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Abstract: Osteoarthritis (OA) is a painful, progressive chronic inflammatory disease marked by
cartilage destruction. Certain synovial inflammatory cytokines, such as IL-1β and TNF-α, promote
OA inflammation and pain. Lactobacillus spp. is a well-known probiotic with anti-inflammatory,
analgesic, antioxidant, and antiosteoporotic properties. This study evaluated the therapeutic effects of
a live L. plantarum strain (GKD7) in the anterior cruciate ligament transection (ACLT)-induced OA rat
model. The results show that oral administration of live L. plantarum GKD7 improved weight-bearing
asymmetry after ACLT surgery. Moreover, micro-computed tomography images and histopatho-
logical analysis show that oral live L. plantarum GKD7 improved subchondral bone architecture,
protected articular cartilage against ACLT-induced damage, and reduced synovial inflammation.
L. plantarum GKD7 also reduced IL-1β and TNF-α production in OA cartilage and synovium. Thus,
orally administered live L. plantarum GKD7 appears to effectively slow the progression of OA.

Keywords: osteoarthritis; inflammation; Lactobacillus plantarum GKD7; IL-1β; TNF-α; anterior cruciate
ligament transection

1. Introduction

Osteoarthritis (OA) is a chronic inflammatory and degenerative joint disease accom-
panied by often debilitating pain [1]. MRI and micro-CT scans provide vital objective
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evidence for clinical diagnosis or experimental research of OA-related damage in synovial
tissue, cartilage, and subchondral bone [2,3]. NSAIDs and corticosteroids are the mainstays
of OA treatment for reducing OA pain, joint swelling, and stiffness [4,5], while joint re-
placement is considered to be the last therapeutic option for patients with severe joint pain
or dysfunction that cannot be treated with pharmacotherapy [4,6]. Importantly, NSAIDs
and corticosteroids have undesirable side effect profiles, some of which can be extremely
serious [7]. Thus, safer and more efficient treatment strategies are needed for OA.

Reducing proinflammatory cytokine production (e.g., IL-1β and TNF-α are some of the
most important therapeutic aims in OA [5], as these inflammatory mediators play important
roles in the destructive changes in cartilage and modification to subchondral bone structural
changes in OA [8,9]. The secretion of IL-1β and TNF-α from OA synovial fibroblasts and
chondrocytes promote the synthesis of proteolytic enzymes that degrade joint extracellular
matrices and thus drive OA, worsening the disease-related synovial inflammation, cartilage
degeneration, and subchondral bone lesions [9–11]. In experimental OA, inhibiting or
reducing pro-inflammatory expression suppresses joint degradation, highlighting the
importance of such strategies for OA treatment [12,13].

Probiotic Lactobacillus spp. strains exhibit a wide variety of beneficial activities in
human hosts, including reductions in inflammatory activity [14]. This study investigated
the ways in which the L. plantarum GKD7 strain affects knee OA in rats subjected to ACLT
surgery. Probiotics are considered safe for consumption due to their presence in many
foods and their gut defense mechanism [15]. Proinflammatory cytokines such as IL-1β
can be reduced by heat-killed L. plantarum L-137 in cardiac and adipose tissue in a rat
model of metabolic syndrome, while L. rhamnosus GG can decrease TNF-α expression in
lipopolysaccharide-activated murine macrophages [16,17]. L. salivarius UCC118 and L. plan-
tarum WCFS1 have shown anti-arthritic activity in mice with collagen-induced arthritis,
with evidence of reduced joint destruction and less proinflammatory cytokine activity [18].
Similarly, diverse Lactobacillus spp., including L. rhamnosus GG and L. rhamnosus LR-2, slow
the progression of OA by reducing joint pain and inflammation [19,20]. Moreover, much
clinical evidence attests to probiotics reducing intestinal damage and inflammation associ-
ated with OA disease and probiotics lessen pain severity and cartilage destruction in animal
models of OA [19,21,22]. In our previous study, L. plantarum GKD7 reduced inflammatory
cell infiltration in mice with aspirin-induced gastric injury [23]. We, therefore, speculated
that L. plantarum GKD7 may slow OA progression by reducing disease-related inflamma-
tory activity. This study examined the effects of orally administered live L. plantarum GKD7
upon joint inflammation, pain, swelling, and function in rats with ACLT-induced OA.

2. Materials and Methods
2.1. Materials

IL-1β antibody (MAB601; final dilution of 1:200) was bought from R&D Systems, Inc.
(Minneapolis, MN, USA). TNF-α antibody (A11534; final dilution of 1:200) was bought
from ABclonal. Inc. (Woburn, MA, USA). All other chemicals not mentioned above were
purchased from Sigma-Aldrich.

2.2. Preparation of L. plantarum GKD7

L. plantarum GKD7 isolated from Taiwanese pickles was cultured in de Man-Rogosa-
Sharpe (MRS) medium for lactobacilli (Merck, Darmstadt, Germany) at 37 ◦C for 16 h. To
prepare the L. plantarum GKD7 freeze-dried powder, 0.03% of seed culture was scaled-up
in a 15-ton bioreactor with a 12-ton working volume in a culture medium containing 5%
glucose, 2% yeast extract, 0.05% MgSO4, 0.1% K2HPO4, and 0.1% Tween 80. After 16 h
of incubation at 37 ◦C, pellets of fermented bacteria were harvested by centrifugation,
washed twice with reverse osmosis (RO) water then lyophilized with skim milk. The
freeze-dried L. plantarum GKD7 powder contained approximately 5 × 1011 CFU/g live
bacteria, according to the plate count method.
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2.3. OA Protocol

Eight-week-old male Sprague Dawley rats were supplied by LASCo Inc. (Taipei,
Taiwan) and maintained in an animal center under the Institutional Animal Care and
Use Committee (IACUC) Guidelines issued by China Medical University (CMU). The
rats were randomly assigned to arthrotomy only (controls; n = 6), ACLT alone (n = 6),
or ACLT + L. plantarum GKD7 treatment (n = 8). ACLT surgery followed the procedures
described in previous studies [24,25]. Briefly, the rats were anesthetized with Zoletil 50®

(Virbac, Carros, France) before undergoing an arthrotomy to expose the right knee joint,
in which the ACL was cut by micro-scissors using surgical loupes. ACLT success was
confirmed by the anterior drawer test. Starting from two days after surgery, the daily diet
was supplemented with 1 mL RO water in all 3 study groups. L. plantarum GKD7 powder
was suspended evenly in RO water and administered daily to each individual rat as an
oral 100 mg/kg (5 × 1010 CFU/kg) dose for 6 weeks in the ACLT + L. plantarum GKD7
group; the ACLT-only group and controls were each dosed daily with RO water alone.
All rats were sacrificed by CO2 on day 49 and the right hind knee samples were collected
for micro-CT and pathological analysis, as well as immunohistochemistry (IHC) staining.
All experimental procedures were approved by the IACUC of CMU (approval number:
CMUIACUC-2021-291).

2.4. Weight-Bearing Testing of Hind Paws

The static weight-bearing incapacitance test (Bioseb, Paris, France) was performed ev-
ery week to assess spontaneous pain and postural deficits. Each rat was placed in an angled
plastic chamber and the hind paws were placed on separate sensors to measure between-
limb differences in dynamic weight bearing (expressed as g) over a 10-s period [26]. The
force value was calculated by the following equation: [Force = weight on left limb − weight
on right limb]. Each experiment was repeated 3 times and the mean was recorded for
each rat.

2.5. Micro-CT Analysis

The right knee joints were collected from the rats after sacrificing with CO2 and fixed
with 4% paraformaldehyde for micro-CT imaging and analysis [27]. Samples were imaged
by a high-resolution micro-CT scanner (Skyscan 2211; Bruker, Kontich, Belgium) under the
conditions selected in previous studies [28,29], and InstaRecon® software (Version v.1.3.9.2,
Bruker micro-CT, Kontich, Belgium) was used for image reconstruction. Reconstructed
cross-sections were reorientated and 59 slices (0.5 mm) were selected, then manual regions
of interest (ROI) were drawn following our previous studies [28,29]. The analysis of bone
microarchitectural parameters, including BMD (bone mineral density), BMC (bone mineral
content), BV/TV (bone volume/tissue volume), BS/TV (bone surface/tissue volume),
trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N)
were performed by CTAn software (Version 1.18.4, Bruker micro-CT, Kontich, Belgium)
following our previous studies [28,29].

2.6. Histopathological Analysis

After undergoing micro-CT scanning, the right knee joints were prepared for ham-
atoxylin and eosin (H&E) staining, Safranin-O/Fast-green staining, or immunohisto-
chemistry (IHC) staining. Briefly, the right knee joints were decalcified by 10% EDTA
in phosphate-buffered saline and embedded into paraffin blocks for histology slices with
H&E, Safranin-O/Fast-green, and IHC staining. Histopathological changes using an optical
microscope, following our previously published procedures [27,30–32]. The Osteoarthritis
Research Society International (OARSI) histopathology grading system evaluated changes
in structural cartilage from the medial tibial plateau (the weight-bearing area) [33,34], defin-
ing the grade of damage from 0 to 6 as the depth of OA progression into the cartilage and
the stage of damage as the horizontal extent of cartilage damage from 0 to 4. The final score
(grade × stage) ranges from 0 (normal cartilage) to 24 points (most advanced grade and
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most extensive stage) as in previous studies [33,34]. Cartilage degeneration was scored as
‘none’ to ‘severe’ (numerical values 0 to 5) [33,34], and surgery-induced inflammation in
the synovial membrane was graded from 0 to 4 as described in our previous studies [35,36].

2.7. Statistical Analysis

All data are shown as the mean ± SD and analyzed by using Sigma Plot 12.0 software
(Systat Software Inc., Berlin, Germany). The significant difference between the three groups
was analyzed by using the unpaired two-tailed Student’s t-test and one-way analysis of
variance followed by Student-Newman-Keuls post hoc testing. A p-value of <0.05 was
considered to be statistically significant.

3. Results
3.1. Oral Live L. plantarum GKD7 Reduces Pain-Related Behavior without Affecting Body Weight

By week 6, all 3 study groups had steadily gained body weight from baseline, with-
out any significant between-group differences (Figure 1). At week 1, measurements of
asymmetry in weight-bearing posture did not differ significantly between the ACLT-only
and ACLT + L. plantarum GKD7 groups (52.0 ± 3.7 g vs. 46.1± 6.0; p = 0.06). From week
1 onwards, ACLT-only rats exhibited severe asymmetry in weight-bearing posture, whereas
pain-related behavior in the ACLT + L. plantarum GKD7 group was markedly improved
from the second week onwards; by week 6, the asymmetry in weight-bearing behavior was
approximately half that of the ACLT-only group (22.4± 5.0 g vs. 58.1 ± 6.7 g; p ≤ 0.05)
and close to that of the control group (7.7 ± 2.8 g; p < 0.05) (Figure 2).
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Figure 2. Oral live L. plantarum GKD7 improved weight-bearing deficits after ACLT surgery. Daily
oral administration of live L. plantarum GKD7 was associated with significantly less weight-bearing
asymmetry after ACLT surgery compared with ACLT-only rats. * p < 0.05 vs. controls; # p < 0.05 vs.
the ACLT-only group.

3.2. Micro-CT Analysis Revealed Protective Effects of L. plantarum GKD7 in OA Bone

Coronal and transverse micro-CT images revealed marked subchondral bone loss in
the ACLT-only group compared with controls, whereas minimal loss was evident in the
ACLT + L. plantarum GKD7-treated rats (Figure 3A). BMD, BMC, BV/TV, BS/TV, Tb.Th,
and Tb.N measurements were all significantly smaller, while Tb.Sp measurements were
significantly larger, in the ACLT-only group compared with controls (Figure 3B–H). In
contrast, daily oral administration of live L. plantarum GKD7 was associated with significant
improvements in changes to subchondral bone induced by ACLT surgery (Figure 3B–H).
Thus, L. plantarum GKD7 appears to reduce deleterious changes to knee joint structure
induced by ACLT.

3.3. Histopathological Analysis of L. plantarum GKD7 in OA Rats

Staining by H&E and Safranin-O/Fast Green revealed less injury (imaged were more
intact) in articular cartilage samples from the controls and ACLT + L. plantarum GKD7 group
compared with the minimal cartilage in the ACLT-only samples (Figure 4A). ACLT-induced
synovial inflammation (marked by arrowheads) and cartilage damage (arrows) were min-
imal in the ACLT + L. plantarum GKD7 samples, but very apparent in the ACLT-only
samples (Figure 4A). OARSI, cartilage, and synovium scores were significantly superior
in the ACLT + L. plantarum GKD7 group compared with scores in the ACLT-only group,
while the ACLT-only scores were significantly superior compared with the control group
(Figure 4B–D).
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Figure 3. Representative micro-CT images of the right knee joint from rats in the sham-operated
group, the ACLT-only group, and the ACLT + L. plantarum GKD7 group. (A) Representative coronal
and transverse micro-CT images of rat knees in each study group. Quantitative analyses of (B) BMD,
(C) BMC, (D) BV/TV, (E) BS/TV, (F) Tb.Th, (G) Tb.N, and (H) Tb.Sp. * p < 0.05 vs. controls; # p < 0.05
vs. the ACLT-only group.
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Figure 4. Histological evidence. (A) The images show representative knee joints from each group,
consisting of coronal sections of articular cartilage stained with H&E and Safranin-O/Fast Green
(magnification 5×). The arrowheads denote synovial hyperplasia and the arrows denote cartilage
damage. Quantitative analyses of (B) OARSI scores, (C) cartilage scores, and (D) synovium scores.
Scale bar = 500 µm. * p < 0.05 vs. controls; # p < 0.05 vs. the ACLT-only group.

3.4. IHC Analysis of Proinflammatory Markers

As shown in Figures 5A and 6A, IL-1β and TNF-α levels were markedly upregulated
in ACLT-only cartilage and synovium compared with control and L. plantarum GKD7
cartilage and synovium. The ACLT-only group had significantly higher IHC scores of
cartilage and synovium compared with both the controls and the L. plantarum GKD7 group;
these values were significantly decreased by L. plantarum GKD7 when compared with
ACLT-only (Figures 5B,C and 6B,C).
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4. Discussion

Proinflammatory cytokines have an important role in OA joint destruction [8,37], pro-
moting damage in joint extracellular matrices and stimulating the progression of OA [9,10].
High IL-1β and TNF-α levels upregulate proteolytic enzymes, such as MMPs and ADAMTS
family, which degrade the extracellular matrix [9,11]. Probiotics are well recognized for
their anti-inflammatory properties [38,39] and previous research has highlighted the IL-1β
and TNF-α cytokines as important targets in probiotic treatment strategies for arthritic
diseases [19,40]. In particular, consumption of Lactobacillus spp. reduces proinflammatory
cytokine production in experimental OA [19,41,42]. This was supported by our study
results, as IL-1β and TNF-α levels in rat cartilage and synovium were markedly reduced
by daily oral administration of live L. plantarum GKD7.

Coronal and transverse micro-CT imaging revealed minimal changes in subchondral
bone architecture in the ACLT + L. plantarum GKD7 group, whereas there was marked
subchondral bone loss in the ACLT-only group compared with controls. Subchondral bone
lesions, including bone marrow edema and angiogenesis, are known to contribute to OA
joint destruction [43,44], while IL-1β and TNF-α stimulate MMPs and ADAMTSs activity
that subsequently worsens bone architecture, reflected by reductions in BMD, BMC and BV
values, which promote OA disease progression [9,45]. The recent studies also indicated that
subchondral bone lesions, including bone marrow edema and angiogenesis, also contribute
to the OA joint destruction. Our micro-CT images revealed significant improvements in
bone microarchitectural parameters of rats treated with live L. plantarum GKD7 follow-
ing ACLT surgery compared with ACLT-only rats. In the L. plantarum GKD7 group, we
observed significantly lower cartilage and synovium IHC scores, and also significantly
reduced IL-1β and TNF-α levels, compared with the ACLT-only group. We, therefore, spec-
ulate that L. plantarum GKD7 ameliorates OA-induced changes in bone microarchitectural
parameters by inhibiting proinflammatory levels in cartilage and synovial tissue. Thus, our
data suggest that daily oral administration of live L. plantarum GKD7 can effectively reduce
synovial inflammation and damage to bone architecture induced by ACLT surgery.

OA disease is accompanied by often severe pain [46]. In OA, the upregulation of
TNF-α and IL-1β expression in the injured joint induces mechanical pain hypersensitivity
by increasing the expression of nerve growth factor, which in turn increases the phospho-
rylation state of transient receptor potential vanilloid receptor 1 (TRPV1) [46–48], critical
mediators of inflammatory pain signaling. Moreover, OA-induced disturbance of subchon-
dral bone and cartilage destruction results in abnormal load-bearing in the joints and is an
important contributor to chronic pain during non-weight-bearing activities [44,49]. This
abnormal load-bearing causes the release of multiple signaling mediators such as nerve
growth factor, neuropeptide substance P, and neurokinin-1 in the osteochondral area, result-
ing in persistent nociception stimulation and the characteristic OA pain [44]. Thus, reducing
the expression of TNF-α and IL-1β and improving the cartilage destruction and “abnormal”
loading within the subchondral bone are important targets of OA treatment [1,43,45]. In
our results, ACLT surgery significantly increased levels of TNF-α and IL-1β expression, led
to the development of weight-bearing deficits in rat hind legs, and structural damage in
articular cartilage, compared with changes observed in the sham-operated group. Daily
oral administration of live L. plantarum GKD7 significantly reduced these ACLT-induced
effects, which suggests that this probiotic strain can effectively ameliorate OA pain.

5. Conclusions

Consumption of live L. plantarum GKD7 may improve OA disease progression and
associated joint pain by reducing levels of IL-1β and TNF-α in OA joints and by improving
weight-bearing asymmetry. We suggest that L. plantarum GKD7 may be a useful strategy
for improving the signs and symptoms of OA.
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