
and G-CSF followed
by NK cell infusions

(6 doses over 14 days)

I/II NCT02809092 Clinical Hospital
of Porto Alegre

Allogeneic activated
NK cells (MG4101)

1 × 107
− 9 × 107

NK cells/kg

Relapsed and
refractory

non-Hodgkin
lymphoma

Fludarabine and
cyclophosphamide

followed by IL-2
(bi-weekly), rituximab
(bi-weekly), and NK

cell infusions
(bi-weekly)

I/II NCT03778619
Green Cross

Labcell
Corporation

haNKTM cells 2 × 109 – 4 × 109

NK cells/kg
Solid tumors haNKTM infusions I NCT03027128 NantKwest

Allogeneic and
autologous PBMC-NK

cells

8 × 109 – 10 × 109

NK cells per
treatment over
3 transfusions

Solid tumors NK cell infusions,
4 total over 3 months II NCT02853903

Fuda Cancer
Hospital,

Guangzhou

Abbreviations: PBMC: peripheral blood mononuclear cells; CAR-NK: chimeric antigen receptor natural killer
cell; HSCT: hematopoietic stem cell transplantation; G-CSF: granulocyte colony-stimulating factor; DLI: donor
lymphocyte infusion; CIML: cytokine-induced memory-like; Hu3f8 MAb: humanized 3f8 monoclonal antibody;
IL: interleukin.

Evidence that cytokine activation regimens are likely tumor- and conditioning protocol-specific
came early. Bachanova et al. [96] reported that IL-2-preactivated allogeneic NK cells could lead to
remission if refractory lymphoma patients were infused with IL-2 every two days for 2 weeks. Despite
the initial positive response, however, remission was not durable. A Phase I/II trial of patients with
lymphoma and breast cancer treated with ex vivo IL-2-activated autologous NK cells similarly failed
to show disease response. On the other hand, 75% of patients with lung cancer treated with allogeneic
NK-92 cells at a dose of 1010 cells/m2 showed an anti-tumor response [97]. In a separate study, adoptive
transfer of haploidentical NK cells, pre-activated overnight with IL-2, showed a partial anti-tumor
response in 20% of ovarian and breast cancer patients, and stable disease in 60% of patients [94].
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Some responses were also seen from a recently-reported Phase I trial of patients with advanced solid
tumors treated with ex vivo-expanded, IL-2 pre-activated NK cells from random unrelated donors.
Additionally, 37% of patients treated with triple injections of 3 × 107 cells/kg showed stable disease.
Since IL-2 induces the activation of immunosuppressive Tregs [98], synthetic biology approaches
using fusion proteins that express a variant of IL-2 that is insensitive to the IL-2 receptor found on
Tregs alongside an NKG2D-binding protein aimed at selectively activating NKG2D-bearing NK cells
with IL-2, while avoiding the unwanted activation of Tregs, are also being explored [99]. Another
conditioning approach, by priming NK cells with tumor cells, has been shown to result in the activation
of NK cells independently of IL-2 to generate NK cells able to lyse a variety of cancer targets [100].

Several investigations have addressed the concept of “optimal dose” of NK cells in adoptive
transfer immunotherapy [101]. The principal confounding factor is the highly variable number of
alloreactive NK cells that can be sourced from each donor. Curti et al. [102] showed that a larger infused
NK cell dose, consisting of >8/100 alloreactive NK cell clones (at a dose of at least 2 × 105 cells/kg)
resulted in improved disease-free survival without negative bias toward patients with lower numbers
of alloreactive NK cells. More investigations have since looked at optimizing NK cell doses for patients
with various cancers [103].

To establish optimal NK cell preparation regimens, Besser et al. [104] compared various
strategies to augment NK cell cytotoxicity within the context of allogeneic adoptive transfer. They
found that combining the enhancement of NK cell activating receptor expression (NKp44, NKp46,
NKp30, and NKG2D) by optimizing culture conditions, with engagement of antibody-mediated
cellular cytotoxicity (ADCC) via CD16 on NK cells, and KIR-mismatch yielded the greatest NK
cytotoxicity in vitro. Individually, augmenting activating receptor expression yielded the greatest
enhancement in NK-mediated cytolysis of cancer cells, followed by NK cell activation via ADCC and,
finally, KIR-mismatch.

However, none of these protocols is either standardized or reproducible in different patient or
tumor settings. Overall, more work on identifying optimal dosing, pre-conditioning, and expansion
regimens for infusions of NK cells, especially in the setting of solid tumors, is needed.

3.3. Umbilical Cord Blood NK Cells

Though highly variable, on average 30% of the lymphocytes in umbilical cord blood are NK
cells, compared to 10% in peripheral blood [105], making cord blood a potentially useful source of
NK cells for immunotherapy. Approximately half a dozen currently active clinical trials utilize cord
blood-derived allogeneic NK cells (Table 3). Though cord blood contains the two main NK subsets
present in peripheral blood, CD56dim and CD56bright, differences between cord blood and peripheral
blood NK cells have been described [106–108], such as the presence of a CD56−/CD16+ subset in
cord blood that is absent from peripheral blood [109]. This subset has been shown to have both lytic
function, albeit lower than that of mature CD56+CD16+ NK cells, against K562 cell targets and can be
induced to express CD56 through overnight activation with IL-2 or IL-15, likely suggesting it is a close
precursor to mature NK cells [110]. Additionally, studies have shown that this subset may also play
a role in GvL in patients treated with cord blood-derived NK cells [111]. Cord blood offers several
advantages that benefit its use in allogeneic adoptive transfer settings, among them are its relative
ease of collection [112] and lower number of T cells which reduces the risk of GvHD [113]. However,
a delayed immune reconstitution following umbilical cord blood transplantation (CBT) [114,115] and
the incomplete maturation of cord blood NK cells [116] hint at an altered effector function for these cells.
This is reflected by their lower rate of interferon (IFN)-γ production and requirement for activation
with both interleukin-2 (IL) and IL-15 or IL-15 and IL-18 [117] as opposed to IL-2 alone like peripheral
blood NK cells. More specifically, cord blood NK cells have been shown to have lower expression of
inhibitory KIR receptors, CD158a and CD158b, and higher expression of inhibitory receptor NKG2A
than that of mature peripheral-blood NK cells [116]. Additionally, there was a lower level of expression
of several activating receptors and coreceptors, including DNAM-1, NKG2C, and NKp46, which is
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consistent with incomplete maturation of cord blood NK cells. Therefore, downregulation of KIRs,
several activating receptors, and upregulation of inhibitory NKG2A, as well as lower production
of cytotoxicity and proliferation ligands, such as granzyme B, perforin, and IFN-γ contribute to the
limited anti-tumor effector function of cord blood NK cells. Moreover, engraftment of NK cells is
earlier than T cells following CBT [118,119], suggesting that NK alloreactivity might contribute to
protection from relapse.

Table 3. Currently active and ongoing clinical trials with cord blood-derived NK cells.

Source of NK Cells NK Cell
Dosage Disease Treatment Phase

Clinical
Trial

Identifier
Sponsor

Allogeneic umbilical
cord blood (banked) N/A Pediatric solid

tumors

Cyclophosphamide and
etoposide in combination

with ex vivo expanded
CBNK cells

I NCT03420963 MD Anderson
Cancer Center

Allogeneic umbilical
cord blood (banked)

5 × 106 –
1 × 108 CB-NK

cells/kg

Recurrent or
refractory B cell
non-Hodgkin’s

lymphoma

HSCT, rituximab, and
chemotherapy II NCT03019640 MD Anderson

Cancer Center

CD19/iCasp9/
interleukin

(IL)-2-engineered
CAR-CBNK cells

N/A B cell lymphoma s Flu + Cyc I/II NCT03056339 MD Anderson
Cancer Center

Allogeneic umbilical
cord blood (banked)

5 × 106 –
1 × 108 CB-NK

cells/kg
Multiple myeloma

CBNK infusion after
elotuzumab, lenalidomide,

melphalan, and HSCT
II NCT01729091 MD Anderson

Cancer Center

Allogeneic umbilical
cord blood (banked) N/A Multiple myeloma

CBNK infusion after
autologous HSCT,

melphalan, followed by
IL-2

II NCT02955550 Celularity Inc.

Allogeneic umbilical
cord blood (banked)

5 × 106 CBNK
cells/kg

Chronic
lymphocytic

leukemia

CBNK infusion after
cyclophosphamide,

fludarabine, melphalan,
lenalidomide, rituximab,

and UCB transplant

I NCT01619761 MD Anderson
Cancer Center

Allogeneic umbilical
cord blood (banked)

1 × 107 CBNK
cells/kg

Leukemia

CBNK infusion in
combination with

rituximab, fludarabine,
cyclophosphamide,

cytarabine, filgrastim, and
lenalidomide

I NCT02280525 MD Anderson
Cancer Center

Allogeneic umbilical
cord blood (banked) N/A

Leukemia,
lymphoma,

myeloma, and
myeloproliferative

diseases

CBNK cell infusion
(conditional) following
busulfan, fludarabine,

clofarabine, ATG,
rituximab,

cyclophosphamide, mesna,
melphalan, and UCB

transplant

II NCT02727803 MD Anderson
Cancer Center

Abbreviations: CB-NK: cord blood natural killer; CAR-CBNK: chimeric antigen receptor cord blood natural killer;
HSCT: hematopoietic stem cell transplantation; UCB: imbilical cord blood; ATG: anti-thymocyte globulin.

The role of GvHD in CBT remains somewhat controversial. Rocha et al. reported that, compared
to bone marrow transplantation, cord blood from matched siblings was found to have a lower incidence
of GvHD compared to patients receiving bone marrow transplantation [120]. Elsewhere, Brunstein et al.
found that KIR-ligand mismatch was associated with a higher incidence of grade III-IV acute GvHD
in patients receiving single and double unit CBT [121]. No such direct relationship was reported by
Garfall et al. [122], who examined a cohort of 80 patients who underwent double unit CBT, 35 of
which were KIR ligand-mismatched and underwent either reduced intensity conditioning or fully
myeloablative conditioning. They found that KIR mismatch was not associated with reduced relapse,
overall survival or GvHD. A similar conclusion was reported by Tanaka et al. [123] for acute lymphocytic
leukemia (ALL) and AML patients receiving single unit CBT. In light of clinical data, the use of KIR
mismatch in donor selection for CBT remains unclear [124,125]. Additionally, pro-inflammatory and
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anti-inflammatory cytokine production by NK cells, as well as T cells and macrophages, has been shown
to be reduced in cord blood when compared to peripheral blood. Furthermore, storage conditions
of cord blood, which is typically stored frozen as opposed to used fresh, as in the case of peripheral
blood, have been shown to enhance anti-inflammatory cytokine production, limiting the function of
effector cells in cord blood [126]. These factors may contribute to lowering the immunoreactivity and
incidences of GvHD in CBT, but the exact reason remains unclear.

Within the context of CBT, Escobedo-Cousin et al. [127] found that cord blood NK cells are the
accessory cell type that are responsible for improving homing and clonogenicity of cord blood stem
cells during CBT. A number of clinical trials are underway using cord blood-derived NK cells [109].
These cells can be isolated in a single step procedure with positive selection for CD56 due to the
relatively low proportion of natural killer T (NKT) cells in cord blood. However, they are functionally
immature compared to peripheral blood-derived NK cells, requiring ex vivo expansion and activation.
Shah et al. [128] reported that cord blood NK cells, expanded with antigen-presenting feeder cells,
in doses up to 1 × 108 cells/kg were well tolerated in the setting of allogeneic adoptive transfer.
Nguyen et al. [129] also studied the functional maturation of reconstituted cord blood NK cells
after unrelated cord blood transplantation in patients with acute myeloid leukemia. They reported
high levels of CD56bright cells, overexpression of CD94/NKG2A, intracellular IFN-γ production,
and downregulation of the expression of CD16, CD8, and CD57—collectively, signs of functional
NK immaturity.

Cord blood NK cells have also been genetically engineered to express chimeric antigen receptors
(CARs). A clinical trial (NCT03579927) is underway at MD Anderson Cancer Center evaluating
the safety and efficacy of cord blood-derived NK cells expressing CD19 together with IL-15 and
caspase-9-based suicide gene (iCasp9) to treat patients with B cell non-Hodgkin lymphoma undergoing
high dose chemotherapy and autologous stem cell transplantation. These cells were shown to exhibit
significant pre-clinical efficacy and long in vivo post-infusion persistence, with the suicide gene
eliminating toxicities and potential off-target effects [130].

3.4. NK Cells and GvHD

The role of NK cells in GvHD induction following adoptive transfer into recipients has been
the subject of much debate [131]. A number of studies have promoted the notion that NK cells, in
allogeneic adoptive transfer settings, help prevent GvHD by suppressing alloreactive T cells [89–91].
More recent studies, however, have put forth the concept that NK cells can, in certain cases,
promote GvHD, particularly with matched unrelated donor as opposed to matched sibling donor
recipients [86]. One mechanism by which this is thought to occur is due to the heightened production
of pro-inflammatory cytokines IFN-γ and tumor necrosis factor-α (TNF-α) from tumor-infiltrating
NK cells. The significance of the dual protective-promoting role of GvHD by NK cells in allogeneic
adoptive transfer settings, however, remains controversial, independently of the inclusion of a regimen
of lymphodepletion of alloreactive T cells prior to NK cell infusion. Much of this is due to the fact
that other compounding factors in adoptive NK cell transfers where induction of GvHD observed [86]
could have contributed to the GvHD effect. In the study by Shah and colleagues [86], these include a
presumed sub-optimal timing of NK cell infusion with respect to timing of HSCT engraftment, and
the fact that more patients who developed GvHD showed a more rapid T cell engraftment. These
patients also received grafts from unrelated donors, thus potentiating immune cell alloreactivity [131].
However, that is not to say that the role of NK cells in the induction of GvHD should be dismissed. The
production of pro-inflammatory cytokines, studies have shown, can awaken T cell alloreactivity leading
to elevated GvHD. This was suggested to have potentially been induced due to the administration
of cytokines such as IL-2 or IL-15, given to promote NK cell proliferation and cytotoxicity [86,132].
Protocols to modify the administration of NK cells and/or cytokines have failed to show optimal
administration regimens to avoid GvHD [12], however more work is needed to assess the best practices.
Importantly, administration of endogenous IL-15 was shown to promote GvT effects and immune
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reconstitution of NK and CD8+ T cells in recipients of haploidentical HSCT [132]. The use of IL-15 in
adoptive transfer settings has, moreover, shown to result in sustained clinical responses in a Phase
I trial of an IL-15 superagonist to treat relapse following allogeneic HSCT [133]. Elsewhere, in vivo
studies have identified the murine CD11b+ NK subset as involved in providing protection against
acute GVHD [134]. Also important to consider is the role of NK cells on GvHD outside of HSCT.
A number of studies have reported no onset of GvHD caused by infusions of allogeneic NK cells to
treat both hematological malignancies and solid tumors, indicating that these treatments are safe and
well tolerated [13,93,135,136]. Solid tumors, however, present an additional challenge: though infused
allogeneic NK cells could be detectable in the blood of acute myeloid leukemia patients for up to four
weeks after infusion [92], the persistence of NK cells in solid tumors is significantly lower. A study by
Yang et al. [95] using random healthy-donor derived allogeneic NK cells showed lack of any severe
GvHD, but recorded persistence of infused NK cells for only up to four days post-infusion.

3.5. NK Cell Lines

NK cell immunobiology has greatly benefited from the availability of a number of NK cell
lines which have enabled the development of NK cell-based immunotherapies within the context of
allogeneic adoptive transfer and without risk of GvHD. The use of NK cells lines avoids the need
for leukapheresis, facilitating cell procurement, and avoiding undesirable side-effects. Among the
available NK cells lines are NK-92, haNK, NKG, NKL, KHYG-1, YT, NK-YS, SNK-6, IMC-1, YTS,
NKL cells as well as high affinity NK (HANK-1), an NK/T cell lymphoma cell line [137]. All of the
cell lines have been derived from patients with leukemia/lymphoma and are dependent on IL-2 for
the proliferation and effector functions [138]. Though all of the cell lines listed are currently being
investigated, only the NK-92 cell line has progressed to clinical trials, with the NKG and KHYG-1
cell lines emerging as other promising sources of NK cells for cancer immunotherapy, though with
significantly less published pre-clinical data so far. Other cell lines have so far been far less studied.

The NK-92 cell line has been the most extensively studied and is the subject of several clinical
investigations. Developed by Klingemann’s group and currently licensed by NantKwest, NK-92 cells
express CD56 and lack CD3, but unlike peripheral blood-derived NK cells, they do not possess CD16,
and are thus unable to participate in antibody-mediated cellular cytotoxicity (ADCC) [139]. They
lack some activating receptors, such as NKp44 and NKp46, and are thought to not possess inhibitory
KIR receptors: KIR2DL has long been considered the only receptor that had been identified as being
expressed by NK-92 [140], resulting in KIR mismatch following adoptive transfer and, as a result, a more
potent lytic activity [141]. It should be noted that DNA methylation studies have suggested NK-92
possess various KIRs [142]. Additionally, due to their biological origin from a patient who suffered from
acute NK cell lymphoma, NK-92 cells must be irradiated prior to infusion [143]. Even so, NK-92 cells
can be genetically engineered with relative ease compared to peripheral blood-derived NK cells, which
are notoriously resistant to exogenous gene uptake [40]. This allows their use as gene-modified cellular
therapies, such as chimeric antigen receptors [144,145]. Pre-clinically, NK-92 cells have been the subject
of multiple investigations, alone and in combination with monoclonal antibodies [146–148], small
molecule chemotherapy drugs [149,150] or radioiodine therapy [151]. Moreover, development studies
aiming at establishing optimal cytokine stimulation programs [148], optimizing media conditions [149],
and elucidating the effects of chemotherapy on their cytotoxicity [150] have also been reported.

Evidence from multiple trials suggests that the clinical use of NK-92 cells is considered safe and
appears well-tolerated [97,152–158]. Currently, there are 10 trials registered worldwide employing the
NK-92 cell line. Of those, four are recruiting as of the first quarter of 2019. All of the actively recruiting
trials employ NK-92 cells genetically engineered to express various receptors for cancer antigens and
are designed to target glioblastoma (ErbB2-specific clone NK-92/5.28.z), non-small cell lung carcinoma
(CCCR-NK-92), various refractive solid tumors (NK-92 cells modified to express CD16, termed haNK®

cells), and various leukemias and lymphoma (anti-CD19 NK-92 cells). Results of a first-in-man safety
study using CD33-CAR-NK-92 cells engineered with CD28, 4-1BB, and CD3ζ co-stimulatory domains
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in patients with relapsed and refractive acute myeloid leukemia showed that doses up to 5 × 109 NK-92
cells per patient could be tolerated without significant adverse effects [159]. Grade I cytokine release
syndrome was reported for one of the three treated patients. Ultimately, the study did not, however,
demonstrate clinical efficacy.

Because NK-92 cells do not express CD16, a related cell line has been engineered based on NK-92
precursor cells, to express the high affinity (ha) CD16 V158 FcγRIIIa receptor, as well as IL-2. Termed
haNK, the cell line was shown to produce high levels of granzyme and perforin and participate in
ADCC, resulting in efficient lysis of almost two dozen different tumor cell lines [160]. The Food and
Drug Administration (FDA) granted haNK cells investigational new drug (IND) status in 2017. Phase I
clinical studies of 300 doses of haNK cells in combination with a vaccine cocktail composed of, among
others, recombinant human super agonist IL-15, nab-paclitaxel, anti-PDL1 monoclonal antibody, and
anti-vascular endothelial growth factor (VEGF) monoclonal antibody, resulted in zero incidence of
cytokine release syndrome. All treated patients had advanced metastatic cancers refractive to previous
treatments. In the case of late-stage advanced metastatic pancreatic cancer (3rd line or greater) patients,
for instance, the study recorded 90% disease control with median overall survival of 9.5 months, higher
than the standard-of-care average of 8.7 months, while among papillary carcinoma patients who failed
standard-of-care, 100% remain disease-free [161].

NKG is another allogeneic cell line that has shown robust pre-clinical responses against various
tumors. Derived from a Chinese male patient with rapidly progressive non-Hodgkin’s lymphoma,
NKG cells are CD56+/CD16−/CD3−, IL-2-dependent, and express activating receptors NKp30, NKp44,
NKp46, NKG2D, and NKG2C [162,163]. Additionally, NKG cells secrete cytolysis related molecules
such as IFN-y, granzyme B, and perforin, characteristic of activated NK cells [158]. NKG cells have also
been shown to have increased cytolytic function against both MHC-I+ and MHC-I- cancer cell lines
when compared to NK-92 cells, likely due to increased NKG2D and NKp30 expression [158]. Though
NKG cells are not yet used clinically, their functional characteristics when compared to NK-92 cells
appear promising, and advances toward the good manufacturing practice (GMP) preparation of these
cells are being pursued [164].

KHYG-1 cells [165] were derived from a female patient with aggressive NK cell leukemia [166] and
are CD56+/CD16−/CD3−, IL-2-dependent, produce significant amounts of IFN-γ, and express activating
receptors NKp44 and NKG2D [167]. These cells were recently engineered with a CAR expressing
epidermal growth factor receptor variant III (EGFRvIII)-specific single chain variable fragment (scFv)
coupled to CD3ζ, CD137 (4-1BB), and CD28 co-stimulatory domains [168]. When tested in vitro,
these lentivirally-transduced cells displayed more pronounced killing of U87MG glioblastoma cells
compared to non-transduced KHYG-1 cells.

Though there is growing interest in using NK cells lines as allogeneic effectors for adoptive
immunotherapy, current limitations limit their more widespread use. These include their lack of ADCC,
the need for irradiation, and their sourcing, which has limited the procurement from commercial
entities for research purposes or labs at which these cells have been developed.

3.6. Embryonic and Induced Pluripotent Stem Cell-Derived NK Cells

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) represent a
promising source of allogenic NK cells. hESC- and iPSC-derived NK cells provide a homogenous,
reproducible source of NK cells, lacking donor heterogeneity associated with NK cells derived from
peripheral blood and umbilical cord blood [169,170]. Well-defined protocols for differentiation of
hESCs and iPSCs into NK cells have been developed for clinical scale production of NK cells with
similar functional and phenotypic characteristics to peripheral blood NK (PBNK) cells [171,172].
Knorr et al. [171] have demonstrated that hESC- and iPSC-derived NK cells express activating and
inhibitory receptors similar to those of PBNK cells, including CD56, KIR, TRAIL, CD16, NKG2A,
NKG2D, NKp44, and NKp46. However, iPSC-derived NK cells have been shown to express higher
levels of NKG2A and lower levels of KIR than PBNK cells, which is characteristic of more immature
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NK cells [173]. Nonetheless, these stem cell-derived NK cells demonstrate functional characteristics of
mature NK cells, including production of IFN-γ and degranulation when exposed to tumor targets [171].
Additionally, hESC- and iPSC-derived NK cells have been shown to be cytotoxic against myeloma,
pancreatic, and ovarian cancer targets in vitro at levels similar to those of PBNK cells [172,174]. In vivo
efficacy of hESC-derived NK cells has also been evidenced against leukemia, breast, prostate, testicular,
and glioma cancer models in mice, where heightened cytolytic activity of hESC-derived NK cells
was demonstrated as compared to NK cells derived from umbilical cord blood [175]. Clinical scale
production and expansion of hESC- and iPSC-derived NK cells has also been described, utilizing
artificial antigen presenting cells (aAPCs), without the loss of NK-cell phenotype or in vitro cytotoxicity,
yielding a clinically relevant number of NK cells from significantly fewer cells than from PBNK
cells [176–178]. Additionally, since adoptively transferred PBNK cells typically persist for about one to
three weeks, hESC- and iPSC-derived NK cells offer a continuous source of NK cells that could have
potential for multiple dosing from a single donor source [91]. Furthermore, by utilizing iPSC-derived
NK cell lines, which lack contaminating T and B cells, HLA matching of a large number of recipients
can be achieved from a relatively small number of donors, demonstrating the potential of iPSC-derived
NK as an allogeneic, “off-the-shelf” source of NK cells for cancer immunotherapies [179].

Recently, Li et al. [180] demonstrated that iPSC-derived NK cells can be genetically modified to
express CARs to enhance the anti-tumor immunity of these cells against a variety of tumor targets.
iPSC-derived NK cells, genetically modified with a CAR containing the transmembrane domain
of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain, expressed improved
degranulation, cytokine production, cytotoxicity, and increased expansion and survival. In addition,
hESC- and iPSC-derived NK cells offer improved CAR transfection efficiency over PBNK cells,
establishing these pluripotent cell sources as a promising approach to the development of cancer
immunotherapies with genetically modified NK cells [181,182]. These factors allow hESCs and iPSCs
to be used to develop a standardized, homogenous population of CAR-expressing NK cells to improve
efficiency of adoptive transfer cell therapies. This has potential to spur the development of clinical
therapies that are reproducible and lack the donor-associated variability present in current NK and T
cell therapies.

4. Conclusions

Results from recent clinical trials have suggested the safety and efficacy of NK cell-based therapies
in adoptive transfer settings in treating solid tumors and hematologic malignancies. Allogeneic NK cell
therapies have demonstrated potential due to their relatively short in vivo persistence and depletion
of alloreactive T cells. However, even with much research, the exact extent of contribution of NK cells
towards GvHD is still not well understood, in large part due to limitations in sourcing allogeneic NK
cells and conflicting clinical reports. Many recent clinical trials have sourced allogeneic NK cells from
peripheral blood and umbilical cord blood, both in NK cell infusions and HSCT. NK cells derived
from these sources are functionally mature and are relatively easy to obtain. However, infusions
from these sources are not completely lacking contaminating T and B cells, providing a potential
source of GvHD. In conjunction, administration of cytokines including IL-2 and IL-15 to promote
NK cell proliferation in vivo can awaken alloreactive T cells, trigger the heightened production of
pro-inflammatory cytokines (IFN-y and TNF-a), and promote GvHD.

Alternative sources of NK cells for clinical trials, including NK cell lines, iPSCs and hESCs have
emerged as potential means of overcoming challenges associated with GvHD from donor-derived
NK cell sources. These sources are entirely lacking alloreactive T cells, do not pose the same risk
of GvHD as blood-derived NK cell sources, and offer improved efficiency in genetic modification.
However, NK cell lines are lacking some of the inhibitory and activating receptors present in peripheral
blood-derived NK cells, and their use is limited through procurement from commercial entities and
labs which have developed these cell lines. iPSC- and hESC-derived NK cells are typically, functionally
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immature NK cells, possessing downregulated expression of KIRs and more limited cytolytic function
than blood-derived NK cells.

The challenges in sourcing NK cell infusions, free of alloreactive T cells, that are functionally
mature and do not mediate GvHD are evident. Although recent clinical trials have demonstrated the
safety and efficacy of NK cell adoptive transfer therapies in cancer treatment, the role of NK cells in
contributing to GvHD should not be overlooked. Continued success in the development of NK cell
therapies is going to increasingly depend on enhancement in alternative cell sources, such as NK cell
lines and stem cell-derived NK cells, and understanding NK cell functional biology.
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