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Abstract

Event-time or continuous-time statistical approaches have been applied through-

out the biostatistical literature and have led to numerous scientific advances.

However, these techniques have traditionally relied on knowing failure times.

This has limited application of these analyses, particularly, within the ecological

field where fates of marked animals may be unknown. To address these limita-

tions, we developed an integrated approach within a Bayesian framework to esti-

mate hazard rates in the face of unknown fates. We combine failure/survival

times from individuals whose fates are known and times of which are interval-

censored with information from those whose fates are unknown, and model the

process of detecting animals with unknown fates. This provides the foundation

for our integrated model and permits necessary parameter estimation. We pro-

vide the Bayesian model, its derivation, and use simulation techniques to investi-

gate the properties and performance of our approach under several scenarios.

Lastly, we apply our estimation technique using a piece-wise constant hazard

function to investigate the effects of year, age, chick size and sex, sex of the tend-

ing adult, and nesting habitat on mortality hazard rates of the endangered moun-

tain plover (Charadrius montanus) chicks. Traditional models were inappropriate

for this analysis because fates of some individual chicks were unknown due to

failed radio transmitters. Simulations revealed biases of posterior mean estimates

were minimal (≤ 4.95%), and posterior distributions behaved as expected with

RMSE of the estimates decreasing as sample sizes, detection probability, and sur-

vival increased. We determined mortality hazard rates for plover chicks were

highest at <5 days old and were lower for chicks with larger birth weights and/or

whose nest was within agricultural habitats. Based on its performance, our

approach greatly expands the range of problems for which event-time analyses

can be used by eliminating the need for having completely known fate data.

Introduction

Integrated analyses combine information from various

data sources to make efficient use of multiple and varied

forms of information while properly accounting for co-

variances of estimated parameters. This permits a more

thorough examination of the process and observation

models of interest (Nasution et al. 2001; Brooks et al.

2004). Additionally, the results of these analyses provide

more robust parameter estimates by incorporating all

available information compared to conducting individual

analyses for each data type and combining estimates in

some ad hoc manner (Nasution et al. 2001; Brooks et al.

2004). Although not new, these techniques have become

increasingly popular and have been employed in survival

analyses using capture–recapture methods where band

recovery and live recapture data have been jointly ana-

lyzed to improve estimates of survival (Burnham 1993;

Catchpole et al. 1998; Barker et al. 2005). Additionally,

Nasution et al. (2001) developed survival estimates

through a joint analysis of resighting and radiotelemetry

capture–recapture data based on discrete approaches (Pol-

lock et al. 1989b).

Event-time or continuous-time survival analyses have a

rich history in human biomedical investigations where

they have been widely applied and have led to numerous
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advances within the field (Lee and Wang 2003; Heisey

et al. 2007; Heisey 2009). However, their use beyond this

arena has generally been limited (Heisey et al. 2007). For

example, in ecology, event-time analyses have seen some

application, although it has been mainly confined to stud-

ies where the time to failure/death is known with cer-

tainty or can be assigned to some temporal interval (e.g.,

nest survival, force of infection, maturation, and survival

of radio-collared animals) (Heisey et al. 2006, 2010; Cao

et al. 2009; Ergon et al. 2009; Conn et al. 2012; Halstead

et al. 2012). This narrow application largely arises from

differences in data type and structure collected during

wildlife investigations compared to biomedical studies.

Continuous-time approaches have also seen limited appli-

cation in modeling the capture/detection process in cap-

ture–recapture and spatial capture–recapture models used

to estimate population sizes and densities, respectively

(Yip et al. 1996; Hwang and Chao 2002; Farcomeni and

Scacciatelli 2013; Borchers et al. 2014). They are particu-

larly useful when the detector operates continuously (e.g.,

remote camera). Given the power of these techniques and

their ability to model both the data collection and under-

lying biological processes in a statistically rigorous man-

ner, while accounting for the dynamic unfolding nature

of these processes in time, the creation of methods that

permit expanded use of these statistical analytical tools

for a greater range of wildlife investigations is desirable.

To that end, we have developed a new statistical method

that expands the framework of event-time analyses and

makes it more widely applicable to studies where individual

fates may be unknown. In particular, we provide an inte-

grated event-time analysis that combines information from

individuals whose failure time can be ascertained exactly or

minimally is known to an interval (e.g., radio-marked ani-

mals) with individuals whose outcome is unknown (e.g.,

marked animals). The modeling of a detection process pro-

vides the backbone for formulating this integrated model

and allowing estimation of the parameters of interest. We

provide the statistical model, its derivation, and use simu-

lation techniques to investigate the performance of this

model under a variety of scenarios. It is worth noting that

although we formulate the model, simulations, and case

study in terms of mortality hazard rates, the model can be

applied to other types of hazard rates (e.g., infection) where

unknown fates occur within the dataset and a detection

process can be modeled.

Lastly, we apply the technique to estimate survival of

mountain plover chicks (Charadrius montanus) in Colo-

rado, USA, where fates of individual chicks may be

unknown due to intermittent or failed radio transmitters.

The mountain plover is an endangered, upland shorebird

that has experienced steep, constant declines in population

size across its range since 1966. Factors driving population

declines appear to be acting on reproductive output of the

species (Knopf and Wunder 2006), including chick survival

(Dinsmore et al. 2010); however, demographic informa-

tion, including estimates of vital rates for birds transition-

ing through the chick stage (i.e., the period from hatching

to fledging), is lacking. Standard event-time analyses (Hei-

sey 2009) are not appropriate for this system because the

radio transmitters often could not be detected during the

observation period because of weak signals or transmitter

malfunctions. Thus, this system is a perfect candidate on

which to employ our analysis technique with chicks with

known fates playing the role of radio-marked animals and

the remaining chicks corresponding to marked individuals

in the above description.

Model development

Assumptions and data needs

When assessing individual survival, biologists typically

attempt to capture a random sample of individuals from

the population(s) of interest and apply some type of mark

to captured animals, which may or may not be individu-

ally identifiable. Animals are then recaptured or observed

at some interval, and survival estimates are derived from

this information. For the current study, we will assume

individuals are captured and uniquely marked using either

a radio collar or a unique mark, although the latter can be

any individually identifiable mark, or as in our case study,

a malfunctioning radio transmitter. But for simplicity, we

will describe these simply as marks throughout the follow-

ing discussion. Our model assumes the population is geo-

graphically closed, radio-collared animals are checked

periodically for mortality, and individuals with function-

ing collars have a detection probability of one. For animals

receiving a mark, we will assume that, once marked, the

study area is surveyed at intervals for these individuals

throughout the length of the study. Thus, detection proba-

bility is less than one for marked animals. A reasonable

survey protocol may be to survey the study area for

marked individuals while conducting mortality checks of

radio-collared animals; however, this is not required.

For our event-time analyses, three types of information

are needed as follows: (1) the date each individual (ei)

was captured or marked; (2) the date the individual was

last-known alive (ri); and (3) the first date the individual

was known to have died/failed or was censored (si; Heisey

et al. 2007). We assume that the event time (Ti) is only

known to the interval [ri, si]. In general, most marked

animals will be considered to be right-censored (i.e.,

si = ∞) owing to the low probability of discovering dead

marked animals. Our model also requires enumeration of

either observation times of marked animals or whether an
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individual was observed during each survey occasion

depending on whether the detection process is modeled

as a continuous or discrete process. Additionally, any per-

tinent covariate information may be collected.

Data likelihood

We decompose the likelihood function into two compo-

nents. The first component represents the information

contributed by radio-collared animals, and the survival

components have been previously described by Heisey

et al. (2007) and have the following form:

L1ðajdataÞ ¼
Yn1
i¼1

exp �
Zri
ei

hðujaÞdu
0
@

1
A

1� exp �
Zsi
ri

hðujaÞdu
0
@

1
A

2
4

3
5

Ynsi
t¼neiþ1

p
Ii;t
i;t 1� pi;t
� �1�Ii;t

; (1)

where n1 = number of radio-collared animals, h(u) = the

hazard function, a = parameters associated with h(u), pi,

t = probability of detection for the ith radio-collared ani-

mal during the tth observation survey, Ii,t = an indicator

of successful observation of the ith radio-collared animal

during the tth observation survey, nei = the number of

observation surveys prior to ei for the ith radio-collared

animal, nsi = the last observation survey the ith radio-col-

lared animal was observed, and other variables are as

described previously.

This construction allows for both interval and right cen-

soring and accounts for staggered entry or left truncation

of individuals into the marked samples (Pollock et al.

1989a,b). The hazard function can take any form, and

common choices include constant, log-logistic, Weibull,

and the piece-wise constant hazards. The final term in the

likelihood is the product of a series of Bernoulli random

variables and evaluates the number of observations of the

ith marked animal during the interval from the date of

marking to the date of the last survey which it was

observed. It is noteworthy that the number of surveys that

an individual is available for observation is individual-spe-

cific conditional on ei, unless observation surveys begin

after all individuals are marked, which implies nei = 0 for

all individuals. We chose to model each individual’s

encounter histories as outcomes of Bernoulli trials from

the origin/study start until the last survey occasion at which

each marked animal was observed; however, other models

can be used including continuous detection process models

(Yip et al. 1996; Hwang and Chao 2002). Following a

reviewer suggestion, we have included the last term in the

likelihood for radio-collared animals solely for generality,

and its inclusion requires the assumption that observers

searched for radio-collared animals in the same manner

and with the same effort that they searched for marked ani-

mals, and did not employ the use of the radio transmitter

to observe the animal. Inclusion of this function also

assumes detection probability is independent of the type of

mark deployed on the animal. If this assumption holds,

including this term in L1 will increase the precision of esti-

mated posterior distributions; however, we believe this

assumption does not hold in general because radio trans-

mitters permit the consistent location of radio-collared

individuals. In our experience, this decreases the search

effort and increases the detection probability of radio-col-

lared individuals because over time observers learn where

to search for and expect to find these animals. Therefore,

in practice, we would normally remove the last term from

L1, and we removed it during the subsequent analyses per-

formed during the simulations and case study.

The second component represents the contributions to

the likelihood from marked animals. To account for the

fact that the detection probability for this group is almost

assuredly less than one, we model the detection process,

which also provides information regarding the random

variable, death/event time. Thus, the second likelihood

component is as follows:

L2ðajdataÞ /
Yn2
j¼1

exp �
Zstimes½nsj�
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; (2)
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where n2 = number of marked animals, S = number of

observation surveys, stimes = vector of observation survey

times, and other variables are as described previously.

There are three distinct multiplicative elements (in brack-

ets) in equation 2. The first element is similar to the first

likelihood component and models survival, while the indi-

vidual is known alive. The second element is the product of

Bernoulli trials and models the detection process during

observation surveys as previously described. The final ele-

ment accounts for unknown fates of marked animals past

nsj: the probability they survived throughout the study and

were never observed or died between nsj and the study’s

end. Death can be thought of as a competing risk which

censors the future recapturing observations, which can be

described as latent observations. Because all possible future

recapture histories are censored, the sum of their postdeath

conditioned probabilities is one and would contribute a

constant term to the likelihood, so such hypothetical histo-

ries need not be explicitly included.

We construct the joint likelihood for radio-collared and

marked animals by assuming independent death times for

each individual. The resulting joint likelihood is as follows:

L = L1 9 L2, and because the two components share haz-

ard parameters, this represents an integrated analysis

approach. Covariates can be easily added to the likelihood

using a proportional hazards approach and through stan-

dard link functions for the detection probability (Heisey

et al. 2007).

Priors and posterior

The joint posterior for the parameters (a, pj,t) is propor-

tional to the product of the joint likelihood (L) and prior

distributions for the unknown parameters. In the simula-

tion study and analysis of mountain plover data described

below, we assume probability of detection is constant

across observation surveys. Therefore, we use the follow-

ing in place of the product of Bernoulli trials in L2:

p
nnj
j 1� pj
� �nsj�nnj�nej

h i
; (3)

where nnj = the number of sightings of the ith marked

animal. We then specify a Bayes–Laplace uniform (0,1)

prior for the pj. We also specify similarly weak priors for

a parameters; however, a wide range of priors may be

specified to provide the hazard function posited structure

a priori based on knowledge gathered from previous stud-

ies or expert opinion (Gelman et al. 2004).

For point and interval parameter estimation, we sample

from the joint posterior distribution of a and pj using Mar-

kov chain Monte Carlo (MCMC) algorithms to obtain pos-

terior means and credible intervals (CIs). Specifically, we

use the Hit and Run Metropolis (HARM; Gilks and

Roberts, 1996) in the Laplace’s Demon package in Program

R (Statisticat LLC 2012; R Development Core Team 2013).

Model application

Simulation studies

We conducted a simulation study to examine the perfor-

mance of our model. We chose a piece-wise constant

mortality hazard model comprised of two different hazard

values for the simulations. This model is a reasonable

model for species with high survival throughout most of

the year but increased hazard during some season (e.g.,

hunting season). Our simulation examples were based on

weekly surveys for marked individuals and mortality

checks of radio-collared animals.

We generated data for several different combinations of

annual survival and detection probabilities. These combi-

nations we deemed plausible for typical field studies. We

used annual survival probabilities of 0.25, 0.55, and 0.85

and individual detection probabilities of 0.20, 0.40, and

0.90 for marked animals at each survey occasion. For each

simulation, we chose a unique combination of annual

survival probability and detection probability. We speci-

fied the hazard ratio of hunting to nonhunting seasons as

two and set the hunting season to occur from 10/1

through 12/31 each year. For most combinations of sur-

vival and detection probabilities, we set the survey period

to be 477 days in length; however, if annual survival was

0.85, the survey period was 1569 days long to assure an

adequate number of deaths for estimation. We examined

two different sample sizes of marked individuals – the

first was 40 radio-collared animals and 40 marked ani-

mals, which is a reasonable sample size for many survival

studies. The second was 250 radio-collared animals and

250 marked animals, representing an exceptionally large

sample size for wildlife studies. We randomly assigned the

time of capture and marking of each individual to fall

within the interval of day [1, 30] of the study. We ran-

domly generated death times for each individual using a

two-step process. First, using a random draw from a mul-

tinomial distribution, we assigned which interval of the

piece-wise constant hazard function death occurred where

individual multinomial probabilities were geometrically

distributed. The number of parameters (m) of the distri-

bution equaled the number of change points in the piece-

wise constant hazard function plus one. The individual

parameters for k = 2 to m�1 were as follows:

qk ¼ expð�
Xk�1

l¼1

kkti;lÞ � 1� exp �kkti;k
� �� �

; for 1\k\m

(4)
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where kk = is the hazard rate during the kth interval of

the piece-wise constant hazard function, ti,k = the length

of the kth interval for the ith individual, and q0 = 1. For

k = 1, the parameter was simply the probability of failing

during the first interval, while for k = m, the probability

was one minus the sum of m�1 other probabilities. Each

individual had a unique vector of parameters because of

the staggered entry of individuals into the marked sample.

Once we generated the interval, we randomly generated

the failure time within the interval from truncated expo-

nential distribution with rate parameter (kk). The piece-

wise exponentially distributed death time was then calcu-

lated as the sum of the length of intervals prior to the

selected interval and the generated failure time. If an indi-

vidual’s time of death exceeded the study length, we trea-

ted it as right-censored. Lastly, we generated last-known

alive and first-known dead times of marked animals given

these individual death times. We surveyed marked ani-

mals weekly throughout the study; thus, for radio-collared

animals, we specified ri as the lower bound of the survey

interval containing the death time and si as the upper

bound of the same interval. If the individual was right-

censored, nsi was the last survey time and si = ∞. For

marked animals, we generated whether it was observed

during each survey occasion using a Bernoulli distribution

with parameter (pj) given that it was alive to be observed.

Therefore, nsj was the last survey during which the animal

was observed. We treated all marked animals as right-cen-

sored because no death times were recorded for them.

We analyzed the generated data using the Bayesian

model and MCMC algorithms previously described. To

account for sampling variability associated with the gener-

ated entry, failure, and observation times, we ran 500

individual chains for 50,000 iterations each and randomly

generated dispersed starting values for parameters from

uniform distributions. To assess model performance, we

calculated the percent bias (PBS) and root mean square

error (RMSE) for the three parameters of interest: the

nonhunting mortality hazard rate (k1), the hunting mor-

tality hazard rate (k2), and the detection probability (P),

using the means of the posterior distributions for each

parameter from each chain. To assess stationarity of each

chain, we used the Geweke diagnostic test as applied

within the R package, Laplace’s Demon (Geweke 1992;

Statisticat LLC 2012).

We performed a second simulation study to examine

the effects of varying the number of marked and radio-

collared animals in a marked sample of 80 animals. We

used an annual survival rate of 0.55 and examined detec-

tion probabilities of 0.20 and 0.40. The simulation tech-

nique followed the methodology described for the earlier

simulation study and examined the same parameters and

metrics.

Case study: mountain plover chick survival

To illustrate the use of our technique, we analyzed sur-

vival of mountain plover chicks captured and fitted with

radio transmitters (Blackburn Transmitters; Pip Lotek

Wireless Inc., Canada) at 1 day of age in Colorado, USA,

and were observed until they were 30 days old from 2010

to 2012. Thus, we considered an observation survey to be

each day a chick was checked for mortality or an observa-

tion was attempted. We attached 0.35-g transmitters on

chicks at hatching (~10 g). Transmitters were attached

using a modified design of Rappole and Tipton leg har-

ness attachment method (Dreitz et al. 2011). Figure 1 dis-

plays mountain plover chicks recently fitted with

transmitters. We replaced transmitters at ~16 days to

maintain monitoring until ≥30 days of age. We used the

radio transmitters to determine the live/dead status of

each chick either through direct observation or changes

in location of the radio signal indicating movement. If a

radio transmitter failed, the chick was searched for inten-

sively within a 2 km radius of its last-known location. If

a chick was discovered, we made daily observation

attempts during which their live, dead, or nondetected

status was noted. Chicks with failed radio transmitters

that were not initially discovered were searched for

throughout the study area during each observation survey

until it was observed or the study ended.

We measured several covariates that may impact the

age-specific mortality hazard rates: chick size at marking

measured via mass and tarsus length of chicks, nesting

habitat type, year of the study, sex of the chick

(male = 1), and sex of the attending adult (male = 1).

Habitat types were classified as grassland (reference state),

Figure 1. Mountain plover chicks (Charadrius montanus) fitted with

radio transmitters and metal bands for survival estimation

(Photograph credit: Colorado Parks and Wildlife).
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prairie dog colony, agricultural fields, or unknown (i.e.,

the habitat type of the chick’s nest site could not be

determined exactly because it was not in a nest). The

effect of year was included because chick survival for

most avian species exhibits high annual variation using

2010 as our reference state. We also included tending

adult sex because mountain plovers’ breeding system is

uniparental which means only one adult tends to the nest

and brood (Knopf and Wunder 2006).

We used the likelihood L described above for our

analysis with modifications to account for the data struc-

ture. The time scale on which the hazard is expressed was

1 day. Chicks, whose radio transmitter functioned until

they were >30 days of age, were modeled using L1. How-

ever, as previously mentioned, we did not include proba-

bility of detection in L1 because we believed the detection

probability for chicks with functioning radio transmitters

was higher than those with malfunctioning transmitters.

To model the survival and detection process for chicks,

whose transmitters failed, we used L2. The entry age and

age for which the chick was last-known alive was used to

parameterize the survival element of L2. The detection

probability element of L2 was estimated using information

regarding the number of times the chick was observed

and the number of observation surveys after the first sur-

vey it was discovered the radio transmitter had failed.

The remainder of L2 was estimated as previously

described. We used a log-linear proportional hazards

model to incorporate the necessary covariates into the

hazard function; with this parameterization, the exponen-

tiated coefficients are interpretable as hazard ratios. We

standardized (mean 0, standard deviation 1) each of the

continuous covariates prior to analysis. The associated

hazard ratios measure relative change in hazard for a

one-standard-deviation increase in each covariate value.

For the intercept and each of the covariate parameters,

we used weak uniform [�5, 5] priors. Two covariates,

chick sex (n = 44) and adult sex (n = 72), had missing

values. We specified Bernoulli priors for these two covari-

ates and placed Gaussian (l = 0.5, r = 0.05) priors on

the parameters of these Bernoulli distributions, which reg-

ulates the probability of being male for either covariate to

being contained within 45–55% or with a 95% probabil-

ity. Our informative priors on these parameters reflected

our prior belief that probability of chick and tending

adult sex being male or female in each case should be

roughly equal. We treated pj, the probability of detecting

a chick after the radio failure, as a constant.

Because we wanted to investigate whether survival was

lower during the first days of life as posited based on field

observations, we used a Bayesian hierarchical model and

included an age effect (agek) as a random effect for each

of k = 1 to 29 age intervals in our proportional hazards

specification. These effects were modeled using a random

walk prior with age ~ Gaussian(0, Σ) to reflect the prior

belief that mortality hazard rates for chicks close in age

are similar (correlated) and to produce a smoothed haz-

ard curve (Besag et al. 1991; Cressie and Wikle 2011).

Following the notation of Cressie and Wikle (2011), we

modeled Σ = (I-H)�1M, where I is a k 9 k identity

matrix, M = s2I, s2 is the precision, and H is the neigh-

borhood matrix with entries hi,j = 0 if age interval j does

not precede or follow interval i, otherwise, hi,j = ½, for
1 < i < 29, and hi,j = 1 for i = 1 or 29. We specified a

weakly informative uniform [0,5] prior on the standard

deviation parameter ð 1ffiffiffi
s2

p Þ . We also analyzed the dataset

using a piece-wise constant hazard function with the first

3 age intervals (age < 4 days old) having one mortality

hazard rate and the remaining age intervals having a sec-

ond rate. We specified a weak uniform [�5, 5] for the

log hazard parameters in the piece-wise constant model.

Lastly, we created a constant proportional hazards model

where the mortality hazard rate did not vary with age.

We used deviance information criterion (DIC; Spiegelhal-

ter et al. 2002; Gelman et al. 2004) to select the most

appropriate of these three candidate models from which

to make inference.

For the model with the lowest DIC value, we ran three

chains with dispersed starting values for 500,000 repeti-

tions and discarded the first 250,000 as burn-in. We used

graphical diagnostics including trace and autocorrelation

plots, and the Brooks, Gelman, and Rubin statistics

(Brooks and Gelman 1998) to assess convergence via the

boa package (Smith 2007) of program R (R Development

Core Team 2013). To examine sensitivity of the posterior

distributions for each of the hazard covariates and piece-

wise constant hazards to our choice of weakly informative

prior distributions, we reanalyzed the top model using a

central t-distribution with 5 degrees of freedom and

Gaussian (l = 0, r = 2.24) distribution as priors. We

then compared each of the estimated posterior distribu-

tions for the piece-wise hazards and covariate effects for

discrepancies between each of these prior distributions,

which would indicate sensitivity to the choice of priors.

We also conducted posterior predictive checks to assess

the goodness of fit of this model (Gelman et al. 2014).

We examined two test statistics, the overall mean failure

age of chicks known to die during the study, and the dif-

ference of predicted failure ages from the posterior pre-

dictive distribution and observed failure ages for this

same group of chicks. We calculated Bayesian P-values

for these test statistics (Gelman et al. 2014). Lastly, to

evaluate the validity of our proportional hazards assump-

tion, we added covariate*age interaction terms for each of

the covariates from the top model whose 95% credible

intervals [CIs] did not include zero (Lee and Wang
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2003). We followed the same analysis procedures

described above for our top model and examined the

posterior distributions of these interaction terms and

determined whether their 95% credible intervals included

zero, which would indicate evidence that the proportional

hazard assumption was met. However, we did not exam-

ine an age*year effect because our random walk hazard

model already captured this interaction.

Results

Simulation studies

Our MCMC chains for the simulation studies all were

evidenced to have converged based on graphical checks

and the Geweke diagnostic values. The results of our first

simulation study are shown in Table 1, which presents

the PBS and RMSE for each of the parameters for the

two different sample sizes investigated. The biases in esti-

mated posterior means were minimal with the largest PBS

being 4.95% for k2 when annual survival was 0.85 and

detection probability was 0.40, using sample sizes of 40

marked and 40 radio-collared individuals. Table 1 illus-

trates that as expected, the RMSE of the estimated poster-

ior means decreased as sample sizes, detection probability,

and survival increased. For example, all estimated poster-

ior means had minimal PBS values (i.e., ≤ �4.2%).

In our second simulation study, we varied the propor-

tion of radios comprising the sample of individuals. On

examination of the RMSE plots in Figure 2 for the

parameters, k1 and k2, we noted the RMSE was highest

when there were no radio-collared animals in the sample,

and decreased as the number of radio-collared animals

increased. The decrease in RMSE values for these parame-

ters with increasing radio-marked animals was more

marked when detection probability was specified as 0.20

compared to 0.40. Interestingly, even in the absence of

radio-marked animals in the sample, reasonable posterior

distributions were still generated. The percent increase in

RMSE values between no radio-marked and only radio-

marked animals in the sample with a detection probabil-

ity of 0.40 was 6.9% and 12% for k1 and k2, respectively,

Table 1. Simulation results for the parameters (Par): nonhunting hazard (k1), the hunting hazard (k2), and detection probability (P) when annual

survival, detection probability, and sample size of radio-collared and marked animals were varied.

Annual survival Par True value

Mean Relative bias (%) RMSE

Sample

40/40

Sample

250/250

Sample

40/40

Sample

250/250

Sample

40/40

Sample

250/250

0.25 k1 0.0030 0.0030 0.0030 �0.094 0.086 0.0006 0.0002

k2 0.00607 0.0061 0.0061 0.163 0.303 0.0010 0.0004

P 0.2000 0.2001 0.2002 0.064 0.089 0.0128 0.0052

0.25 k1 0.0030 0.0030 0.0030 �0.254 0.018 0.0005 0.0002

k2 0.00607 0.0061 0.0061 1.149 0.301 0.0009 0.0004

P 0.4000 0.4008 0.4004 0.207 0.108 0.0219 0.0063

0.25 k1 0.0030 0.0030 0.0030 �0.015 �0.028 0.0005 0.0002

k2 0.00607 0.0061 0.0061 0.231 0.379 0.0009 0.0004

P 0.9000 0.8997 0.8998 �0.030 �0.017 0.0089 0.0036

0.55 k1 0.0013 0.0013 0.0013 �3.181 0.256 0.0003 0.0001

k2 0.00262 0.0027 0.0026 2.613 1.139 0.0005 0.0002

P 0.2000 0.2004 0.2002 0.223 0.123 0.0098 0.0040

0.55 k1 0.0013 0.0013 0.0013 �2.683 0.224 0.0003 0.0001

k2 0.00262 0.0027 0.0026 2.061 0.882 0.0005 0.0002

P 0.4000 0.4004 0.4004 0.103 0.090 0.0121 0.0047

0.55 k1 0.0013 0.0013 0.0013 �0.487 0.221 0.0003 0.0001

k2 0.00262 0.0027 0.0026 2.722 0.949 0.0005 0.0002

P 0.9000 0.8997 0.8999 �0.039 �0.011 0.0051 0.0028

0.85 k1 0.0004 0.0004 0.0004 �0.184 1.247 0.0001 0.0001

k2 0.00071 0.0007 0.0007 4.950 0.385 0.0002 0.0001

P 0.2000 0.2003 0.2001 0.158 0.068 0.0052 0.0033

0.85 k1 0.0004 0.0004 0.0004 �0.127 1.238 0.0001 0.0001

k2 0.00071 0.0007 0.0007 4.708 0.158 0.0002 0.0001

P 0.4000 0.4004 0.4002 0.098 0.049 0.0064 0.0041

0.85 k1 0.0004 0.0004 0.0004 0.092 1.508 0.0001 0.0001

k2 0.00071 0.0007 0.0007 4.244 0.483 0.0002 0.0001

P 0.9000 0.9000 0.8999 �0.004 �0.010 0.0039 0.0024
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and when detection probability was 0.20, it was 16% and

24% for k1 and k2, respectively. The PBS values, for

detection probability of 0.40 when no radios were

included in the sample, were only �2.3% and 2.9%, and

for detection probability of 0.20, the PBS values were

�4.13% and 4.13% for k1 and k2, respectively. The RMSE

for the nuisance parameter, p, behaved differently. It

increased as the proportion of radio-collared animals

increased.

Mountain plover chick survival

We captured and marked 234 individual plover chicks

during our study. The battery life of the transmitters was

~ 18 days. As a result, only 91 chicks’ fates were known.

Additionally, only 71 chicks were monitored whose radios

were detected at every observation prior to death or right

censoring at 30 days of age, while the remaining chicks

had at least one occasion where they were not detected.

Our model selection results demonstrated the piece-

wise constant model was best supported by the evidence

in the data. The DIC values were 1520.549, 1527.266, and

1543.568 for the piece-wise constant, the random walk

model, and the constant hazards model, respectively.

Despite having a higher DIC value, we examined the esti-

mated random effect terms from the random walk model.

We determined only effects for the first 3 age intervals

(i.e., age 1–4 days) had posterior distributions shifted

away from zero (i.e., their 90% CIs did not include zero).

The estimated hazard curve from this model is shown in

Figure 3. Based on these results, we estimated the param-

eter values and made inference using the piece-wise con-

stant hazard model.

During our analysis using the piece-wise constant

model, no evidence of nonconvergence of our chains was

observed; the multivariate scale reduction factor was

1.011, and the 0.975 quantiles for the corrected scale

reduction factors for all parameters were ≤ 1.018. Graphi-

cal examination of the distribution of each of the poster-

ior predictive check test statistics revealed they were

mildly left-skewed. Closer examination revealed skewness

was the result of underestimating the failure age for a few

chicks whose age at death occurred at 30 days. However,

based on these test statistics, in general, the model does a

reasonable job of fitting the overall mean failure age pro-

ducing a Bayesian P-value of 0.38. It also acceptably fits

(A)

(B)

(C)

Figure 2. The root mean square error (RMSE) for the nonhunting

hazard (k; A), the hunting hazard (k2; B), and detection probability (P;

C) using a detection probability of 0.2 (light gray line) and a detection

probability of 0.4 (dark gray line) with varying number of radio-

collared animals in the sample.
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Figure 3. The estimated hazard curve for mountain plover

(Charadrius montanus) chicks in Colorado, USA, from 2010 to 2012.

The dark line represents the mean estimated hazard at each age

interval, and the gray envelopes represent 90% credible intervals for

the hazard.
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the individual mean failure ages yielding a Bayesian P-

value of 0.57.

We did not measure substantial sensitivity to our

choice of weakly informative priors. Each of the priors

generally yielded similar posterior distributions for each

of the parameters and yielded similar inference. The only

difference we noted was when using the Gaussian prior,

the 95% CIs for the effect of mass included zero (�0.66,

0.00088), whereas when using the other priors, the 95%

CIs for this effect did not include zero. Thus, we did not

believe our choice of weakly informative priors for the

covariate effects and piece-wise hazards significantly

impacted our estimates of the posterior distributions.

Statistics describing the posterior distributions of the

parameters from the piece-wise constant model are pre-

sented in Table 2. It is clear that the morality hazard rate

is higher during the first 4 days of life for chicks and

drops thereafter based on the significant (i.e., 95% CIs

excluding zero), negative parameter estimate for the log

hazard effect for ages >4 days. The covariates with signifi-

cant posterior distributions were chick mass, agricultural

nesting habitat, and the 2012 year effect, each of which

decreased the mortality hazard rate. These distributions

indicate that increasing mass lowers the hazard, chicks in

nest sites in agricultural areas had a lower hazard com-

pared to those in grassland habitats, and the hazard was

lower in 2012 when compared to 2010. The “unknown”

habitat showed weaker effects (i.e., the weight of the pos-

terior distribution was shifted away from zero, but 95%

CIs included zero). This effect was positive indicating that

there was some evidence in the data that chicks captured

in this habitat had an increased hazard compared to

grassland nest-site habitats. The remaining covariates

appeared to have little influence on the mortality hazard

rates. The mean of the posterior for the conditional

detection probability (P) was 0.75.

Our examination of the validity of the proportional

hazard assumption did not yield any evidence suggesting

violation of the assumption. The posterior distributions

of each of the covariate*age interaction terms we exam-

ined had their mass centered near zero and each 95% CIs

included zero.

Discussion

Based on our simulation studies, this model performed

well across the range of combinations of survival and

detection probabilities we examined. The model exhib-

ited good performance even when the proportion of the

sample composed of radio-collared individuals was low.

However, the RMSE was highest when no radio-collared

animals were included in the sample, but this is

expected because radio-collared animals provide more

information regarding death times compared to marked

individuals. The increase in RMSE for the detection

probability parameter we observed as the proportion of

radio-collared animals in the sample increased is reason-

able because this parameter is estimated from the sample

of marked animals. Thus, as the number of marked

individuals decreases, the available information for esti-

mating the detection probability also declines. In total,

our simulation studies demonstrate our approach per-

forms well across a variety of sample sizes, survival, and

detection probabilities, which are common in applica-

tion. But, it is worth noting that for these simulations,

we did not investigate the effects of model misspecifica-

tion, and therefore, our PBS and RMSE values may be

optimistic.

Table 2. Estimates from the posterior distribution of the parameters (log hazards and log hazard ratios) from the piece-wise constant model for

mountain plover chick (Charadrius montanus) survival from 2010 to 2012 in Colorado, USA.

Parameter Mean SD MC error 0.025 Percentile 0.500 Percentile 0.975 Percentile

Intercept �2.208 0.253 0.0088 �2.725 �2.202 �1.732

Hazard – Age 5–30 days �0.479 0.183 0.0040 �0.837 �0.481 �0.114

Chick sex 0.020 0.178 0.0030 �0.333 0.020 0.369

Adult sex 0.077 0.193 0.0043 �0.308 0.077 0.457

Mass �0.351 0.165 0.0032 �0.667 �0.354 �0.024

Tarsus 0.146 0.175 0.0035 �0.199 0.146 0.488

Prairie dog 0.101 0.188 0.0042 �0.263 0.100 0.467

Agricultural �0.524 0.267 0.0080 �1.053 �0.523 �0.001

Unknown 0.889 0.455 0.0196 �0.054 0.911 1.712

Year-2011 �0.193 0.202 0.0052 �0.582 �0.195 0.210

Year-2012 �0.548 0.225 0.0057 �0.991 �0.546 �0.111

P 0.751 0.019 0.0002 0.713 0.751 0.787

Adult sex impute1 0.501 0.028 0.0002 0.460 0.502 0.540

Chick sex impute1 0.515 0.031 0.0003 0.455 0.515 0.576

1Represent probability used to impute missing covariate values.
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Our case study demonstrated real-world value of our

integrated approach. It allowed us to investigate the

impacts of various covariates on the mortality hazard

rates of plover chicks and provides an effective alternative

to discrete-time approaches (Dreitz 2009). Additionally,

although it was not our final model from which we made

inference, we demonstrated how our method can be

extended to account for temporal/spatial correlation in

hazard rates through regularization (e.g., random walk

model).

Our biological findings are similar to previous studies

on chick survival. We observed larger mass is correlated

with lower mortality hazard rates, which mirrors Ruth-

rauff and Mccaffery (2005) who noted that size at hatch-

ing influences survival rates of shorebirds. We also found

no effect of chick or tending adult sex on the mortality

hazard rates, which is in concurrence with Dreitz (2009).

Similarly, we found habitat type impacts the mortality

hazard rate (Dreitz 2009); however, the hazard rate was

lowest for nesting in agricultural habitat, while the

remaining habitats had higher associated hazards. This

contrasts earlier work that demonstrated nesting habitat

located in prairie dog-inhabited grasslands led to the

highest survival rates (Dreitz 2009); however, this differ-

ence is undoubtedly due to high temporal variability in

chick survival associated with annual differences in quality

of the habitats to support chicks. This species prefers dis-

turbed areas containing exposed bare ground (Dreitz

2009), which increases in agricultural fields during years

with low winter/spring precipitation and presumably

increases chick survival as observed in our case study. In

contrast, during years with high winter/spring precipita-

tion, agricultural fields may result in lower survival due

to limited bare ground and increased crop production.

Lastly, the lower hazard in 2012 compared to the previous

years is likely a result of reduced seasonal rainfall and

extreme precipitation events (e.g., hailstorms) during the

chick period.

The high detection probability for our case study sug-

gests that despite failed/weak radio transmitters in the

sample, if the chick is still alive, it was detected with a

high probability after a malfunction or nondetection

event. Thus, the effort to locate animals’ postradio failure

appears adequate.

Although we believe our integrated survival model to

be unique, other modeling techniques with similar aspects

have been proposed in the literature. For example, Bunck

et al. (1995) also developed an approach to estimate sur-

vival when relocation of radio-marked individuals is

uncertain. Their technique employs a modified Kaplan–
Meier estimator that utilizes for each survey occasion a

potentially unique risk set that only includes individuals

detected during that occasion. In contrast, our approach

jointly estimates the detection and survival process

eliminating the need for varying risk sets and permits

learning about the detection process. Additionally, our

approach allows greater flexibility with regard to the types

of marks that can be deployed (e.g., only radiocollaring a

subset of the total marked sample), potentially resulting

in substantial economic savings.

Similarly, Conn et al. 2012 and Ergon et al. 2009 pro-

posed frequentist models that share commonalities with

our integrated survival model. Conn et al. 2012 examined

methods to account for imperfect detection when estimat-

ing the force of infection in wild populations. Likewise,

Ergon et al. 2009 employed event-time approaches within

a multistate framework to estimate the latent distribution

of age/time of reproduction while accounting for both

capture probabilities and censoring associated with natu-

ral mortality. Although similar in some respects to these

techniques, our model is unique in the ability to account

for multiple data sources that contain a mixture of

known and unknown fates when estimating hazard rates.

Lastly, an interesting observation is if we choose to use

the piece-wise constant hazard function in our model, it

essentially can be characterized as a continuous-time Cor-

mack–Jolly–Seber (CJS) model (Pollock et al. 1990) where

survival is modeled via a log–log link.

In conclusion, the integrated survival model we have

described removes some of the current limitations when

using event-time analyses. Our simulation efforts and case

study demonstrate that the technique performs well and

has real-world applications. The strength of this modeling

approach is that it can be used for a wide array of sur-

vival estimation problems where the fates of all individu-

als are not known with certainty. This may arise from

different marking or follow-up techniques, where some

individuals are not detected with certainty or as in our

mountain plover case study when nondetection arises

from equipment failures. We believe that our integrated

modeling approach provides researchers greater access to

the powerful machinery of event-time analyses, permitting

the realistic modeling of the dynamic unfolding nature of

these processes in time, and facilitating the expanded use

of these cost-effective tools in arenas not previously possi-

ble.
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