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Abstract: With the enhancement of consumers’ food safety awareness, consumers have become more
stringent on meat quality. This study constructs an intelligent dynamic prediction model based on
knowledge rules and integrates flexible humidity sensors into the non-destructive monitoring of the
Internet of Things to provide real-time feedback and dynamic adjustments for the chilled chicken
cold chain. The optimized sensing equipment can be attached to the inside of the packaging to deal
with various abnormal situations during the cold chain, effectively improving the packaging effect.
Through correlation analysis of collected data and knowledge rule extraction of critical factors in
the cold chain, the established quality evaluation and prediction model achieved detailed chilled
chicken quality level classification and intelligent quality prediction. The obtained results show that
the accuracy of the prediction model is higher than 90.5%, and all the regression coefficients are close
to 1.00. The relevant personnel (workers and cold chain managers) were invited to participate in the
performance analysis and optimization suggestion to improve the applicability of the established
prediction model. The optimized model can provide a more efficient theoretical reference for timely
decision-making and further e-commerce management.

Keywords: chilled chicken; intelligent dynamic prediction model; flexible sensing; knowledge rules;
quality evaluation standard

1. Introduction

Nowadays, with the improvement of living standards, consumers’ demand for “fresher”
food poses major challenges for food quality and safety [1,2]. Chilled meat refers to that
which is always maintained at a low temperature of 0–4 ◦C during cold chain storage,
transportation, and sales to ensure its quality and freshness [3]. Generally, temperature
fluctuation is the main reason for the deterioration of chilled meat due to microbial contam-
ination [4,5]. In addition, humidity, oxygen [6], carbon dioxide [7], and ammonia [8] are
also closely related to the chilled meat quality. Currently, electronic noses [9], TTI [10] and
intrusive sensors [11] are mostly used to indicate the relationship with meat quality. There
is great interest among members of the food supply chain in developing cost-effective,
reliable, and intelligent methods to evaluate the chilled meat quality [12].

Dynamic non-destructive monitoring based on artificial intelligence and the Internet
of Things (IoT) is a new technological development [13] that is gradually replacing cumber-
some and intrusive measurement of traditional handheld instruments. It has been widely
applied to packaged food in the cold chain process due to its advantages in real-time,
continuous, and dynamic monitoring [14,15]. The flexible sensors that operate at packaging
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have attracted more attention due to pliability and low power consumption [16]. Moreover,
the techniques used in the flexible gas sensing industry, such as inkjet printing, enable the
large-scale fabrication of low-cost effective systems [17]. By integrating flexible sensors,
battery-less power supply, and wireless transmission [18,19], etc., it can effectively deal
with various complex and special conditions of packaged food during the cold chain such
as packaging deformation and size optimization.

Additionally, as a mathematical method with strong self-learning, self-adaptation,
and other abilities [20], the BP neural network has been widely used in various food
supply chains [21,22]. Whereas, conventional quality evaluation and the BP neural network
have not realized the comprehensive evaluation and prediction of the critical influencing
factors in the cold chain, resulting in indistinct and oversimplified final results [23]. As a
consequence, the introduction of intelligent evaluation methods into the Internet of Things
is considered to improve the accuracy of final results. Due to the uniqueness and diversity
of the cold chain process, knowledge rules provide a comprehensive analysis to ensure
the correct execution of the processes [24]. It is adopted as a cost-effective way to provide
accurate evaluation and system optimization, which stores a set of rules for management
support, expert knowledge, and so on [25]. By determining the strong relationship between
the data collected during the process execution and the knowledge rules [26], an optimized
quality evaluation standard and prediction model is constructed [27] to effectively ensure
the quality and safety of products in the actual process and provide decision-makers and
users with a more accurate evaluation and prediction results.

In China’s national standards, Volatile base nitrogen and sensory evaluation are
regarded as important factors indicating chilled chicken quality and shelf life. Nevertheless,
according to GB 2707-2016 “Chicken Hygienic Standards” with other countries’ evaluation
standards for chicken quality, the current evaluation under different conditions is vague and
oversimplified, which requires more accurate evaluation standards and prediction methods
to avoid invasive tests, especially in a confined space such as cold chain transportation.

Based on previous studies, this study proposes an intelligent dynamic quality predic-
tion of chilled chicken with integrated IoT flexible sensing and knowledge rules extraction
in the cold chain. The monitoring equipment collects critical parameters through integrated
optimized sensors and the relevant processed data is analyzed statistically to evaluate
chilled chicken quality in level. Additionally, this paper used conventional quality evalu-
ation methods as the basic knowledge framework, considering the impact of other rules
on the quality of chilled chicken [28], and constructed an intelligent dynamic quality pre-
diction model based on knowledge rules and evaluation standards. The Discussion and
Conclusion about the implementation of model performance are provided at the end to
verify evaluation standard and prediction effect. This research has made the following
contributions to the research field of cold chain logistics:

(1) Integrate flexible sensing into IoT to optimize packaging effects and deal with complex
cold chain monitoring;

(2) Construct an intelligent chilled chicken quality prediction model based on knowledge
rules framework and quality evaluation standard through process analysis, collected
relevant data analysis, and quality indicators analysis.

2. Materials and Methods
2.1. Conceptual Framework for Intelligent Dynamic Quality Prediction Model

The intelligent dynamic quality prediction model based on knowledge rules and
evaluation criteria is shown in Figure 1a. The normal implementation of chilled chicken cold
chain transportation is influenced by various factors. Through preliminary investigation
and reference [4,29,30], various critical factors (such as sensor performance, gas change
and physical and chemical indicators, etc.) were classified and identified as: process
determination, ambient factors, and quality indicators. Figure 1a summarized all the
evaluated indicators (such as temperature change, cold chain transportation, and sensory
evaluation, etc.) in this experiment. As the knowledge base considered the impact of hazard
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analysis of each node in the cold chain, micro-environmental factors and quality indicators
on final results, the knowledge rules affecting the normal operation of the cold chain, such
as process analysis, packaging requirements, sensor design, parameter monitoring, and
preparation and implementation of quality experiments, etc., were extracted, respectively, to
construct and supplement the final knowledge rules database. According to the knowledge
rules extracted from the database, temperature fluctuation is the most important factor
during the cold chain process and should be strictly controlled. Additionally, the optimized
flexible sensor integration can effectively reduce the packaging size and improve the
packaging effect while maintaining monitoring accuracy. Finally, the quality indicators and
environmental signals with high correlation are selected for subsequent quality evaluation
and prediction modeling.

Figure 1. Intelligent dynamic quality prediction model based on knowledge rules and evaluation
standard. (a) Model construction; (b) Prediction model design; (c) Prediction model parameter
optimization.
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Based on the extracted knowledge rules, sensor performance evaluation integrated
with flexible sensing, statistical analysis and evaluation of collected critical data, and selec-
tion of significantly related indicators to establish evaluation standard together constituted
the evaluation model and provided knowledge rules for subsequent quality prediction.
Simultaneously, the results of the prediction were re-output to the evaluation model to
evaluate the effect of the prediction model and transmit all the evaluation results to the
knowledge rule database to improve the accuracy of the next evaluation and prediction.

According to the knowledge rule base and constructed evaluation standard, the
constructed prediction model could intelligently and dynamically predict the quality of
chilled chicken according to the critical parameters collected in real-time to obtain accurate
quality results. The BP neural network is a multilayer feedforward neural network [31],
which can solve the nonlinear relationship between different indicators [32]. The conceptual
structure of the prediction model was generally composed of an input layer, a hidden layer,
and an output layer (Figure 1b). At first, the input signal was processed layer by layer
during the signal propagation process. If the expected output error was too large, it would
turn to back propagation, adjust the weight and threshold according to the prediction
error [33]. The optimization of neural network parameters is shown in Figure 1c. In
this study, the commonly used genetic algorithm was selected to optimize the BP neural
network and improve its adaptability. The MATLAB R2018b math software (version 9.1,
MathWorks Inc., Natick, MA, USA) was used for modeling. The settings and training
of related parameters were as follows: the momentum factor was set to the default 0.9,
the learning rate was set to 0.05, and the training accuracy was set to 0.000001. Through
continuous optimization of parameters under different conditions, the neural network
model had relatively higher prediction performance (minimum mean square error) and a
more ideal fitting effect (fewer iterations) at different temperatures. After many times of
training, the predicted and expected output will continue to approach.

2.2. Non-Destructive Monitoring Equipment Integrated with Flexible Sensor

Conventional monitoring equipment is likely to lead to contamination and affect
monitoring accuracy because of unreasonable sensor layout and large packaging size. The
designed hardware architecture consists of four modules that include a power supply mod-
ule, a sensing module, an information processing module, and a wireless communication
module (Figure 2a). The relevant multi-parameter information collection circuit diagram is
shown in Figure 2b.

The sensing module captured the environmental information and geographic parame-
ters during the cold chain by using a temperature and humidity sensor, gas sensor, and GPS
device. The parameter performance of relevant sensors is listed in Table 1. The processing
module processed the data received from the sensing module at regular intervals. After
filtering and A/D conversion, the processed data was sent to the data analysis and applica-
tion module via GPRS wireless communication module. The data analysis and application
module were responsible for performing analysis and interactive functions which consists
of a server module and an application module. It not only provided real-time informa-
tion warnings and feedback treatment measures but also provided administrators with
historical data and simplified operation and configuration interfaces. The power module
continued to supply power to the device during the entire working process.

Meanwhile, this paper also proposes a flexible humidity sensor (Figure 2c) to improve
architecture performance. The flexible thin-film resistive sensor is composed of a sensing
layer, interdigital electrode, and flexible substrate. As shown in Figure 2d, the sensing layer
sensed the humidity signal directly and converted it into an electrical signal that had a
definite relationship with the measured. The sensing layer underwent an adsorption reac-
tion with water molecules in the air and the electrical conductivity changes in a negative
correlation with the environmental humidity. Then the interdigital electrode converted the
conductivity of the sensing layer into an output current signal. Finally, the environmental
humidity was reflected by the change of resistance value. In this experiment, we used
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Polyethylene terephthalate (PET) flexible film as the substrate for inkjet printing deposition
of the electrode and sensitive materials. The specific preparation process of the flexible
sensor is shown in Figure 2e, including substrate ultraviolet cleaning, printing parameter
setting, interdigital electrode inkjet printing, dispensing and scraping sensitive layer, cur-
ing and sintering after fabrication and performance characterization. All materials were
provided by Shanghai Mifang Electronic Technology Co., Ltd., Shanghai, China. A control
experiment of the flexible humidity sensor and rigid sensor was proposed to evaluate the
improved sensor performance (Figure 2f).

Figure 2. The monitoring equipment architecture. (a) The hardware architecture; (b) Multi-parameter
information collection circuit diagram; (c) Flexible humidity sensor block diagram; (d) Flexible
humidity sensing mechanism; (e) Flexible sensor fabrication process; (f) Comparison experiment
between flexible humidity sensor and conventional sensor.
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Table 1. Parameter performance of various sensors in chilled chicken transportation.

ID Types Measured Parameters Measuring Range Resolution Accuracy Power Consumption

1 AJD-O2 O2 0–25% – ±0.5% 200 mW
2 AJD-CO2 CO2 0–5000 ppm – ±50 ppm 25 mW
3 AJD-H2S H2S 0–1000 ppm ±10 ppm 220 mW
4 ST11 Temperature −40~80 ◦C 0.1 ◦C ±0.2 ◦C 1–30 uW
5 TH-2303 Humidity 0–99% RH 0.1% RH ±0.5% RH 1–30 uW

2.3. Experiment Design and Scenario Implementation

According to the field survey of the actual cold chain logistics, an experimental
simulation of the entire chilled chicken cold chain process was conducted in the laboratory.
Three hundred pieces (150 g/piece) of chilled chicken breasts were randomly divided and
put into the numbered (1–4) test box (40 cm × 30 cm × 50 cm), which was sealed with
polyethylene heat shrinkable film. For packaged chilled chicken at 0 ◦C and 4 ◦C, the
quality indicators were measured every 24 h. As for chilled chicken at 8 ◦C and 20 ◦C, they
were measured every 12 h and every 8 h, respectively. Finally, the actual cold chain and
variable temperature experiment (packaging and sales at 20 ◦C, 1st refrigeration at 8 ◦C,
2nd refrigeration and transfer at 4 ◦C, and transportation at 0 ◦C) were implemented to
verify the quality evaluation standard and intelligent quality prediction effects. The specific
parameters were determined as follows.

2.3.1. Critical Environmental Parameters

In this experiment, temperature and humidity, oxygen, carbon dioxide and hydrogen
sulfide were used to sense environmental parameters. The sensors were placed in the top
of the box during the packaging stage to avoid contact with the chilled chicken. At the
same time, they collected and monitored the temperature, humidity and gas environment
changes in the headspace of the package every 10 min dynamically.

2.3.2. Color Difference

During the entire cold chain logistics process, the color of chilled chicken will change
over time. In this study, a Konica Minolta portable spectrophotometer (CM-700d, Japan)
was used to measure the color of chilled chicken on the surface of the chicken sample.
Color is represented by CIE L* (luminosity value), a* (red value) and b* (yellow value). The
calculation can be obtained by Equation (1):

∆E =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)

Two random measurements were made directly on the surface of the sample and the
average value was used for statistical analysis. The area selected for color measurement
should not have obvious defects, as these defects may affect uniform color readings.

2.3.3. Texture Profile Analysis

The TPA (Texture Profile Analysis) is an indicator of changes in the physical character-
istics of chilled chicken, and their changes have a great correlation with quality [34]. The
TA-XT PLUS Texture Analyzer (Stable Micro Systems, Surrey, UK) was used to test the
hardness, stickiness, and chewiness. The sample was cut along the direction of the muscle
fibers into a circle with a thickness of ~10 mm and a cross-sectional area of 10 cm2, while
the sample weight was controlled at ~10 g and the compression of the sample was in the
range of 20–90%. The probe used in the test was a P/5 flat-bottomed cylindrical probe with
a pre-pressure of 5 g. The five-point sampling method was used to measure the TPA index
and maintain a constant speed of 1.00 mm/s during the measurement. Each sample was
tested three times, and the average value was taken as the various indicators.
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2.3.4. TVB-N

A volatile base nitrogen rapid detector (Foss KjeltecTM 8400, Beijing Hengrui Scientific
Instrument Co., Ltd. Beijing, China) was used to determine the volatile base nitrogen value
as the storage time changed. Thirty pieces of chilled chicken breasts were measured five
times, as the initial TVB-N value of chilled chicken. The chicken was placed at different
constant temperature incubators, the TVB-N content was detected according to different
time intervals.

2.3.5. Sensory Evaluation

Sensory evaluation and identification is a common and flexible method to identify
the sensory traits (color, smell, and taste) of foods by people’s senses (eyes, nose, tongue,
etc.) [35]. The evaluation team consisted of 10 food-related graduate students who were
well trained in the field as evaluators. They evaluated and recorded the various indicators
independently and could not communicate with each other. Sensory evaluation adopted a
five-point system, and the total evaluation was divided into the average value of the sum
of the other indicators. The specific evaluation standard is shown in Table 2.

Table 2. The specific evaluation standard of chilled chicken.

Evaluation
Standard Color Smell Tissue

5 Bright red and shiny Originally normal smell Very tight and elastic
4 Light red and shiny Normal smell Tight and elastic
3 Light red and dull Normal smell becomes lighter Loose and inelastic
2 Dim color Normal smell disappeared and slightly peculiar More loose
1 Dark brown with some green Smelly or ammonia smell Very loose

2.3.6. Statistical Analysis

The SPSS (International Business Machines Corporation, version 26.0, New York, NY,
USA) was used to analyze all collected data by single-factor analysis of variance (ANOVA)
at a significance level of 95% for quality analysis of chilled chicken at different temperatures.
Besides, Duncan’s multiple comparison test was followed while significant differences
were calculated at p ≤ 0.05 level for all analyses statistically.

3. Results and Discussion
3.1. Sensor Performance Evaluation

The printed flexible humidity sensor array and its microstructure are shown in
Figure 3a. The sensing layer material was uniformly attached to the interdigital elec-
trode made of nano-silver, and its surface was distributed with many micro-pores with a
diameter of about 1 µm. These pores increase the adsorption probability of water molecules
on the surface of the sensing layer and improve the sensitivity of the flexible humidity
sensor.

Static and dynamic calibration curves of the flexible humidity sensor are shown in
Figure 3b,c, respectively. The resistance value of the sensor decreases with the increase
of relative humidity, and the linear regression coefficient R2 of the fitting line reaches
0.99409, indicating that the resistance of the flexible humidity sensor has a good linear
correspondence with relative humidity. The dynamic response process of the sensor can be
roughly divided into four stages:

S1: The sensor had a stable output value in a low humidity environment;
S2: The airflow fluctuation in the container caused the sensor output to fluctuate;
S3: Due to the mixing of wet and dry air, the water molecules contacted by the sensor

increase, and its output changed rapidly;
S4: Under stable humid air action, the sensor continuously responded and finally reached

a stable output value.
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Figure 3. Sensor performance evaluation: (a) Sensor microstructure characterization; (b) Sensor static
characteristic test; (c) Sensor dynamic response characteristic test; (d) Sensor flexibility test; (e) Sensor
stability test.

Figure 3d,e, respectively, show the sensor flexibility test with different bending times
and the stability test at different humidity. When the sensor was bent 90◦, the sensor
sensitivity response value dropped by 3.70%, 7.40%, 12.96%, 16.67% and 24.07% after
different bending, compared with 54% of the sensor without bending. When the number
gradually increased to 500 times, the response characteristics of the flexible sensor decreased
significantly, and the flexibility of the sensor needs to be further improved. The fabricated
flexible sensor showed good stability under five different relative humidity conditions.
However, the stability of the flexible sensor at high relative humidity is better than that of
low relative humidity, and it is still in the acceptable range on the whole.

Compared to the conventional sensor occupying the limited volume, the flexible
humidity sensor with improved size and weight can be affixed in small packages to
effectively increase the utilization of packages due to its good flexibility and ductility.
Simultaneously, it can maintain excellent mechanical and sensing properties even under
high-strength bending, stretching, and torsion, etc. Although the proposed flexible sensor
has unique advantages in many fields, most of the current flexible sensors are still in the
prototype development stage. The conventional humidity sensor still has better measuring
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accuracy and lower cost under the current situation. The multi-parameter monitoring
equipment realized by integrating flexible sensors and rigid sensors in IoT can effectively
deal with various abnormal situations in the cold chain process. To further optimize the
performance of the monitoring device, it is considered to use high-performance, low-cost,
lightweight flexible sensors such as flexible temperature and gas sensors. Integration with
RFID technology is also considered to achieve efficient energy collection and low-power
transmission in the future.

3.2. Critical Data Analysis and Evaluation
3.2.1. Environment Parameter Data Analysis

The quality change affected by gas concentration is shown in Figure 4 when chilled
chicken samples were stored at different temperatures. The gas concentration changes have
a higher similarity, and their simultaneous changes can indicate the chilled chicken quality.
At different temperatures, the concentration of carbon dioxide maintains a slow increase in
the initial stage and linearly changes in the corruption stage while the O2 content changes
non-linearly; Meanwhile, H2S remained at 0 in the initial stage. When the signal was
detected, the content of H2S gradually increased exponentially. With the increase of CO2
and H2S content and the decrease of O2, the chicken quality will gradually decrease with
color from red to purple.

Figure 4. Quality change affected by gas concentration at different temperatures: (a) 0 ◦C; (b) 4 ◦C;
(c) 8 ◦C; (d) 20 ◦C.

At 0 ◦C, 4 ◦C, and 8 ◦C, the oxygen content decreased rapidly in the first 3 h at the
same time. Combined with humidity fluctuations, the reason is that the high humidity
environment interferes with the accuracy of the oxygen sensor. Meanwhile, the metabolic
rate of microorganisms decreases under low temperature, which leads to a decrease in the
rate of oxygen decline and delays the deterioration of quality. The experimental results and
correlation analysis (Table 3) show that, except that the correlation is not obvious at 0 ◦C,
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oxygen is significantly negatively correlated with chilled chicken quality, while carbon
dioxide and hydrogen sulfide are significantly positively correlated. The main reason is
that the chilled chicken has always been fresh at 0 ◦C, and the gas indicators have not
changed obviously, especially the hydrogen sulfide has not been detected for a long period.

Table 3. Correlation matrix analysis of different indicators.

RH H2S O2 CO2 TVB−N Sensory ∆E Hardness Chewiness

20 ◦C

RH 1
H2S 0.489 1
O2 −0.588 −0.942 * 1

CO2 0.639 0.971 * −0.987 * 1
TVB−N 0.779 0.994 ** −0.941 * 0.980 * 1
Sensory −0.812 * −0.852 * 0.948 * −0.952 * −0.886 * 1

∆E 0.937 * 0.771 −0.799 0.890 0.918 −0.969 1
Hardness −0.821 * −0.905 * 0.923 * −0.975 * −0.988 * 1.000 ** −0.969 * 1
Chewiness −0.811 −0.912 * 0.930 * −0.979 * −0.990 * 1.000 * −0.964 1.000 * 1

8 ◦C

RH 1
H2S 0.153 1
O2 −0.571 −0.834 * 1

CO2 0.481 0.888 * −0.956 ** 1
TVB−N 0.843 * 0.970 * −0.933 ** 0.978 ** 1
Sensory −0.868 * −0.858 * 0.921 ** −0.929 ** −0.949 ** 1

∆E 0.548 0.654 −0.662 0.525 0.529 −0.733 * 1
Hardness −0.565 −0.532 0.949 ** −0.981 ** −0.981 ** 0.952 ** −0.743 * 1
Chewiness −0.251 −0.521 0.817 ** −0.905 ** −0.877 ** 0.787 * −0.486 0.857 ** 1

4 ◦C

RH 1
H2S 0.153 1
O2 −0.571 −0.786 * 1

CO2 0.481 0.824 −0.940 ** 1
TVB−N 0.723 0.911 * −0.978 ** 0.981 ** 1
Sensory −0.686 −0.802 0.950 ** −0.890 ** −0.955 ** 1

∆E 0.505 0.540 −0.877 ** 0.864 ** 0.875 ** −0.841 ** 1
Hardness −0.532 −0.325 0.749 * −0.592 −0.692 * 0.790 ** −0.572 1
Chewiness −0.268 −0.367 0.652 * −0.776 ** −0.743 * 0.676 * −0.520 0.346 1

0 ◦C

RH 1
H2S 0.226 1
O2 −0.963 ** −0.522 1

CO2 0.320 0.763 * −0.357 1
TVB−N 0.878 * 0.782 −0.723 * 0.840 ** 1
Sensory 0.841 * −0.685 0.615 * −0.759 ** −0.945 ** 1

∆E 0.494 0.398 −0.600 0.822 ** 0.924 ** −0.893 ** 1
Hardness −0.505 −0.288 0.553 −0.859 ** −0.897 ** 0.834 ** −0.936 ** 1
Chewiness −0.366 −0.285 0.511 −0.175 −0.532 0.657 * −0.521 0.362 1

* indicates that the linear correlation is significant, ** indicates that the linear correlation is more significant.
p ≤ 0.05.

3.2.2. Quality Indicator Data Analysis

As shown in Figure 5a, it is seen that the quality of chickens refrigerated at a low
temperature has almost no change in the first 4–5 days, which is difficult to distinguish by
color difference. For chicken stored at higher temperatures, especially at 20 ◦C, the change
was obvious. The color became dark, a lot of juice was exuded, pungent odor and sticky
substance appeared, and the tissue became soft and had no elasticity. The texture profile
measured on chicken samples stored at different temperatures is shown in Figure 5b. The
luminosity value L*, red value a*, and yellow value b* of chilled chickens decreased with
the extension of storage time, that is, the color became darker and blacker. Among them, at
the temperature of 8 ◦C, the value ∆E increased immediately in the first four days, but it
dropped from the fourth to the seventh day. The color became brighter, which is consistent
with the appearance of a sticky white substance on the eighth day in the color changes. In
summary, the color difference value ∆E changes linearly and has a negative correlation
with the quality change of chilled chicken. The changes in hardness and chewiness of
chilled chicken at different temperatures are also shown in Figure 5b, respectively. Both of
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them show an obvious positive correlation with the quality of chilled chicken, which can
be used as one of the quality indicators.

Figure 5. Different quality characteristics of chilled chicken. (a) Color Change; (b) TPA (color,
hardness, and chewiness) changes at different temperatures; (c) Sensory evaluation; (d) TVB-N.

Therefore, considering the color difference, hardness, and other indicators compre-
hensively, the result of sensory evaluation is shown in Figure 5c. It can be seen that three
points are an obvious cut-off point. When the score is higher than three points, the chilled
chicken is fresher, shiny, and has no peculiar smell. With the extension of storage time, the
chilled chicken became dull, the normal smell disappeared, and a peculiar smell appeared,
the chicken tissue was loose, inelastic, and enter the stage of corruption. To analyze the
chicken quality comprehensively, it is necessary to further combine other indicators for
in-depth analysis. The TVB-N content change under different temperature conditions is
shown in Figure 5d. According to the fitting effect, the linear correlation results of TVB-N
at 20 ◦C, 8 ◦C, 4 ◦C, and 0 ◦C are 0.9926, 0.9403, 0.9759, 0.9249, respectively, which proves
that the fitting effect has an obvious quality indication.

3.2.3. Critical Data Correlation Analysis

The correlation results of each parameter under different temperature conditions are
shown in Table 3, H2S and CO2 have a high positive correlation with TVB-N and a high
negative correlation with sensory evaluation. Meanwhile, O2 and humidity have a high
positive correlation with sensory evaluation and a certain negative correlation with TVB-
N. On the other hand, the hardness, chewiness and color difference are not significantly
correlated with environmental parameters under low-temperature conditions. Therefore,
H2S, CO2, O2, and humidity are selected as the input of the neural network, and TVB-N
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and sensory evaluation indicators are used as the output for the characterization of chicken
quality.

3.3. Quality Evaluation Standard

The quality evaluation standard of chilled chicken based on knowledge rules under dif-
ferent conditions is shown in Figure 6. Since temperature fluctuation is the most important
factor affecting chilled chicken quality change, while other environmental indicators are
more used to predict chicken quality, they were not included in the construction of quality
evaluation standards. According to the established knowledge rules database, the quality
evaluation level of chilled chicken is roughly divided into three stages, namely L1, L2, and
L3, which correspond to the first-level quality, second-level quality and the corruption level,
respectively. Based on the knowledge rules and the statistical analysis results obtained from
the collected data, the cold chain process and the corresponding temperature requirements
were determined, and all quality indicators were classified and judged according to the
importance of the correlation results for the final quality evaluation standard. As shown in
Table 3, TVB-N and sensory evaluation have a significant correlation with the final quality
and shelf life, so they occupy higher weight in the quality evaluation standard. Simultane-
ously, other indicators (such as hardness, color, etc.) are also indispensable, which are used
for secondary quality evaluation to make the evaluation standard more comprehensive
and detailed. According to the extracted knowledge rules, the quality evaluation standard
is established to effectively evaluate the quality and feedback the evaluation results to the
knowledge rule database to provide relevant diagnostic information and knowledge rules
for subsequent dynamic prediction. The specific knowledge rules are as follows:

Figure 6. The quality evaluation standard based on knowledge rules under different conditions.

Rule 1: The cold chain process is determined, and the corresponding requirements are
selected.

Rule 2: The first stage of quality level judgment. According to the selected condition, judge
whether the TVB-N content and sensory evaluation score meet the requirements.
Otherwise, the quality level judgment of the next stage will be carried out.
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Rule 3: If the requirements are met, judge whether the color difference, hardness, and
chewiness meet the requirements. Otherwise, the quality level judgment of the
next stage will be carried out.

Rule 4: If all the requirements are met, the chilled chicken is considered as first-level quality
with bright color, tight and elastic tissue, and a normal smell.

Rule 5: The second stage of quality level judgment. Repeat the judgment method of Rule
2–4. When TVB-N, sensory score, color difference, and all other indicators meet the
corresponding requirements, chilled chicken is considered in second-level quality
with dim color, loose and inelastic tissue, and mild unpleasant smell.

Rule 6: If all the requirements are not met, it is considered that the chilled chicken has
entered the corruption level with terrible quality.

In different conditions, the time to reach three levels is also different. The quality
change of chilled chicken is most obvious at 20 ◦C while the quality validity period of
chilled chicken during package and sales is very short (less than two days). Compared
with other cold process conditions, the quality classification requires stricter TVB-N content
and sensory evaluation scores, since the chilled chicken at 20 ◦C did not produce much
TVB-N in a short time and the sensory evaluation was not obvious. In contrast, the sensory
evaluation scores of chilled chickens at 0 ◦C are influenced by environmental factors such
as air-drying due to longer shelf life, so the sensory evaluation scores are lower, and the
content of TVB-N is relatively higher. Therefore, it is better to ensure that the cold chain
temperature of chilled chicken is maintained at 4 ◦C to maximize the quality. Besides, the
maximum temperature should not exceed 8 ◦C (the quality validity period is higher than 8
days) while the minimum temperature should not be lower than 0 ◦C (to ensure its good
texture and flavor).

3.4. Evaluation of Quality Prediction Model

To demonstrate the fitting and prediction ability of the model, according to the con-
struction step of the prediction model in Section 2.3, the concentration of humidity, O2,
CO2, and H2S were used as the input of the prediction model. Meanwhile, the TVB-N and
sensory evaluation indicators were respectively used as the output of the prediction model.
Two output indicators were comprehensively considered to obtain the chilled chicken
quality evaluation and prediction. The model was trained and tested for a total of 9000
sets of data at four different temperatures: 70% of the data was used as the training set,
15% of the data was used as the test set and 15% of the data was used as the validation
set of the model. The performance analysis of the improved prediction model based on
the knowledge rules between the predicted value and the true value is shown in Figure 7.
The absolute error of the two indicators changed in the interval [−0.1948, 0.3846] and
[−0.183, 0.3405], respectively. The changing trend of the two indicators presents a strong
consistency of the predictive value estimation. Meanwhile, the relative error of the TVB-N
and sensory evaluation prediction models are less than 9.5% and 8.5%, respectively, which
demonstrated that the model had higher prediction accuracy and lower error. Additionally,
the correlation coefficient R between the predicted value and the actual value of the model
are all higher than 0.99, which indicated that the quality coupling model based on the
multi-parameter combination had high prediction accuracy in three stages. In summary, by
analyzing the prediction results of the model, the complementation and combination of
multiple parameters can greatly improve the prediction results of chilled chicken quality,
which can effectively reflect changes in shelf life.
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Figure 7. The performance analysis of the improved prediction model. (a) The absolute error of
TVB-N; (b) The relative error of the TVB-N; (c) The absolute error of sensory evaluation; (d) The
relative error of sensory evaluation.

3.5. Experimental Verification and Model Comparison Evaluation

The actual cold chain (East China Meat Market, Jiangsu-Beijing) real-time tracking
monitoring results are shown in Figure 8a. The whole process took about 3000 min from
packaging to refrigeration in a laboratory incubator. The temperature fluctuated within the
range of 20–30 ◦C during packaging and dropped sharply from 25 ◦C to 8 ◦C during the
1st refrigeration. The temperature in the cold chain transportation stage was maintained at
about 0 ◦C and was constant at about 3 ◦C during the 2nd refrigeration. Among them, a
series of uncertain factors in the logistics process, such as refrigeration equipment failure,
transportation instability, etc., would cause temperature fluctuations. Meanwhile, the
humidity was always in a high humidity state above 90% RH since it rose from 50% RH.

Based on the temperature changes in the actual cold chain process, variable temper-
ature experiments were designed to verify the quality evaluation and prediction models
based on knowledge rules. The changes in environmental parameters and quality indi-
cators are shown in Figure 8b. Various parameters and indicators are highly similar to
their changing trends at different temperatures. Humidity, O2, CO2, and H2S were used as
inputs to predict chicken quality, and the final result (Figure 8c,d) shows that the correlation
coefficient R is greater than 0.9785, confirming the excellent performance of the model.

Table 4 provides a comprehensive comparison of the traditional model and optimized
model in detail. Compared with the traditional model, the proposed prediction model
integrates flexible humidity sensors into intelligent IoT monitoring, which achieves shorter
response and recovery time and higher accuracy while realizing multi-parameter mon-
itoring. Simultaneously, the traditional evaluation method only considers the influence
of TVB-N content and sensory evaluation on quality in any case. The improved model
performs data statistical analysis on collected relevant data and determines the cold chain
process and requirements under different conditions. The quality evaluation based on
knowledge rules is established to meticulously evaluate the chilled chicken indicators
under different conditions and provide more accurate information and knowledge rules for
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the prediction model. After error analysis and calibration verification, it is found that the
critical parameter-quality prediction model can accurately predict chicken quality, which
verifies that the optimization of the model has reached the expected demand.

Figure 8. The actual cold chain of chilled chicken and simulation verification. (a) Actual cold
chain; (b) Critical parameters and indicators change; (c) TVB-N prediction verification; (d) Sensory
evaluation prediction verification.

Participants’ and other cold chain managers’ suggestions are also shown in Table 4.
The optimized monitoring equipment still has the problem of weak signal transmission and
high battery power consumption, resulting in poor sustainability of equipment applications.
It is also suggested that the future equipment will integrate more flexible micro-sensors,
which can be pasted on the express package to reduce sensor size and the economic cost of
the equipment. Other critical parameters (such as ammonia) and quality indicators (such as
pH) can also be considered to improve the credibility of quality evaluation and the accuracy
of quality prediction.



Foods 2022, 11, 836 16 of 19

Table 4. Comprehensive comparison of the traditional model and proposed model.

Model
Performance

Sensors Performance and Environmental Parameters Evaluation Quality Analysis and Evaluation Prediction
Model

EvaluationMonitoring
Parameters

Temperature Humidity CO2 O2 H2S
(L1) First-Level Quality (L2) Second-Level Quality

0 ◦C 4 ◦C 8 ◦C 20 ◦C 0 ◦C 4 ◦C 8 ◦C 20 ◦C

Previous
monitoring

method

Temperature
and

Humidity

Range:
−40–120 ◦C
Accuracy:
±0.4 ◦C

Range:
0-100% RH
Accuracy:
±3% RH

None None None None None None

Improved
model

Temperature
humidity
CO2 O2

H2S

Range:
−40–80 ◦C
Accuracy:
±0.3 ◦C

Range:
0–100% RH
Accuracy:
±1% RH

Range:
0–50% vol
accuracy:
±2% vol
Response
time <25 s

Range:
0–30% vol
accuracy:
±1% vol
Response
time <25 s

Range:
0–100 ppm
accuracy:
±1 ppm

Response
time <25 s

TVB-N:
≤15

TVB-N:
≤15

TVB-N:
≤13

TVB-N:
≤10

TVB-N:
≤25

TVB-N:
≤25

TVB-N:
≤20

TVB-N:
≤15

Relative error <
8% R2 > 0.996

S: ≥ 2.5 S: ≥ 2.5 S: ≥ 3 S: ≥ 3 S: ≥ 1.5 S: ≥ 2 S: ≥ 2 S: ≥ 2.5

H ≥ 450 H ≥ 600 H ≥ 650 H ≥ 1000 H ≥ 250 H ≥ 400 H ≥ 500 H ≥ 900

C ≥ 150 C ≥ 180 C ≥ 200 C ≥ 300 C ≥ 75 C ≥ 100 C ≥ 180 C ≥ 280

∆E ≤ 10 ∆E ≤ 7 ∆E ≤ 3.5 ∆E ≤ 3 ∆E ≤ 18 ∆E ≤ 12 ∆E ≤ 5 ∆E ≤ 4

Advantages

Multiple
critical

parameters
monitoring

Better accuracy and traceability
Real-time, non-destructive, and online monitoring
Integrating flexible sensor with better performance

Different quality evaluation standard under different temperature Detailed and comprehensive quality
evaluation

Predict
effectively and

accurately
without contact

and
contamination

Suggestions
More

critical
parameters

Develop flexible, passive and small-size sensors for smaller packages The scoring criteria of sensory evaluation still need to be refined and improved
Accuracy can

still be
improved



Foods 2022, 11, 836 17 of 19

4. Conclusions

This paper integrated multi-sensor non-destructive monitoring methods, the quality
evaluation level and intelligent dynamic prediction model based on knowledge rules. The
performance optimization and demonstration of the intelligent dynamic quality prediction
for chilled chicken cold chain had made important contributions to wider applications
of IoT in food supply chain operation and management. The approaches and processes
developed for the proposed model can be adopted by other researchers and practitioners
in cold chain management. The following are the main conclusions of this research:

(1) A flexible humidity sensor was designed and fabricated through inkjet printing. The
integrated flexible and rigid sensors in IoT could effectively improve packaging effect
and monitoring accuracy;

(2) Through the analysis of the critical points of the cold chain, micro-environmental
factors and quality indicators, the relevant rules were extracted, and the collected data
were statistically analyzed. Significant relevant indicators were constructed to build a
knowledge rules database for subsequent quality evaluation standard and prediction;

(3) The intelligent dynamic quality prediction model based on knowledge rules and
quality evaluation standards comprehensively evaluated the chicken quality in level
and provided a high-precision prediction of quality.
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