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Abstract: Food safety and quality have been gaining increasing attention in recent years. Gas
chromatography coupled to tandem mass spectrometry (GC–MS/MS), a highly sensitive technique,
is gradually being preferred to GC–MS in food safety laboratories since it provides a greater degree
of separation on contaminants. In the analysis of food contaminants, sample preparation steps are
crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus,
multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple,
cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing
worldwide in recent years and are considered contaminants of emerging concern. High separation
in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample
extraction procedure and purification method should take into account the contaminants of interest.
Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan
MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we
discuss the most recent trends in preparation methods for highly effective detection and analysis of
food contaminants, which can be considered tools in the control of food quality and safety.

Keywords: GC-MS/MS; pretreatment methods; food contaminants; QuEChERs; adsorption extrac-
tion

1. Introduction

Since the 1970s, gas chromatography (GC) coupled to mass spectrometry (MS) has
been applied to the detection of most contaminants and residues routinely found in foods.
However, in the last ten years, the majority of food control laboratories moved from GC–MS
to GC–MS/MS as the preferred analytical technique to address GC amenable compounds,
mainly due to the interference in single-step GC–MS analysis caused by coeluting matrix
compounds. Certain compounds cannot be separated in single-step MS because they
coincide with selected ions in GC–MS. In order to analyze multiple compounds by GC–MS,
it is necessary to ensure that all target compounds can be adequately separated qualitatively
and quantitatively.

A sample preparatory step in food contaminants detection can be included to enable
high recovery and good reproducibility, which should ideally be rapid, inexpensive, sim-
ple, easy to automatize, and environmentally friendly. High separation in MS/MS may
substitute the importance of preparation selectivity; however, the choice of the method for
the sample preparatory step is also determined by the type of food matrix as well as by the
contaminants of interest. Thus, multi-residue preparation methods, such as QuEChERs
and adsorption extraction, are a most important technology enabling the simultaneous
extraction of as many targets as possible [1]. When a large number of contaminants is to be
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detected in samples, MS/MS must operate in multi-reaction monitoring (MRM) mode, and
the use of multi-residue analysis methods in analysis providing high sensitivity and high
specificity has become the new trend.

Among emerging chemical hazards in foods, contaminants that may constitute a
threat to human health and the environment in the future can be included. These hazards
might include not only contaminants of emerging concern, such as brominated flame
retardants (BFRs), perfluorochemicals (PFOS), endocrine disrupters (ERs), but also those
of biological origin. Thus, the ideal sample extraction procedure and purification method
should take into account the contaminants of interest. Moreover, these methods should
cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a
more comprehensive detection of contaminants in foods.

GC–MS/MS has become a major technique for the analysis of contaminants and
residues in foods due to their high sensitivity and selectivity, being widely used for the
analysis of low-polarity, volatile, and thermally stable compounds. Considering the nature
of contaminants detected in foods, we summarized herein and discussed two commonly
used processes: (1) analysis of volatile organic compounds (VOCs) by headspace (HS)
injection with/without derivatization; (2) and analysis of semi-volatile organic compounds
(SVOCs) or thermally stable compounds after extraction and clean-up. In general, foods,
such as grains, vegetables, fruits, sugars, beverages, edible fungi, flavorings, medicinal
plants, and foods of animal origins, are often complex matrices. Moreover, foods can
be classified according to their form into solid and liquid food matrices, and effective
analytical strategies must take into account the type of food matrix.

The aim of this review article was to discuss preparation methods for the analysis
of contaminants and residue in foods by GC–MS/MS with an emphasis on literature
published in recent years. Promising future trends and perspectives are also discussed.

2. Preparation Methods for the Analysis of VOCs

VOCs in food contaminants mainly include phthalate esters (PAEs), polycyclic aro-
matic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), aldehydes, and certain
pesticides. In order to achieve a practical and reliable method for the determination of
VOCs in food samples, several preparation methods have been developed, such as HS
extraction and solid-phase microextraction (SPME).

2.1. HS Extraction

HS extraction is a sample preparation procedure that has demonstrated its usefulness
for a broad range of VOCs in the headspace, which has been shown to reduce interference
of the matrix for food substrates [2]. HS extraction is chiefly based on the adsorption of
analytes on fiber coating. After establishing equilibrium between the HS of the sample and
the fiber coating, components are desorbed from the fiber into a chromatography column.
HS methods can be divided into static HS and dynamic HS (DHS) extraction. Static HS
sampling is a conventional sample preparation method used for the analysis of VOCs from
herbs and foods. It is a rapid and solvent-free method that requires only a small aliquot of
samples [3]. DHS extraction can be performed by continuously sweeping the HS of the
sample with a significant quantity of gas. Then, the extracted gas is loaded onto a selective
adsorbent where analytes are trapped. Thermal desorption of trapped analytes is then
required before conducting cryofocus GC–MS analysis. This approach has already been
used to determine VOCs in fish and wine as well as to characterize olive oil [4–6].

2.2. Solid-Phase Microextraction (SPME)

SPME has been used for sample preparation of a wide range of foods due to its
sensitivity and convenience of quantitation [7]. SPME can be regarded as a short GC
column turned inside out. A fiber coating can be used as a filter to extract chemicals
from different samples. SPME has the advantages of being simple to operate, highly
efficient, solvent-free, and employed reagents can be reused. SPME can combine sampling,
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extraction, pre-enrichment, and injection into one step. Nowadays, commercial SPME fiber
coatings, such as polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (PDMS/DVB),
are available, but some shortcomings, e.g., fragile needle, deciduous coating, short column
lifetime, and insufficient thermal or solvent stability, limit their practical use [8–10]. To
overcome these, many studies have focused in recent years on metals, such as gold, silver,
platinum, titanium, copper, and stainless steel, as substrates for SPME fibers [11]. In
addition, a growing trend in developing SPME coating deals with obtaining substrates
with high corrosion resistance and high stability as well as high chemical activity and
simple surface modification [12,13] (Table 1).
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Table 1. Application of preparation methods for volatile organic compounds (VOCs) analysis in food by GC–MS/MS during the past three years.

Food Groups Food Matrices Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.

Animal origin
food

Beer

Acetaldehyde,
acrolein, ethyl

carbamate,
formaldehyde

Headspace (HS)-Solid-phase
microextraction (SPME) 0.03−0.5 µg/L 1.0−2.5 µg/L 90−105% 0.9−12.0% [8]

Fish products 6 polycyclic aromatic
hydrocarbons (PAHs) Dynamic HS (DHS) extraction – 0.01–0.60

ng/g/dw 13−62% – [4]

Grilled meat
samples 16 PAHs SPME 0.02−1.66 ng/L 0.07–5.52 ng/L 85.1–102.8%

2.6–8.5%
(intra-day),

4.5–9.4%
(inter-day)

[9]

Aquatic
products

Polychlorinated
biphenyls (PCBs) SPME 0.07–0.35 ng/L − 87.1–99.7% 3.8–9.7% [10]

Fish samples Synthetic musk
fragrances SPME Arrow 0.5–2.5 ng/g 2.5–5 ng/g − <23% [12]

Seafood species Benzothiazoles Subcritical
water extraction SPME

1 and 10 ng/g
(dw) for hake,

0.5 and 10 ng/g
(dw) for salmon

5–50 ng/g (dw) 2–20% <21% [7]

Vegetables
Tomatoes,

cucumbers and
lettuce

11 Phthalate esters SPME 0.001–0.430
µg/L – >95.2% <10.8% [2]

Beverages

Tea 128 Pesticide
multi-residue HS-SPME – 1–5 µg/kg 70–120% <20% [3]

Liquor, beer,
wine, vinegar,

tincture

Parabens, phenolic
antioxidants,
sulfonamide

plasticizer, and flame
retardant

SPME 0.005–0.2 µg/L 0.01–0.5 µg/L 98–109% 0.8–5.4% [13]
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3. Preparation Methods for the Analysis of SVOCs or Thermally Stable Compounds

Common SVOCs or thermally stable compounds mostly include pesticides, ERs,
carcinogens, such as mycotoxin, process contaminants, among others, which can lead
to cancer or impair neurodevelopment in humans. In order to achieve a practical and
reliable method, several preparation methods have been developed. Extraction by a
solvent is the classic sample preparation technique, which includes liquid–liquid extraction
(LLE), soxhlet extraction, solid–liquid extraction (SLE), microwave-assisted extraction
(MAE), ultrasonic extraction (USE), accelerated solvent extraction (ASE), and supercritical
fluid extraction (SFE) [14–22]. Improved extraction methods, such as pressurized liquid
extraction (PLE), can increase the diffusion rate and solubility of interferences into the
matrix [23,24]. Increasing common clean-up automation and improving instrument design
has created a surge in the use of solid-phase extraction (SPE) in a variety of applications
has been observed [25,26]. Based on SPE, novel miniaturized SPE methodologies, such
as micro-solid phase extraction (MSPE), dispersive-MSPE (DMSPE), matrix solid-phase
dispersion extraction (MSPD), and stir bar sorptive extraction (SBSE), have the advantage
of requiring low amount of analytes, sorbent, and organic solvents [27–29]. Based on
miniaturized sorbent-based extraction techniques, several methods have been developed
for the analysis of contaminants in real food samples. The development of novel materials,
e.g., magnetic molecularly imprinted polymers and other magnetic nanometer materials,
with high selectivity to analytes that can at the same time eliminate the interference of the
matrix and increase sensitivity and accuracy of the method, is still a promising research
field [30,31].

As a general trend, ideal sample preparation techniques should be clean, selective,
time-saving, cheap, simple, and environmentally friendly [32]. Compared to MS technology,
MS/MS has been shown to accurately detect contaminants in multi-residue analysis and
has become an analytical reality for food samples. Thus, in this section, we focused on
multi-residue analysis suitable for GC–MS/MS developed in recent years and its matrix
effect.

3.1. SPE

SPE is mainly based on solid-phase materials acting as sorbents of analytes which are
further released under specific conditions. SPE employs a low consumption of organic
solvent compared to conventional extraction techniques. However, the steps in the SPE pro-
cedure include activation of the SPE column, sample elution, and elution evaporation steps,
which implicates a laborious procedure. Moreover, preventing high back pressure is diffi-
cult due to the tight packing of the SPE filler. Thus, SPE is combined with other extraction
or clean-up procedures, such as LLE and ASE, to obtain more accurate results [33–40].

Based on SPE, the addition of a magnetic adsorbent to the sample with further disper-
sion with the aid of a vortex, shaker, or sonicator, upon which an external magnetic field
is then applied to facilitate efficient retrieval of the magnetic adsorbent particles. Cova-
lent organic frameworks, metal–organic frameworks (MOFs), and molecularly imprinted
nanoparticles with uniform morphology offer superior selectivity, large adsorption capacity,
and fast binding kinetics that can be used for selective recognition of analytes as well as
enrichment and determination of many organic contaminants or pesticide residues [41,42].
Magnetic SPE coupled with GC–MS/MS enables group-selective extractions and detection
with enhanced hydrophilicity, dispersibility, adsorptivity, and selectivity, which results in
high recovery, precision, and sensitivity of analysis of food samples, being thus a promising
alternative for reliable, efficient analysis.

3.2. MSPD

As a further development of the SPE method, MSPD is regarded as a promising
technique that has been gaining extensive recognition due to the ability to reduce waste of
samples and organic solvent. However, the biggest disadvantage of conventional MSPD
dispersants (silica gel, C8, C18, etc.) is the lack of selectivity, which may cause interference
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from non-target substances with similar structures. MOFs, multi-walled carbon nanotubes
(MWCNTs), and other newly developed nanomaterials have a high specific surface area and
good chemical, mechanical, and thermostability properties and can serve as an adsorbent
for enrichment and removal of organic contaminants. These nanomaterials can also be
used in MSPD extraction for the pre-treatment of food samples, which have been shown to
have short adsorption time, excellent selective recognition, simple operation, low cost, fast
extraction efficiency, and low solvent consumption [43].

3.3. QuEChERS

The dispersive solid-phase extraction (d-SPE) technique employs acetonitrile extrac-
tion partitioning and requires few steps, which reduces the time required to complete the
extraction and clean-up procedures [44–47]. The typical QuEChERS methodology was
introduced as a green, user-friendly, and cheap approach to meet the challenge of analyzing
trace residue of various organic compounds in foods of plant and animal origin, which are
complex matrices. In recent years, the QuEChERS methodology has become increasingly
popular as a method to determine contaminants in all kinds of food matrices [48–83]. The
QuEChERS multi-method is predominantly suitable for the analysis of polar analytes.
Target analytes for QuEChERS also include multi-class contaminants, such as pesticide
residues, N-nitrosamines, veterinary drug residues, prohibited flavor compounds.

Certain substrates present in foods, such as tea, honeybees, meat, or leek, introduce
a heavy matrix interference, which could cause poor peak shape or suppress ionization
of analytes or low content target analytes. In this context, further dilution of extracts
or the use of a clean-up process, such as USE, multiplug filtration clean-up (m-PFC),
robotic clean-up, deep-frozen, SPE methods, are recommended to effectively reduce matrix
interference [84–86]. The m-PFC method provides a more practical and effective way to
perform the clean-up process than the conventional d-SPE method, offering a compromise
between the clean-up performance of SPE and the convenience of d-SPE [44]. Since the
QuEChERS method is mainly based on the penetration of water and acetonitrile into the
sample tissue (at room temperature), if samples have poor water solubility, e.g., beeswax,
analysis by the common QuEChERS method might not be efficient [18].

New materials as adsorbents are constantly being developed, among which can be
cited tributylamine-functionalized graphene oxide (tri-BuA-rGO), graphitized MWCNTs,
and ZrOx cluster [87]. These materials can be used as sorbents in sample preparation since
they offer relatively high sensitivity for the analysis of pesticides [67]. Thus, the QuEChERS
method is currently a widely used sample preparation method that can be coupled with
GC–MS/MS detection and that allows simultaneous determination of a large number of
contaminants in a sample.

3.4. SBSE

SBSE is a solid-phase extraction technique first described in 1999 [88]. In the past
15–20 years, miniaturized and solventless sample preparation techniques based on sorptive
extraction methods, especially SBSE, have gained increasing popularity as simple and
environmentally friendly alternatives to the aforementioned conventional methods. A
glass-encased magnetic stir bar coated with a polymer, typically PDMS, is employed in
this extraction method. In these techniques, extraction and concentration are performed in
one step, while the use of a polar PDMS sorbent (which preferentially extracts non-polar
compounds) does not require a clean-up process [89]. With SBSE, the sample preparation
procedure and the number of solvents used are lower compared with multiple-step extrac-
tion procedures that are typically employed for the analysis of persistent organic pollutants
(POPs) in solid samples. SBSE coupled with GC–MS has been used in the extraction and
analysis of mainly hydrophobic organic compounds in aqueous samples.
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3.5. Single-Drop Microextraction (SDME)

SDME is an analytical technique that uses only a small amount of water-immiscible
solvent for concentrating analytes in aqueous samples. Its advantages include simplicity,
low cost, the potential for automation, and the high yield of analytes from the sample
matrix. Complex matrices, such as tea, require a step of extraction preparation. Extraction
is limited by the partition coefficient of the analytes between the PDMS coating and the
sample matrix, as well as by the phase ratio between the PDMS coating and the sample
volume [90].

3.6. SPME Arrow

The SPME Arrow is a new SPME-based device that combines large sorption phase
volumes used in SBSE and the main advantages of the conventional SPME method. The
SPME Arrow device consists of a steel rod coated with a sorbent material protected by an
outer tube which, together with the arrow-shaped tip, forms the needle. Classical SPME
coatings are commercially available for the SPME Arrow. After analytes extraction, the stir
bar is removed from the sample matrix and is placed in the thermal desorption unit that
extracts analytes from the stir bar. Subsequently, the cooled injection system cryofocuses
the desorbed analytes and injects them into the GC–MS/MS system for separation and
detection. The SPME Arrow enhances sensitivity since it employs sorption phases that
are larger and is hence a more robust technique. Since SPME has emerged only recently,
few studies have demonstrated the suitability of this technique in the analysis of different
kinds of compounds and samples, which include the analysis of organic compounds and
PAHs in water and biogenic VOCs in atmospheric air [91,92].

3.7. Other Methods

Directly suspended droplet microextraction was developed to condense contaminants
from foods through d-SPE prior to analysis by GC−MS/MS. The extractant is intentionally
dispersed into the sample solution in the form of globules through high-speed agitation.
This procedure increases the contact area between the binary phases and shortens equilib-
rium time [90]. The principle is similar to that of the dispersive liquid–liquid microextrac-
tion (DLLME) procedure; samples are dissolved into a dispersive solvent (e.g., acetonitrile)
and then dissolved in water after being centrifuged and filtered. Lastly, chloroform is used
to extract analytes in the DLLME method [93,94] (Table 2).
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Table 2. Application of preparation methods for semi-volatile organic compounds (SVOCs) analysis in food by GC–MS/MS during the last three years.

Food groups Food Matrices Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Animal origin
food

Catfish

219 Pesticides and
metabolites (178 pesticides

and 41 environmental
contaminants)

QuEChERs SPE <50 ng/g for 90%
analytes 1–20 ng/g 70−120% for 80%

analytes
<20% for 80%

analytes [33]

Fish, shrimp and shellfish

Organochlorine pesticides
(OCPs) and

polychlorinated
biphenyls (PCBs)

Matrix solid-phase dispersion (MSPD) 0.011–0.046 ng/g 0.037–0.153 ng/g 70–120% <20% [28]

Bivalve shellfish samples
Amide/Dinitroaniline/

Substituted Urea
Herbicides

QuEChERS – 0.3–8.88 µg/kg 81–109% <8% [51]

Egg (egg white, egg yolk,
and whole egg)

Dinitolmide residue and
its metabolite ASE 0.8–2.8 µg/kg 3.0–10.0 µg/kg >80%

2.96–5.21%
(intra-day)
3.94–6.34%
(inter-day)

[20]

Chicken eggs 80 Pesticides Acetonitrile with
5% formic acid

Bond elute
enhanced matrix

removal-lipid
0.02−9.725 µg/kg 0.066–30.261

µg/kg 65.3–124% 4.3−24% [32]

Poultry egg (whole egg,
albumen and yolk)

Spectinomycin and
lincomycin ASE SPE 2.3−4.3 µg/kg 6.0−9.5 µg/kg 80.0−95.7% 1.0−3.4% [34]

Meat (chicken, pork, and
beef) and fish (catfish and

salmon)

Organophosphate esters
(OPEs) QuEChERS Automated

robotic clean-up – 0.5−1 ng/g 70−120% ≤20% [86]

Chicken tissues Dinitolmide and its
metabolite ASE SPE 0.8–2.5 µg/kg 2.7–8.0 µg/kg 81.96–94.31% 1.72–5.37% [35]

Meats and poultry
200 pesticides and 65

environmental
contaminants

QuEChERS SPE – <5 ng/g (for 90%
analytes) 70–120% ≤20% [36]

Raw propolis 14 Lipophilic pesticides n-hexane SPE – 0.002–0.020 µg/g 61.0–106.8% ≤ 16.9% [37]

10 Beeswax samples 160 Pesticides Acetonitrile–ethyl acetate (1:3, v/v) – <20 µg/kg 80−110% for most
analytes

<8% for most
analytes [18]
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Table 2. Cont.

Food groups Food Matrices Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Animal origin
food

Honeybees Pesticide residues USE QuEChERS – 5 µg/kg 70–120% <20% [84]

122 Honey samples 53 Pesticide residues QuEChERS 0.001–0.01 mg/kg 70.0–120.0% ≤20% [52]

Organic honeys POPs, pesticides and
antibiotic residues QuEChERS – 7.15–9.80 ng/g 82–120% <20% [53]

Bovine milk 78 Drugs and 238
pesticides QuEChERS − 0.1–10 ng/g 70–120% <20% [54]

Hen eggs 60 Pesticides QuEChERS 0.001–0.004
mg/kg

<10 µg/kg for 83%
analytes 70–120% <20% [50]

Porcine meat 39 Pesticide residues QuEChERS
Rapid multiplug

filtration clean-up
(m–PFC)

– 0.01 mg/kg except
pyrimethanil

74–118% except
pyrimethanil 1−16% [85]

Grain, Vegetables
and fruits

207 Vegetable samples 10 New–generation
pesticides MAE 1.4–3.6 ng/g – 80–111% <11% [21]

249 Grain, beans, fruit and
vegetables samples 365 Pesticide residues acetonitrile SPE 0.0001–0.0414

mg/kg
0.0002–0.1367

mg/kg
70–120% for 95%

analytes <20% [39]

Mangoes 113 Pesticides QuEChERS <4 µg/kg <10.0 µg/kg 70–120% <20% [55]

Pigeonpea grains 79 Pesticides QuEChERS 0.53–3.97 µg/kg 1.60–10.05 µg/kg 70–120% <15% [48]

Apples; mangos;
strawberries; cucumbers

and tomatoes

41 Triazines and
pyrethroids residues QuEChERS 0.03− 10.22

µg/kg – – – [56]

Fruits (apple and grapes)
and vegetables (apple,
grapes, cauli–flower,

cabbage, peas, potato)

Cypermethrin,
chlorpyrifos, methyl

parathion, ethion, captan,
malathion, and triazophos

QuEChERS 0.0011–0.012
µg/kg

0.0012–0.035
mg/kg 94–99% 3.3–8.1% [57]

69 Fruits and vegetables
samples 203 Pesticides QuEChERS – 2 µg/kg

70–120% in
tomato, apple, and

orange for 97%
compounds. low

recoveries for
orange

<20% except
for biphenyl,

butylate,
chlozolinate,

and pyrifenox;
<20%

(inter-day) for
97% analytes

[58]



Foods 2021, 10, 2473 10 of 25

Table 2. Cont.

Food groups Food Matrices Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Grain, Vegetables
and fruits

Chinese vegetables
and fruits Pyrethroid pesticides QuEChERS 0.3–4.9 µg/kg ~10 µg/kg 78.8–118.6% <14.8% [59]

Tomato 9 Dinitroaniline
herbicides

Vortex-assisted dispersive liquid–liquid
microextraction (VA-DLLME) 0.3–3.3 µg/L 2–10 µg/kg 64.1–87.9% ≤15.1% (inter-day) [90]

Tomatoes 20 Pesticides QuEChERS 2.6–31.3 µg/kg 6.9–93.8 µg/kg 72.5–119.7% 1.17–14.62% [60]

Garlic, onion, and
sugar beet

Total ethofumesate
residues SPE 0.0005 mg/kg 0.01 mg/kg 94−113% 1.8−5.7% [61]

Vegetables 14 Pyrethroids QuEChERS –
2–10 µg/kg in tea,
2 µg/kg In tomato,
pear, and zucchini

– – [62]

16 Common bean
samples 142 Pesticide residues QuEChERs – 20–100 µg/kg 70−120% for

61.4% analytes <20% for 61.4% analytes [63]

211 Vegetable samples 12 Pesticide residues QuEChERS 0.0005–0.0023
mg/kg

0.0009–0.0047
mg/kg

74–120% at 0.01
mg/kg, 75–123%

mg/kg

2–9% at 0.01 mg/kg,
0.5–16 mg/kg [64]

Greenhouse
strawberries 16 Pesticide residues QuEChERS 0.1–0.8 µg/kg 0.3–2.8 µg/kg 80.7–117.2 µg/kg 0.6–14.6% [65]

Dried fruits 38 Multi-class
pesticides QuEChERS – 0.02–5 µg/kg 70–120% <20% for 92% samples [66]

Beverages

Tea Pyrethroid insecticides magnetic SPE 0.0065–0.1017
µg/L – – <9.7% (intra-day),

<11.95% (inter-day) [31]

Chinese liquor and
liquor–making raw
materials (sorghum

and rice hull)

124 Pesticide residues d–SPE 0.00003–0.015
mg/kg

0.0001–0.05
mg/kg 71–121%

<16.8% except
cyprodinil, di-flufenican

and prothioconazole
[44]

Tea 131 Pesticides d-SPE 0.5–5.0 µg/kg 1.5–16.7 µg/kg 78.2–113.9% <15.8% [45]

Tea 11 Pesticides d-SPE 0.10–2.10 µg/kg 0.29–6.20 µg/kg 73.4–106.4%
1.9–6.6% (within-run

precision), 12.1%
(between-run precision)

[46]
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Table 2. Cont.

Food groups Food Matrices Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Beverages

38 Tea samples 45 Pesticide residues d-SPE

Speed-regulated
directly

suspended droplet
microextraction

(SR-DSDME)

– 0.1−47 µg/kg 70–120% <20% [90]

Green tea 203 Pesticide residues QuEChERS SPE 0.33–16.67 µg/kg 1–50 µg/kg 70−120% for most
analytes

<20% for most
analytes [38]

Oil

Soybean 203 Pesticides SPE – <0.01 mg/kg 70–120% <20% [25]

Edible oils Organophosphorus
pesticide residues (OPPs) QuEChERS 0.16−1.56 ng/g 0.61−5.00 ng/g 81.1−113.5%

<8.2
(intra–day)

<13.9%
(inter–day)

[67]

Edible oils Pesticides LLE

Enhanced matrix
removal

(EMR)-lipid
cartridge

– 1 ng/g 70–120% <20% [22]

Sugar Sugarcane Fipronil and its
metabolites QuEChERS 0.0015–0.002 µg/g 0.005 µg/g 80.7–98.5%

1.80–12.81%
(intra–day),
1.2–16.5%

(inter–day)

[68]

Medicinal plants

Lycium barbarum (goji) 6 Active ingredients of
pyrethrins SPE 0.24–2.1 µg/kg 0.8–7 µg/kg 88.3–111.5% 0.4–8.3% [26]

Panax notoginseng (Burk)
F.H.Chen root Pesticide residues QuEChERS 0.0015 mg/kg 0.005 mg/kg

94–125% for
quintozene,

84–119% for hex-
achlorobenzene

(HCB)

6.2–16.1% [69]

Chenpi 133 Pesticide residues QuEChERS – 0.005–0.01 mg/kg 70–112.2% 0.2–14.4% [70]

Notoginseng Radix et
Rhizome 116 Pesticide residues QuEChERS – 0.01–0.05 mg/kg 64.3–119.4% <18.3% [71]

Dried Herbs 235 Pesticides QuEChERs 0.0003–0.0007
mg/kg

0.001–0.002
mg/kg 70–120% <20% [72]

Herbal species–ready
application 201 Pesticides QuEChERS – ≤10 ng/mL 70.0–120.0% ≤20% [73]

Cardamom 243 Pesticide residues QuEChERS – 10 mg/kg 70.0–120% <20% [74]
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Table 2. Cont.

Food groups Food Matrices Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Condiment

Capsicum annum Chlorantraniliprole QuEChERS 0.005 mg/kg 0.01 mg/kg 85–91%
<2%

(intra-day and
inter-day)

[76]

Pepper, chili peppers and
its sauce product 47 Pesticide residues QuEChERS – 0.01 mg/kg 70–120% (except

for pyrimethanil) <17% [77]

Edible fungi Edible mushrooms 10 Pyrethroid
insecticides QuEChERs 0.015−1.67 µg/kg 0.051−5.57 µg/kg 72.8–103.6% <13% [78]

Condiment and
medicinal plants Spices and herbs 140 Organic contamination QuEChERS 0.04–5.20 ng/g 0.08–17.19 ng/g 80–137% <20% [79]

Muti-matrices

Tea and herbal infusion 300 Pesticides QuEChERS 0.018–40 µg/kg 0.06–135 µg/kg 70–120% <20% [80]

Dried herbs and dried fruit 236 Pesticides QuEChERS 0.001 mg/kg 0.005 mg/kg 62–125% 1–19% [81]

Beverages, ‘pesto’ sauces,
meat preparation Methyleugenol QuEChERS 0.4 µg/kg 1 µg/kg 94.29–100.27% <9% [82]

Beef jerky, cod liver oil,
candy

8 Prohibited flavor
compounds QuEChERS 0.005−0.2 µg/kg 0.03−0.8 µg/kg

80.2–110.6% (beef
jerky), 82.3–94.1%

(cod liver oil),
83.6–104.1%

(candy)

− [83]
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4. Separate, Clean-up, and Derivation Steps

Separate, clean-up, and derivation steps are usually used in further sample purification
prior to food contaminants detection.

4.1. Gel Permeation Chromatography (GPC)

The GPC clean-up system can be used for the detection of contaminants accumu-
lated in fat or liquid phases of foods. After coextraction of the target analyte and sample
fat/liquid, the latter is removed in GPC by the solvent. The GPC clean-up system has
been applied in foods of animal origin for further purification and detection of PAHs,
chlorinated PAHs, polybrominated diphenyl ethers (PBDEs), and hexabromocyclodo-
decanes (HBCDs) [95–97]. GPC has also been used in the combined detection of BaP,
benz[a]anthracene (BaA), benzo[b]fluoranthene (BbF), and chrysene (Chr) in grains [98].
The amount of extracted fat depends on the properties of the target analyte, which thus
influences the choice of the solvent.

4.2. Freezing-Lipid Method

Fat from foods of animal origin usually affects the results of food contaminants detec-
tion. Therefore, to separate lipids efficiently, the extract is often deep-frozen, during which
a fairly significant amount of non-polar substances are lost [22]. A novel material, namely
bond elute enhanced matrix removal (EMR), has a stronger selective adsorption affinity
for lipids and has recently been used in the analysis of pesticides in kale, pork, salmon,
chicken eggs, and avocado, also used to detect antibacterial drugs in cream disinfection
products, specifically adsorbing C5 and long-chain hydrocarbons from lipids [99–101].

4.3. Derivatization

For single residue or selective residue detection, a derivatization is a useful tool
for chromatography analysis which increases extraction rate while reducing detection
limit. Especially for analytes with low volatility and high polarity, such as perfluoroalkyl
carboxylic acids (PFCAs), PAEs, and 4-methylimidazole, the use of direct GC–MS/MS with
selective ion monitoring (SIM) mode without derivatization of samples might not prove a
sensitive method for adequate quantification [102].

5. Matrix Effect

In the multi-residue analysis of agricultural products, the matrix-induced chromato-
graphic response enhancement, also termed matrix effect (ME), is a major issue that reduces
the accuracy and precision of analytical results in food contaminants detection [103]. In
general, the term matrix indicates miscellaneous substances that are extracted from sam-
ples, and the ME is defined as the direct or indirect alteration or interference in response
due to the presence of unintended analytes (for analysis) or other interfering substances in
the sample [104]. ME is determined by comparing the slope obtained for the standard cali-
bration curve of the procedure and that of the solvent standard calibration curve, according
to the following equation [105,106]:

Matrix Effect% = (
Slope of calibration curve in matrix
Slope of calibration curve in solvent

− 1)× 100% (1)

Several methods have been proposed to compensate for or overcome ME for various
types of matrices, such as matrix-matched calibration, extensive clean-up, dilution, analyte
protectant, standard addition method, and stable isotope-labeled pesticides standard
mixtures. Dilution is a simple and effective method for reducing ME, but it requires
highly sensitive analytical equipment to detect the maximum residue limit of pesticides in
foods. Matrix-matched calibration, one of the most popular methods for the multi-residue
analysis of agricultural products, is based on the theoretical concept that the ratio of the
analytical response to the concentration of a target pesticide must match if the nature of the
matrix of both sample and standard calibration solutions is identical. Moreover, internal
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isotope standards are very expensive and, usually, not available for all substances. Hence,
matrix-matched calibration is likely the best strategy to overcome ME and generate highly
accurate results [38].

Moreover, a matrix-like effect caused by the presence of pesticides in standard calibra-
tion solutions might result in unexpected response alterations and quantification errors,
especially when using matrix-free, solvent standard solutions. Many studies suggest that
non-polar compounds that have relatively low molecular weights are not susceptible to
the matrix-like effect. Small molecules have a shorter residence time in the inlet liner
(particularly glass wool), which thereby decreases the probability of ME. Both polarity
and stability of a compound are important factors that influence the degree of response
alteration caused by the matrix-like effect. It has been shown that highly polar compounds,
such as organophosphates, have the potential for high adsorption interaction with active
sites, and a fraction of these decompose in the GC system and are susceptible to response
alteration induced by the food matrix and analyte protectants. Overcoming and/or com-
pensating for matrix-like effects by improving the GC hardware or using certain food
matrices and surrogate compounds (e.g., isotope-labeled pesticide standards) might be
important topics for future research [107].

6. Emerging Risks

Emerging contaminants may represent a threat to human health and the environment
in the future. Such contaminants, such as POPs, BFRs, PFOS, ERs, and other contaminants
of unknown biological activity, may have a wide range of physicochemical properties. For
instance, POPs are highly stable organic chemicals that resist photolytic, biological, and
chemical degradation. POPs might persist in the environment, bioaccumulate through
the food chain, and may adversely impact human health and the environment. Among
POPs, PAHs, organochlorine pesticides (OCPs), PFCAs, and other compounds in dietary
supplement samples can be included [47]. GC–MS/MS has been adopted to accurately
quantify these emerging contaminants in order to overcome the low concentration and the
complexity of the matrix, which limit the GC–MS/MS analysis [108].

6.1. BFRs

BFRs are a group of synthetic chemicals that comprise more than 75 compounds and
that have been commercially available since 2003. PBDEs were among the first group of
chemicals used worldwide to prevent flammability and have been used as flame retardant
additives in a wide array of products, such as plastic materials, fabrics, and furniture.
PBDEs comprise over 209 possible congeners produced in three major technical mixtures
characterized by different degrees of bromination (penta-BDE, octa-BDE, and deca-BDE).
As a consequence, PBDEs can be abundantly found in the environment, wildlife, and
human tissue. Novel brominated compounds have been increasingly developed as an
alternative to legacy BFRs. OH-PBDEs have oestrogenic, anti-prostagenic, antiandrogenic,
and anti-glucocortogenic activity. PBDE congeners have been detected in foods consumed
by the general population. Importantly, both PBDEs and OH-PBDEs can alter calcium
homeostasis and disrupt intracellular communication [109–111]. QuEChERS is a suitable
preparation method for PBDEs detection; however, when using other extraction methods,
lipids and proteins need to be removed from the sample by using KOH solution/n-hexane
partition or GPC process. Lipids and pigments that remain in the extract can be removed
using the Florisil cartridge [23,112].

6.2. PFOS

PFCAs are a class of PFOS in which hydrogen atoms on the carbon skeleton are com-
pletely replaced by fluorine atoms and linked to the carboxylic acid functional groups.
The unique physical and chemical characteristics imparted by the fluorinated region of
the molecule include water and oil repellency, heat resistance, and surfactant properties, mak-
ing these compounds suitable for a wide range of industrial and commercial applications. The
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hardly-degradable characteristic and wide distribution of PFCAs contribute to the persistence
of these compounds in the environment and to their bioaccumulation [101]. QuEChERS is the
most recommended extraction and separation method for detecting PFCAs [113].

6.3. ERs

Many chemical pollutants in the food chain can be considered ERs, which may include
certain POPs and their metabolites, pesticides, PAEs, and hormones [114]. PAEs are widely
used as plasticizers in various plastic products and packaging and are considered to pro-
duce developmental toxicity due to their potential to interfere with hormone homeostasis.
Among PAEs, bisphenol A (BPA, 2,2-bis(4-hydroxyphenyl)propane) is used worldwide.
QuEChERS, SPE, coupled with solvent extraction methods, are commonly used for PAEs
and BPA extraction. Due to the relatively non-volatile and polar nature of PAEs and BPA,
derivatization of samples for GC–MS/MS analysis is usually required [115].

PCBs are a group of ubiquitous and organic pollutants with chlorine atoms present
in different frequencies and positions on two coupled biphenyl rings. PCBs have been
produced for many years and are widely employed in the industry as heat exchange fluids
in electric transformers and capacitors, as well as additives in pesticides, paints, sealants,
and plastics. Conventional techniques, such as d-SPE or QuEChERS, represent a good
choice for the analysis of PCBs in terms of selectivity, accuracy, and precision [116,117].

6.4. Mycotoxins

Mycotoxins are secondary toxic metabolites produced by various fungal species
(mainly Aspergillus, Penicillium, and Fusarium) and represent an important group of contam-
inants, particularly in food. Mycotoxins are generally stable, resistant to various processing
methods employed in the food industry and could even be found in thermally-processed
foods. Several extraction procedures have been reported, such as LLE, SPE, and QuEChERS.
However, the QuEChERS method has several advantages over other methods since it is a
rapid protocol that requires only small amounts of organic solvents and adequately yields
recoveries for all compounds [34,118].

6.5. Process Contaminants

Process contaminants are chemicals that are generated when food constituents un-
dergo chemical changes during processing. Prime contaminants, such as acrylamide, PAHs,
or furan and furan derivatives, are well-studied. The processes that often introduce PAHs
into foods are smoking and grilling [119]. Unrefined plant oils obtained from oilseeds, such
as soybeans, rapeseeds, olive seeds, and sunflower seeds, are known to contain high levels
of polyaromatic hydrocarbons. PAHs can migrate through the food chain due to their high
lipophilicity and accumulate in specific tissues. A new class of PAHs derivatives, known as
chlorinated PAHs (Cl-PAHs), have been attracting increasing interest. Emerging Cl-PAHs
are also ubiquitous and hazardous pollutants akin to PAHs and other halogenated aromatic
compounds, such as polychlorinated dibenzo-p-dioxins, dibenzofurans, and PCBs; the
QuEChERS method has been used for sample preparation [120].

Fatty acid esters of monochloropropanediol (MCPDEs) and glycidol (GEs) are emerg-
ing process contaminants that are often found in oil-containing products. An SPE clean-up
process was used to remove partial glycerides to a certain extent [121]. Ice bath-assisted
sodium hydroxide purification can be used for sample extraction for the analysis of ethyl
carbamate (EC) and N-nitrosoamines (NAs), which are toxic contaminants found in fer-
mented alcoholic beverages [122].

6.6. Contaminants with Unknown Biological Activity

9,10-anthraquinone (AQ) is a new contaminant of unknown sources occurring in tea
globally [123]. Moreover, AQ is ubiquitous and currently used as a raw chemical in the paper,
pulp, and dye industries. AQ may contribute to the carcinogenic potential of foods. A low level
of AQ found in tea plants may be one of the sources of AQ contamination in tea (Table 3).
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Table 3. Application of preparation methods for emerging risks analysis in food by GC–MS/MS during the past three years.

Food Type Sample Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Animal origin
food

Fish Persistent organic
pollutants (POPs) Accelerated solvent extraction (ASE) – 0.01–4.44 ng/g 70–120% <20% [19]

Fish POPs Hexane–acetone Florisil and silica
gel 0.001–0.040 ng/g 0.004–0.12 ng/g 60–127% ≤20% [17]

Sea fish Dihydroxylated PBDEs Pressurized liquid
extraction (PLE) Florisil cartridge 3.98–38.74 pg/g 11.95–116.22 pg/g

19–101% in 10 ng,
28–88% in 20 ng,
42–90% in 40 ng

– [23]

77 Smoked meat products PAHs
Extracted by

dichlormethane/
hexane

Gel permeation
chromatography

(GPC)
0.02–0.03 µg/kg 0.06–0.09 µg/kg 97–115%

3–9%
(intra-day),

6–9%
(inter-day)

[95]

Fish shellfish and muscle
of terrestrial animals

PBDEs and hexabromocy-
clododecanes

(HBCDs)
QuEChERS GPC –

10 pg/g, for
BDE-206; 100

pg/g for BDE-209
72–97% 9–22% [96]

5 Kinds of marine products 9 Pefluoroalkyl carboxylic
acids (PCAs) Alkaline digestion SPE 0.04–0.10 ng/g – 54.72−107.29% 1.53−11.89% [100]

233 Fish and aquatic
invertebrate samples

6 Polychlorinated
biphenyls (PCBs) QuEChERs 3–13 ng/g 9–40 ng/g 75–113% 2–12% [116]

Mussels and clams

PCBs, Polybrominated
diphenyl ethers (PBDEs),
organochlorine pesticides

(OCPs), PAHs, and
perfluoroalkyl substances

(PFASs)

QuEChERS – 0.5–5 ng/g 70–120% <20% [108]

Marine bivalves

211 Analytes, including
pesticides, PCBs, PAHs,
PBDEs, and other flame

retardants

QuEChERS – 0.2–10 µg/kg 80–120% – [109]

Shellfish samples 84 PCBs and OCPs QuEChERS 0.004–2.705 µg/kg 0.01–9.02 µg/kg 70–120% <10% [117]

Pork PBDEs and PFASs QuEChERS 5–50 pg/g 15–150 pg/g 80–119%

6–19%
(intra-day),

9–20%
(inter-day)

[112]

Plastic packaged baby
food samples Bisphenols (BPs) Liquid extraction Dispersive

sorbents 0.1–1 ng/g 0.5–4 ng/g 91–110% <13% [114]
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Table 3. Cont.

Food Type Sample Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Animal origin
food

Chicken meat and edible
offal 8 Trichothecenes QuEChERS 0.05–0.15 µg/g 0.25–0.75 µg/kg 85.1–108.4% <8% [118]

60 Infant formula and baby
foodproducts

Monochloropropanediol
(MCPDEs) and glycidol

(GEs)
SPE 0.1−0.6 µg/kg

1, 2, and 1.2 µg/kg
in baby food; 1.2,
1, and 0.5 µg/kg
in infant formula

91−106% for baby
food; 94−99% for

infant formula
1.2−7.8% [121]

Milk and milk powder Sodium fluoroacetate
(1080) SPE 0.0013–0.0025

µg/kg
0.0042–0.0085

µg/kg 90–105% <6% [40]

Milk Hexamethylenetetramine
(HMT)

Magnetic molecularly imprinted
polymers 0.3 µg/kg 1.0 µg/kg 88.7–111.4%

2.6–5.2%
(intra-day),

3.6–11.5
(inter-day)

[30]

Grains,
vegetables and

fruits

Wheat flour samples Bifenox, dichlobenil and
diclofop methyl MSPE

0.39 ng/g (DCB),
0.24 ng/g (BFO),
0.68 ng/g (DCM)

1.33 ng/g (DCB),
0.76 ng/g (BFO),
2.18 ng/g (DCM)

88.8–96.6% <3.5% [27]

Cereal products

Sum of BaP,
benz[a]anthracene (BaA),

benzo[b]fluoranthene
(BbF), and chrysene (Chr)

Extracted
dichlormethane/hexane

(1:1, v/v)
GPC 0.002–0.006 µg/kg 0.07–0.75 µg/kg 92–103% 4–19% [97]

12 Commercially available
plant extract-based dietary

supplement samples
21 POPs Stir-bar sorptive extraction (SBSE) – 0.00899−0.0931

ng/g – 4.48−12.9% [89]

Vegetables 17 Emerging contaminants Ultrasound-assisted matrix solid-phase
dispersion (UAE-MSPD) 0.1–0.4 ng/g 0.1–0.8 ng/g 55–138%

≤13%
(intra-day),

≤16%
(inter-day)

[47]

Tomatoes 20 Organochlorine
pesticides QuEChERS 0.001–0.1 µg/kg 0.01–0.33 µg/kg 71.2–95.3% <20% [113]

Carrots, turnips and
potatoes

Bisphenol A, its
chlorinated derivatives

and structural analogues

Focused
ultrasound
solid–liquid
extraction

Dispersive
solid-phase

extraction (d-SPE)

0.02–0.33
ng/g/dw 0.05–1 ng/g/dw 74–105 % <12% [115]

Condiment Capsicum cultivars 12 Brominated flame
retardants (BFRs) QuEChERS 1.4–9.3 µg/kg 4.6–30.9 µg/kg 66–104% <20% [110]
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Table 3. Cont.

Food Type Sample Analyte Preparation Method Limit of
Detection

Limit of
Quantitation Recoveries RSD Ref.Extraction Clean-up

Oils

Edible Oils PAHs d-SPE 0.06–0.21 µg/kg 0.19–0.71 µg kg−1 98–108%

2–5%
(intra-day),

4–6%
(inter-day)

[49]

Edible Oils PAHs d-SPE 0.06–0.21 µg/kg 0.19–0.71 µg/kg 98–108%

2–5%
(intra-day),

4–6%
(inter-day)

[107]

Fish oils BFRs and organochloride
pollutants

Vortex assisted liquid–liquid
microextraction (VALLME) technique 0.2–0.7 ng/g – 76–90% <20% [111]

Beverages

30 Tea samples 38 PCBs d-SPE 0.1–2.9 µg/kg 2.0–10 µg/kg 73−113% 5−20% [49]

54 Beverages Gamma-hydroxybutyrate
(GHB)

Dispersive liquid–liquid microextraction
(DLLME) 0.5 ng/mL – 78.2−84.7% 4.9−5.7% [93]

Beverage samples 15 PAEs SPE 0.005–2.748 µg/L 0.018–9.151 µg/L 79.3–121.8%
<8.8% (intra–
day),<9.9%
(inter-day)

[15]

Brazilian Cachaça 93 Pesticides and 6 PAHs QuEChERS 2.5 µg/L 10.0 µg/L 86.7–118.2% ≤20% [120]

Yellow rice wine Ethyl carbamate (EC) and
N-nitrosoamines (NAs)

Ice bath-assisted sodium hydroxide
purification 0.1–0.5 µg/kg 0.5–1.5 µg/kg 81.5–121%

2.2–9.4%
(intra-day),

1.6–7.9%
(inter-day)

[122]

Tea 9,10-Anthraquinone (AQ) Solvent extraction
10 µg/kg (tea

shoots, tea), 0.4
µg/L (tea brew)

0.01 mg/kg (tea
shoots, tea), 0.4

mg/kg (tea brew)
87.0–110.8% 2.3–14.6% [123]

Medicinal plants Ginseng 5 Organochlorine pesticide LLE –

0.02–0.12 µg/L in
liquid samples,

0.001–0.004 µg/kg
in solid samples

70.3–85.6% in
liquid samples,
83.4–106.9% in
solid samples

– [14]

Muti-matrices
Spices and dried herbs PAHs SPE 0.25 µg/kg 0.5 µg/kg close to

100% <22% [119]

Cow milk, plastic bottled
beverage, and edible oil PAEs SPE 0.15–1.64 ng/g – 73.7–98.1% 1.7–10.2%. [41]

Food Packaging
Materials Food Packaging Materials 20 PAEs Solvent extraction 1.7–62.5 µg/kg 5.5–208.3 µg/kg 82.1–110.8% 0.3–9.7%. [42]
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7. Conclusions

This review presents a discussion of current sample preparation methods for the
analysis of food contaminants and residues by GC–MS/MS. The main criteria to consider on
preparation methods for VOCs analysis, HS extraction, and SPME methods are sensitivity
and easiness of quantitation of target analytes. Moreover, GC–MS/MS is gradually being
preferred to GC–MS for its higher sensitivity and better separation rather than preparation
selectivity. Thus, for the analysis of more SVOCs or thermally stable compounds, it might be
advisable to develop methods for the analysis of multiple contaminants of different classes
considering a single sample preparation technique and preferably one chromatographic
run. Multi-residue preparation methods, such as QuEChERs and adsorption extraction
coupled with SBSE and SDME, are the most important technologies currently available,
enabling the extraction of as many targets as possible simultaneously. Due to the complexity
of certain food matrices, the use of separation, clean-up, and derivatization processes might
be useful to increase the extraction rate and reduce the detection limit. In addition, we
also proposed guidelines for determining whether ME might occur and interfere with
the results; matrix-matched calibration is one of the most popular methods for the multi-
residue analysis of agricultural products. Moreover, a discussion of emerging contaminants
that may threaten human health and the environment in the future is provided. QuEChERs
might be employed to detect these emerging contaminants. In conclusion, a comprehensive
strategy is required for sample preparation for the analysis of food contaminants and
residues by GC–MS/MS in order to effectively achieve food safety.
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80. Beneta, A.; Pavlović, D.M.; Periša, I.; Petrović, M. Multiresidue GC–MS/MS pesticide analysis for evaluation of tea and herbal
infusion safety. Int. J. Environ. An. Chem. 2018, 98, 987–1004. [CrossRef]
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