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Abstract: This research investigated the retarding impact of zinc oxide (ZnO) and borax
(Na2[B4O5(OH)4]·8H2O) on hydration of Portland cement, calcium aluminate cement (CAC), and
calcium sulfoaluminate cement (CSA). Heat of hydration of cement paste samples with and without
ZnO and borax was used to measure the influence of ZnO and borax on the set time of these
cementitious systems. It was found that both ZnO and borax can retard the set time of Portland
cement systems; however, ZnO was shown to be a stronger set time retarder than borax for these
systems. ZnO did not show any retarding impact on CAC and CSA systems while addition of borax
in these systems prolonged the set time. It was concluded that ZnO does not poison the nucleation
and/or growth of CSA and CAC hydration products. We suggest that borax retards the cement set
time by suppressing the dissolution of cement phases.

Keywords: zinc oxide; borax; set time; heat of hydration; calcium aluminate cement; calcium
sulfoaluminate cement

1. Introduction

Utilization of cement set time retarders, referred to as retarding admixtures, in concrete allows
concrete producers to delay the set time of concrete. Retarding admixtures are commonly used in hot
weather concreting and when ready mixed concrete should be transported for a long distance. Sucrose
(sugar) is a well-known cement set retarder [1–5]. Sucrose retards cement hydration by poisoning
nucleation sites for calcium silicate hydrate (C–S–H) [3,6]. This poisoning effect prevents the formation
of C–S–H for an extended period and thus delays the cement set time. The following abbreviations
will be used in this paper: H = H2O, C = CaO, A = Al2O3, Ŝ = SO3, S = SiO2.

Zinc oxide (ZnO) has been shown to be another strong cement set retarder [7–9]. It has been
suggested that ZnO, like sucrose, poisons C–S–H nucleation sites and thus retards the cement set
time [7]. In cementitious systems containing ZnO, during the prolonged dormant period, cement
particles continue to dissolve and thus the concentration of ions in the pore solution increases [3,7].
This will increase calcium concentration in the system leading to an increase in C–S–H nucleation
sites. Therefore, the rate at which C–S–H grows after the set time is higher in systems containing ZnO
compared to those without any retarder. This is why ZnO is called a “delayed accelerator” [7].

The retardation time of cementitious systems containing ZnO is correlated to the amount of Zn
ions dissolved in the pore solution [7]. The higher the Zn ion concentration in the pore solution, the
longer the retardation period. The retardation period caused by ZnO is suggested to end by two
possible mechanisms [7]: (1) removal of Zn ions from the pore solution by chelation or adsorption of
Zn ions by hydration products, such as C–S–H; and (2) removal of Zn ions by formation of calcium
zinc hydrate according to Equations (1) and (2) [10,11].

ZnO + H2O + 2OH− → Zn(OH)2−
4 (1)
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Zn(OH)2−
4 + Ca++ + H2O→ Ca(Zn(OH)3)2.2H2O + 2OH− (2)

Borax is another set time retarder for cementitious systems [12]. It has been shown that borax delays
the set time of calcium sulfoaluminate cement (CSA) by preventing the dissolution of ye’elimite [12].

The behavior of retarding admixtures in cementitious systems depends on several factors, such
as the composition of the systems as well as the curing temperature. Addition of supplementary
cementitious materials (SCM), such as rice straw ash and silica fume, in cementitious systems have
been shown to reduce the retarding action of chemical retarders [7,13]. This has been attributed to
existence of more C–S–H nucleation sites in systems containing SCMs compared to those without
SCMs [7,13,14]. Therefore, the composition of the cementitious system affects the chemical admixture
performance in the system.

The dissolution of ZnO in alkaline solutions (such as cementitious solutions) increases as the
temperature increases [15]. Similarly, cement early hydration, and thus the formation of C–S–H,
increases as the curing temperature increases [16]. It is not known, however, as to how the curing
temperature could affect the retarding action of ZnO on cementitious systems.

Although the impact of ZnO on Portland cement hydration has been studied by some researchers,
the influence of ZnO on hydration of calcium aluminate cement (CAC) and on CSA has not been
investigated yet. As the composition of CAC and CSA and their hydration mechanisms are different
than that of Portland cement, it would be expected that ZnO and borax would affect the hydration of
CAC, CSA, and Portland cement in different ways.

This study investigates the impact of ZnO and borax on the Portland cement, CAC, and CSA
hydration process. Furthermore, the influence of the curing temperature on the retarding action of
ZnO is studied.

2. Materials and Methods

ASTM C150 [17] Type II/V and Type III as well as commercially available CAC and CSA cements
were used in this study. The chemical composition of the cementitious materials is shown in Table 1.
ACS grade zinc oxide was used. The borax used was ACS grade sodium tetraborate decahydrate
(Na2[B4O5(OH)4]·8H2O). Fifty percent food grade citric acid solution was used to stabilize the set time
of the CSA cement.

Table 1. Oxide composition of cementitious materials.

CSA CAC Type II/V Type III

SiO2 8.32 4.79 21.3 21

Al2O3 21.8 40.17 3.9 5.1

Fe2O3 2.8 15.51 3.8 1.2

CaO 43.3 37.29 63.2 64.2

SO3 22.8 - 2 3.6

MgO 0.65 - 2.2 2.2

Blain (cm2/gr) 5924 4065 3800 5550

The retarding action of ZnO and borax on cementitious systems was determined by measuring
the heat of hydration of cement paste samples using a four-channel isothermal calorimeter. A 0.45
water to cementitious material ratio (w/cm) was used. When ZnO or borax was used in paste samples,
they were added to dry cementitious material and mixed for one minute by hand before addition of
mixing water to the sample. This was done to make sure ZnO and borax particles were distributed
evenly throughout the sample. Several ZnO and borax dosages were used; all dosages are given as %
mass of cementitious material.
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Paste samples were mixed with an overhead mixer at 600 rpm for 120 s, followed by a 60 s rest
period, and then mixed at 600 rpm for 60 s. The mass of cement pastes samples was approximately
50 g, except for CSA samples that were approximately 15 g. For a given mix, two test samples were
prepared for measuring the heat of hydration; the reported result of the heat of hydration is based on
the average of the two samples. To obtain the induction period (retardation time), the slope of the
acceleration peak of the heat of hydration was extended to the x-axis (time axis). The intersection point
between the extended slope and x-axis was considered as the induction (dormant) period as shown in
Figure 1 [7].
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Figure 1. Schematic method of determining the induction period.

3. Results and Discussions

3.1. Impact of Curing Temperature on ZnO Retarding Action

Experiments were conducted to investigate the impact of curing temperatures on ZnO retarding
action on cementitious systems. Figure 2 shows the impact of curing temperature on type II/V paste
samples with and without ZnO. Figure 3 presents the influence of curing temperature on Type III
samples with and without ZnO. As can be seen from these figures, the curing temperature has a
huge impact on ZnO retardation action in cementitious systems; the higher the curing temperature,
the shorter the retardation time. Figure 4 plots curing temperatures versus retardation time of paste
samples with 0.3% ZnO and 0.5% ZnO. There seems to be an exponential correlation between curing
temperature and retardation time of paste samples containing ZnO. Another interesting trend that
can be seen for samples that were cured at 50 ◦C is that the main hydration peak height is lower from
samples containing ZnO compared to the control sample (with no ZnO). This is the opposite of samples
cured at 23 ◦C or 10 ◦C.

It has been proposed that the higher the curing temperature is, the higher the rate of the hydration
reaction is [18]; this could mean that at higher curing temperatures, C–S–H nuclei are initiated at a
faster rate. It has also been shown that higher curing temperatures increase the calcium hydroxide (CH)
nucleation rate [19]. This increase in C–S–H and CH nuclei at higher curing temperatures could be the
reason behind the suppressed retardation action of ZnO in cement paste, as shown in Figures 2 and 3.
It could be proposed that the poisoning effect of ZnO is overcome sooner at high curing temperatures
compared to low curing temperatures due to an increase in C–S–H nuclei at high curing temperatures.

Comparing Figures 2 and 3, it can be observed that, for a given curing temperature and ZnO
dosage, type III samples had a shorter retardation time compared to those samples made with type II/V.
This is because type III is finer that type II/V and this results in a higher rate of cement dissolution and
a higher number of C–S–H nuclei during early stages of hydration. Therefore, the number of C–S–H
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nuclei in systems containing type III cement would be more than of those containing type II/V. Because
of this, the poisoning ability of ZnO in systems containing type III will deplete faster than in systems
with type II/V.
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Figure 2. Type II/V heat of hydration at different curing temperatures; (A) 50 ◦C, (B) 23 ◦C and
(C) 10 ◦C.
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Figure 3. Type III heat of hydration at different curing temperatures; (A) 50 ◦C, (B) 23 ◦C and (C) 10 ◦C.
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3.2. Influence of Borax on Portland Cement Hydration

The impact of borax on the heat of hydration of type II/V and type III cement paste is presented in
Figures 5 and 6. These samples were cured at 23 ◦C. In general, addition of borax in paste samples
made with type II/V and type III delayed the set time. However, up to 0.5% dosage of borax had a
negligible effect on the induction period of type III samples (refer to Figure 6).
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Figure 5. Type II/V hydration with and without borax.
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Comparing Figure 2B with Figure 5 (or Figure 3B with Figure 6), it becomes clear that ZnO is a
much stronger set time retarder than borax for Portland cement systems. Type II/V samples containing
0.5% ZnO have a retardation time of about 50 h while type II/V samples containing 0.5% borax (0.5%Br
in Figure 5) have a retardation time of approximately 6 h. Similarly, type III samples containing 0.5%
ZnO have a retardation time of 38 h (Figure 3B), while type III samples with 0.5% borax (0.5%Br in
Figure 6) have a retardation time of about 3 h.

The other notable difference between paste samples containing borax and ZnO is that samples
containing ZnO have a narrower but steep main hydration peak, whereas samples containing borax
show wider but shallower main hydration peaks. The sharp narrow peaks in samples containing ZnO
have been suggested to result from the high number of C–S–H nucleation sites in these samples [7].
Shallow hydration peaks in systems containing borax could suggest that borax limits dissolution of
cement particles and thus reduces the number of C–S–H nuclei. The negligible effect of 0.3% and 0.5%
borax on type III hydration could be attributed to the fact that type III has a high surface area, which
means borax cannot reduce the cement dissolution at these lower dosages because there are more
surfaces to be poisoned.

If the cement particle dissolution is reduced by borax, the number of C–S–H nuclei would be
small, the rate of C–S–H formation and growth would be slower, and hence the hydration peak would
be shallower. Therefore, it could be suggested that the mechanism by which ZnO and borax retard
the cement set time is different; ZnO retards the set time by poisoning C–S–H nucleation and growth
whereas borax prolongs the set time by poisoning/reducing cement dissolution. Borax could also
poison the nucleation and/or growth of C–S–H.

3.3. Impact of ZnO and Borax on Calcium Aluminate Cement (CAC) Hydration

Figure 7 shows the heat of hydration of CAC paste samples with and without ZnO. Clearly,
ZnO has no retarding effect, even at high dosages, on CAC hydration. Figure 8 shows the heat of
hydration of CAC paste samples containing different dosages of borax, 0%Br, 0.3%Br, 0.5%Br, and
1%Br. Figure 8A presents the heat flow and Figure 8B shows the total heat of hydration.
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Figure 8. Heat of hydration of CAC with and without borax. (A) heat flow; (B) total heat.

As can been seen from Figure 8, addition of borax to CAC paste samples retarded the set time.
Samples with 1% borax (1%Br) had an induction period of about 32 h, whereas samples with 0.3%
Br had a retardation time of about 10 h. Besides prolonging the induction period, borax reduced the
CAC main hydration peak height as well (refer to Figure 8A). The higher the borax dosage in the
mix, the lower the peak height. However, the main hydration peaks are wider in samples containing
borax compared to those without borax. Shallower but wider hydration peaks for samples containing
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borax suggests that borax controls the rate of nucleation and/or growth of hydration products. As
it was suggested earlier, this could be because borax suppresses the dissolution of phases in cement.
Furthermore, borax could also poison the nucleation and/or growth of CAC hydration products.

Hydration reactions of CAC are different from that of Portland cement. The main hydration
products of CAC are calcium aluminate hydrate and aluminate hydrate. At curing temperatures
between 20 ◦C and 30 ◦C, the hydration products of CAC are calcium aluminate hydrate (CAH10 and
C2AH8) and aluminate hydroxide (AH3). Therefore, it can be suggested that ZnO does not poison
the nucleation and/or growth of CAC hydration products, nor does ZnO reduce the dissolution of
CAC phases.

3.4. Influence of ZnO and Borax on CSA Cement Hydration

To study the influence of ZnO addition on CSA cement, the set time of CSA cement was delayed
by three methods: (1) mixing 25% CSA and 75% type II/V cements, (2) adding 50% citric acid, and (3)
adding a chemical retarder. Citric acid and retarder were mixed with the mix water. Figure 9 shows the
heat of hydration graphs for binary paste samples (25% CSA and 75% type II/V) with and without ZnO.
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Hydration graphs in Figure 9 show two distinct hydration phases, one from initial mixing to
around 48 h, and the other one beginning at around 48 h. The hydration process of cementitious
systems containing CSA and Portland cement has been proposed to be a two phase process [20].
CSA hydration happens during the first phase and produces AFm, AFt, and aluminium hydroxide
(AH3). The second phase of hydration is due to the hydration of C3S in Portland cement, which forms
stratlingite (C2ASH8), C–S–H, and CH according to Equations (3) and (4) [20].

C3S + AH3 + H→ C2ASH8 + CH (3)

C3S + H→ CSH + CH (4)

Therefore, the first phase (up to 48 h) of the hydration reaction observed in Figure 9 is dominated
by CSA cement, while Portland cement hydration dominates the second phase (after 48 h). As can be
seen from Figure 9, hydration of CSA was not affected by ZnO addition as the first phase of hydration
showed no retardation regardless of ZnO dosage. However, hydration of type II/V (the second phase
of hydration) was delayed by ZnO.
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Figure 10A shows the heat of hydration of CSA pastes samples made with 50% citric acid solution
with and without ZnO. Figure 10B shows hydration graphs for CSA cement paste samples dosed by a
chemical retarder admixture (ASTM type B and D). Citric acid and retarder were used to delay the set
time enough to allow sample preparation. In both Figure 10A,B, ZnO did not affect the hydration of
CSA. Therefore, based on the ZnO performance in binary paste samples (Figure 8) and in 100% CSA
cement paste samples (Figure 10), it can be suggested that ZnO doesn’t have a retarding effect on the
CSA set time. Thus, it can be concluded that ZnO has no poisoning effect on nucleation and/or growth
of CSA main hydration products (ettringite (AFt) and aluminate hydroxide (AH3)).
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Figure 11 shows the impact of borax on hydration of CSA paste samples mixed with 50% citric
acid solution with and without borax. The sample containing 0.3% borax (0.3%Br) had the same
induction period compared to the control one (0%Br). However, samples containing 0.5%Br and
1%Br had a longer induction period compared to the control sample. The induction period for the
sample containing 1%Br was longer than an hour, as it can be seen in Figure 11A. Besides prolonging
the induction period, borax lowered the height of the main hydration peak. However, the total heat
of hydration of CSA samples at 6 h after mixing was similar regardless of the borax dosage. The
retardation due to borax could be because borax prevents the dissolution of ye’elimite (C4A3Ŝ), which
is a major mineral phase in CSA cement [12].Materials 2019, 12, x FOR PEER REVIEW 4 of 12 
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4. Conclusions

The retarding action of ZnO and borax on Portland cement, CSA cement, and CAC was investigated.
The heat of hydration of cement paste samples with and without addition of ZnO and borax was
measured to study the impact of ZnO and borax on the set time of cementitious systems. It was found
that the retarding impacts of ZnO and borax on cementitious systems are different from each other. It
was shown that both ZnO and borax can retard the set time of Portland cement systems; however,
ZnO was found to be a stronger set time retarder than borax for Portland cement systems. However,
the set time of CSA and CAC was not retarded by ZnO, while borax retarded the set time of these
cementitious systems. It was also revealed that as the curing temperature raises, the effectiveness of
ZnO in retarding the set time decreases.

It can be concluded that the mechanism(s) by which the set time of cementitious systems is
retarded by ZnO and by borax is different. It seems like ZnO does not suppress the nucleation and
growth of CSA and CAC hydration products, which are mainly aluminate bearing phases such as
ettringite and aluminate hydrate. It can also be suggested that borax retards the set time by reducing
the dissolution of cement particles, whereas we suggest that ZnO poisons nucleation and/or growth
of C–S–H.

Funding: This research was funded by the Office of Research and Sponsored Programs at California
State University-Chico.

Acknowledgments: The author is thankful to Mitsubishi Cement, Buzzi Unicem USA, and Kerneos companies
for donating the Portland cement, CSA cement, and CAC, respectively, for this research study.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Bishop, M.; Andrew, R.B. Cement Hydration Inhibition with Sucrose, Tartaric Acid, and Lignosulfonate:
Analytical and Spectroscopic Study. Ind. Eng. Chem. Res. 2006, 45, 7042–7049. [CrossRef]

2. Thomas, J.J.; Jennings, H.M.; Chen, J.J. Influence of Nucleation Seeding on the Hydration Mechanisms of
Tricalcium Silicate and cement. J. Phys. Chem. 2009, 113, 4327–4334. [CrossRef]

3. Juenger, M.C.G.; Jennings, H.M. New insights into the effects of sugar on the hydration and microstructure
of cement pastes. Cement Concrete Res. 2002, 32, 393–399. [CrossRef]

4. Peterson, V.K.; Juenger, M.C.G. Hydration of Tricalcium Silicate: Effects of CaCl2 and Sucrose on Reaction
Kinetics and Product Formation. Chem. Mater. 2006, 18, 5798–5804. [CrossRef]

5. Thomas, N.L.; Birchall, J.D. The retarding action of sugars on cement hydration. Cement Concrete Res. 1983,
13, 830–842. [CrossRef]

6. Cheung, J.; Jeknavorian, A.; Roberts, L.; Silva, D. Impact of admixtures on the hydration kinetics of Portland
cement. Cement Concrete Res. 2011, 41, 1289–1309. [CrossRef]

7. Ataie, F.F.; Juenger, M.C.; Taylor-Lange, S.C.; Riding, K.A. Comparison of the retarding mechanisms of
zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials.
Cement Concrete Res. 2015, 72, 128–136. [CrossRef]

8. de Rincon, O.T.; Perez, O.; Paredes, E.; Caldera, Y.; Urdaneta, C.; Sandoval, I. Long-term performance of ZnO
as a rebar corrosion inhibitor. Cement Concrete Comp. 2002, 24, 79–87. [CrossRef]

9. Berke, N.S.; Caldarone, M.A. Zinc Oxide-A powerful retarding admixture. Concrete Int. 2013, 42–46.
10. Arliguie, G.; Grandet, J. Influence de la composition d’un ciment portland sur son hydration en presence de

zinc. Cement Concrete Res. 1990, 20, 517–524. [CrossRef]
11. Hamilton, I.W.; Sammes, N.M. Encapsulation of steel foundry bag house dusts in cement mortar.

Cement Concrete Res. 1999, 29, 55–61. [CrossRef]
12. Zajac, M.; Skocek, J.; Bullerjahn, F.; Haha, M.B. Effect of retarders on the early hydration of

calcium-sulpho-aluminate (CSA) type cements. Cement Concrete Res. 2016, 84, 62–75. [CrossRef]
13. Ataie, F.F.; Riding, K.A. Influence of agricultural residue ash on early cement hydration and chemical

admixtures adsorption. Constr. Build. Mater. 2016, 106, 274–281. [CrossRef]

http://dx.doi.org/10.1021/ie060806t
http://dx.doi.org/10.1021/jp809811w
http://dx.doi.org/10.1016/S0008-8846(01)00689-5
http://dx.doi.org/10.1021/cm061724y
http://dx.doi.org/10.1016/0008-8846(83)90084-4
http://dx.doi.org/10.1016/j.cemconres.2011.03.005
http://dx.doi.org/10.1016/j.cemconres.2015.02.023
http://dx.doi.org/10.1016/S0958-9465(01)00029-4
http://dx.doi.org/10.1016/0008-8846(90)90096-G
http://dx.doi.org/10.1016/S0008-8846(98)00169-0
http://dx.doi.org/10.1016/j.cemconres.2016.02.014
http://dx.doi.org/10.1016/j.conbuildmat.2015.12.091


Materials 2019, 12, 2340 13 of 13

14. Ataie, F.F.; Riding, K.A. Thermochemical Pretreatments for Agricultural Residue Ash Production for Concrete.
J. Mater. Civil Eng. 2012, 25, 1703–1711. [CrossRef]

15. Ataie, F.F.; Riding, K.A. Use of bioethanol byproduct for supplementary cementitious material production.
Constr. Build. Mater. 2014, 51, 89–96. [CrossRef]

16. Chen, A.L.; Dong, X.U.; Chen, X.Y.; Zhang, W.Y.; Liu, X.H. Measurements of zinc oxide solubility in sodium
hydroxide solution from 25 to 100 ◦C. Trans. Nonferr. Metal. Soc. China 2012, 22, 1513–1516. [CrossRef]

17. Deschner, F.; Lothenbach, B.; Winnefeld, F.; Neubauer, J. Effect of temperature on the hydration of Portland
cement blended with siliceous fly ash. Cement Concrete Res. 2013, 52, 169–181. [CrossRef]

18. ASTM C150/C150M, Standard Specification for Portalnd Cement; ASTM International: West Conshohocken, PA,
USA, 2009.

19. Verbeck, G.J. Structures and physical properties of cement paste. In Proceedings of the 5th International
Congress on the Chemistry of Cement, Tokyo, Japan, 7–11 October 1968; Volume 3, pp. 1–37.

20. Berger, R.L.; McGregor, J.D. Effect of temperature and water-solid ratio on growth of Ca(OH)2 crystals
formed during hydration of Ca3SiO5. J. Am. Ceramic Soc. 1973, 56, 73–79. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000721
http://dx.doi.org/10.1016/j.conbuildmat.2013.10.092
http://dx.doi.org/10.1016/S1003-6326(11)61349-6
http://dx.doi.org/10.1016/j.cemconres.2013.07.006
http://dx.doi.org/10.1111/j.1151-2916.1973.tb12361.x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussions 
	Impact of Curing Temperature on ZnO Retarding Action 
	Influence of Borax on Portland Cement Hydration 
	Impact of ZnO and Borax on Calcium Aluminate Cement (CAC) Hydration 
	Influence of ZnO and Borax on CSA Cement Hydration 

	Conclusions 
	References

