$\gamma = 89.653 \ (2)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.33 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.028$

438 parameters

 $\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\min} = -0.45 \text{ e} \text{ Å}^{-3}$

Z = 4

V = 1750.24 (11) Å³

 $0.35 \times 0.25 \times 0.22$ mm

31011 measured reflections

8382 independent reflections

5598 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A triclinic polymorph of N-[4-(4-methylbenzenesulfonamido)phenylsulfonyl]acetamide

Khizar Hayat,^a Muhammad Nadeem Asghar,^a M. Nawaz Tahir,^b* Muhammad Shafiq^c and Dildar Ahmad^a

^aForman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, GC University, Lahore 54000, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 3 February 2012; accepted 26 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.053; wR factor = 0.153; data-to-parameter ratio = 19.1.

In the asymmetric unit of the title compound, $C_{15}H_{16}N_2O_5S_2$, there are two symmetry-independent molecules which adopt similar conformations, with dihedral angles between the aromatic rings of 59.30 (8) and 61.81 (8) $^{\circ}$, and dihedral angles between acetamide group and the benzene ring of 77.08 (10) and 78.40 (10)°. Each type of molecule forms similar onedimensional polymeric structures extending along the b axis via N-H···O hydrogen bonds. These hydrogen bonds generate two types of centrosymmetric motifs, $R_2^2(8)$ and $R_2^2(20)$. Moreover C-H···O interactions assemble the molecules into a three-dimensional framework. The crystal structure was determined from a non-merohedral twin [ratio of the twin components = 0.322 (4):0.678 (4)].

Related literature

For a monoclinic polymorph of the title compound, see: Ashfaq et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{15}H_{16}N_2O_5S_2$	
$M_r = 368.42$	
Triclinic, $P\overline{1}$	
a = 9.6722 (3) Å	
b = 11.9968 (4) Å	
c = 15.4784 (6) Å	
$\alpha = 82.802 \ (2)^{\circ}$	
$\beta = 79.232 \ (1)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.915, T_{\max} = 0.938$

Refinement ~

$R[F^2 > 2\sigma(F^2)] = 0.053$
$wR(F^2) = 0.153$
S = 1.02
8382 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O5^{i}$	0.86	2.14	2.841 (3)	138
$N2 - H2A \cdots O4^{ii}$	0.86	2.06	2.876 (3)	158
$N3-H3A\cdotsO10^{iii}$	0.86	2.18	2.859 (3)	136
$N4 - H4 \cdots O8^{iv}$	0.86	2.05	2.867 (3)	157
C13−H13···O2	0.93	2.49	3.062 (4)	120
$C22 - H22A \cdots O6^{v}$	0.96	2.59	3.338 (5)	135
C24-H24···O6	0.93	2.46	3.026 (4)	119

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. They also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2456).

References

- Ashfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, o299.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supplementary materials

Acta Cryst. (2012). E68, o983-o984 [doi:10.1107/S1600536812008616]

A triclinic polymorph of *N*-[4-(4-methylbenzenesulfonamido)phenylsulfonyl]acetamide

Khizar Hayat, Muhammad Nadeem Asghar, M. Nawaz Tahir, Muhammad Shafiq and Dildar Ahmad

Comment

The title compound (I), (Fig. 1) has been synthesized as a part of the series of sulfonamide derivatives. The aim of our research work is to find the potential sulfonamide derivatives possessing anti-microbial activity. The crystal structure of the monoclinic polymorph of the title compound has been reported earlier by Ashfaq *et al.* (2010). The molecules in the two polymorphs differ in conformation.

In (I), two molecules in the asymmetric unit are present, which differ from each other geometrically. In one molecule, the toluene group A (C1–C7), benzene ring B (C8–C13) and the acetamide group C (N2/C14/C15/O5) are planar with r. m. s. deviation of 0.0089 Å, 0.0080 Å and 0.0028 Å, respectively. The dihedral angles between A/B, A/C and B/C are 61.81 (8)°, 45.90 (14)° and 77.08 (10)°, respectively. In second molecule, the toluene group D (C16–C22), benzene ring E (C23–C28) and the acetamide group F (N4/C29/C30/O10) are planar with r. m. s. deviation of 0.0116 Å, 0.0066 Å and 0.0006 Å, respectively. The dihedral angles between D/E, D/F and E/F are 59.30 (8)°, 46.10 (14)° and 78.40 (10)°, respectively. The dihedral angle between two aromatic rings in its polymrph (Ashfaq *et al.*, 2010) is 81.33 (6)° compared to 61.81 (8)° and 59.30 (8)°. In both molecules, there exist weak intramolecular H–bonding of C—H…O type (Table 1). Both molecules are dimerized themselves due to intermolecular H-bonding of N—H…O type forming R_2^2 (8) ring motifs (Bernstein *et al.*, 1995). The dimers are interliked due to strong N—H…O type of H–bondings (Table 1, Fig. 2) and form R_2^2 (20) ring motifs.

Experimental

Equal molar ratio of *N*-[(4-aminophenyl)sulfonyl]acetamide and *p*-toluene sulfonyl chloride was dissolved in 20 ml distilled water. The solution with pH = 8-9 adjusted using Na₂CO₃ (1 *M*) was stirrered at room temperature for 6 h. Progress of the reaction was monitored by the consumption of suspended *p*-toluene sulfonyl chloride. On completion, pH was adjusted to 2–3 using HCl (2 N). The precipitate formed was filtered, washed with ditilled water and recrystallized from methanol to afford colorless prisms with m.p. 385 K.

Refinement

The crystal structure was solved from non-merohedral twin with the twin law in the reciprocal space of 0.211, 0.700, 280.000: 1.211, 0.211, 0.000: 0.429, 0.429, 1.000 and the twin component ratio of 0.322 (4)/0.678 (4). In the refinement the HKLF 5 reflection file format in *SHELXL* was used.

The H-atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl groups and x = 1.2 for all other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

View of the title compound with the displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form dimers forming $R_2^2(8)$ ring motif and dimers are interlinked and complete $R_2^2(20)$ ring motif. The H-atoms not involved in hydrogen bonding have been omitted for clarity.

N-[4-(4-Methylbenzenesulfonamido)phenylsulfonyl]acetamide

Crystal data	
$C_{15}H_{16}N_2O_5S_2$	Z = 4
$M_r = 368.42$	F(000) = 768
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.398 { m Mg} { m m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.6722 (3) Å	Cell parameters from 4587 reflections
b = 11.9968 (4) Å	$\theta = 1.7 - 25.0^{\circ}$
c = 15.4784 (6) Å	$\mu = 0.33 \text{ mm}^{-1}$
$\alpha = 82.802 \ (2)^{\circ}$	T = 296 K
$\beta = 79.232 \ (1)^{\circ}$	Prism, colorless
$\gamma = 89.653 \ (2)^{\circ}$	$0.35 \times 0.25 \times 0.22 \text{ mm}$
$V = 1750.24 (11) \text{ Å}^3$	

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 7.60 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.915, T_{\max} = 0.938$	31011 measured reflections 8382 independent reflections 5598 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -12 \rightarrow 12$ $k = -15 \rightarrow 15$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.153$ S = 1.02 8382 reflections 438 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0652P)^2 + 0.7795P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.52$ e Å ⁻³ $\Delta\rho_{min} = -0.45$ e Å ⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
<u>S1</u>	1.18463 (8)	0.05657 (7)	0.15628 (5)	0.0535 (3)
S2	0.84421 (7)	0.35232 (5)	0.49521 (5)	0.0415 (2)
01	1.2489 (3)	-0.0454 (2)	0.13292 (16)	0.0730 (9)
O2	1.2545 (2)	0.1621 (2)	0.12469 (15)	0.0698 (8)
O3	0.70702 (19)	0.30834 (16)	0.53244 (14)	0.0515 (7)
O4	0.8603 (2)	0.46483 (15)	0.44956 (14)	0.0523 (7)
05	0.8812 (2)	0.18161 (16)	0.64458 (14)	0.0585 (7)
N1	1.1577 (3)	0.0404 (2)	0.26522 (15)	0.0494 (8)
N2	0.9331 (2)	0.35691 (18)	0.57571 (15)	0.0441 (7)
C1	1.0166 (3)	0.0638 (3)	0.12810 (18)	0.0500 (9)
C2	0.9520 (4)	0.1664 (3)	0.1181 (2)	0.0687 (12)
C3	0.8155 (4)	0.1685 (4)	0.1015 (3)	0.0785 (16)
C4	0.7443 (4)	0.0727 (4)	0.0942 (2)	0.0710 (14)
C5	0.8117 (4)	-0.0286 (4)	0.1023 (2)	0.0747 (14)
C6	0.9484 (4)	-0.0339 (3)	0.1193 (2)	0.0650 (12)
C7	0.5962 (4)	0.0779 (5)	0.0770 (3)	0.107 (2)
C8	1.0824 (3)	0.1175 (2)	0.31772 (17)	0.0423 (8)

С9	0.9745 (3)	0.0768 (2)	0.38598 (18)	0.0464 (9)
C10	0.9013 (3)	0.1481 (2)	0.44060 (19)	0.0450 (8)
C11	0.9352 (3)	0.2614 (2)	0.42570 (17)	0.0380 (8)
C12	1.0441 (3)	0.3032 (2)	0.35796 (19)	0.0516 (10)
C13	1.1186 (3)	0.2313 (2)	0.3047 (2)	0.0562 (10)
C14	0.9428 (3)	0.2699 (2)	0.64153 (18)	0.0447 (9)
C15	1.0310 (4)	0.2954 (3)	0.7061 (2)	0.0662 (12)
S3	0.69039 (8)	0.54642 (6)	0.15666 (5)	0.0506 (2)
S4	0.34505 (7)	0.15067 (5)	0.49579 (5)	0.0415 (2)
O6	0.7593 (2)	0.4488 (2)	0.12796 (15)	0.0663 (8)
07	0.7553 (2)	0.65458 (19)	0.12984 (16)	0.0685 (8)
08	0.3612 (2)	0.05275 (15)	0.45035 (14)	0.0517 (7)
09	0.20777 (19)	0.18511 (16)	0.53232 (14)	0.0522 (7)
O10	0.3820 (2)	0.27238 (17)	0.64627 (14)	0.0581 (7)
N3	0.6647 (3)	0.53153 (19)	0.26533 (15)	0.0473 (8)
N4	0.4330 (2)	0.11853 (18)	0.57696 (15)	0.0435 (7)
C16	0.5211 (3)	0.5480 (3)	0.13051 (18)	0.0494 (9)
C17	0.4500 (4)	0.6488 (3)	0.1236 (2)	0.0664 (12)
C18	0.3142 (4)	0.6490 (4)	0.1090 (3)	0.0805 (16)
C19	0.2471 (4)	0.5512 (4)	0.1003 (2)	0.0774 (16)
C20	0.3210 (4)	0.4524 (4)	0.1049 (2)	0.0762 (14)
C21	0.4574 (4)	0.4491 (3)	0.1199 (2)	0.0630 (11)
C22	0.0974 (4)	0.5515 (6)	0.0856 (3)	0.121 (3)
C23	0.5887 (3)	0.4391 (2)	0.31887 (17)	0.0412 (8)
C24	0.6247 (3)	0.3287 (2)	0.3074 (2)	0.0533 (10)
C25	0.5486 (3)	0.2412 (2)	0.36048 (19)	0.0506 (9)
C26	0.4380 (3)	0.2630 (2)	0.42648 (17)	0.0389 (8)
C27	0.4030 (3)	0.3724 (2)	0.43997 (19)	0.0457 (8)
C28	0.4781 (3)	0.4596 (2)	0.38568 (18)	0.0452 (8)
C29	0.4428 (3)	0.1842 (2)	0.64282 (18)	0.0450 (9)
C30	0.5321 (4)	0.1372 (3)	0.7070 (2)	0.0655 (11)
H1	1.19113	-0.01807	0.29175	0.0592*
H2	0.99857	0.23250	0.12244	0.0824*
H2A	0.97704	0.41865	0.57684	0.0530*
H3	0.77109	0.23718	0.09504	0.0937*
Н5	0.76554	-0.09420	0.09641	0.0899*
H6	0.99324	-0.10250	0.12462	0.0780*
H7A	0.58829	0.14113	0.03363	0.1594*
H7B	0.53193	0.08598	0.13109	0.1594*
H7C	0.57375	0.01005	0.05524	0.1594*
H9	0.95104	0.00057	0.39512	0.0557*
H10	0.82975	0.12018	0.48707	0.0540*
H12	1.06666	0.37953	0.34857	0.0619*
H13	1.19302	0.25870	0.26004	0.0675*
H15A	1.08342	0.23020	0.72170	0.0989*
H15B	0.97142	0.31599	0.75833	0.0989*
H15C	1.09487	0.35648	0.67974	0.0989*
H3A	0.69879	0.58185	0.29084	0.0568*
H4	0.47630	0.05569	0.57835	0.0522*

supplementary materials

H17	0.49406	0.71564	0.12870	0.0796*
H18	0.26661	0.71646	0.10498	0.0965*
H20	0.27760	0.38609	0.09762	0.0914*
H21	0.50538	0.38172	0.12281	0.0753*
H22A	0.09375	0.52163	0.03134	0.1804*
H22B	0.06371	0.62703	0.08201	0.1804*
H22C	0.03928	0.50590	0.13413	0.1804*
H24	0.70038	0.31417	0.26384	0.0640*
H25	0.57139	0.16744	0.35203	0.0608*
H27	0.32961	0.38673	0.48515	0.0548*
H28	0.45444	0.53331	0.39387	0.0542*
H30A	0.47464	0.09206	0.75606	0.0981*
H30B	0.57526	0.19760	0.72820	0.0981*
H30C	0.60386	0.09164	0.67805	0.0981*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0472 (4)	0.0611 (5)	0.0493 (4)	0.0080 (3)	-0.0011 (3)	-0.0085 (3)
S2	0.0363 (3)	0.0328 (3)	0.0565 (4)	0.0002 (3)	-0.0108 (3)	-0.0063 (3)
01	0.0676 (15)	0.0839 (17)	0.0679 (15)	0.0294 (13)	-0.0038 (12)	-0.0259 (12)
O2	0.0589 (14)	0.0778 (16)	0.0642 (14)	-0.0104 (12)	0.0028 (11)	0.0026 (12)
O3	0.0348 (10)	0.0470 (11)	0.0718 (13)	-0.0029 (8)	-0.0058 (9)	-0.0101 (9)
O4	0.0540 (12)	0.0328 (10)	0.0723 (13)	0.0028 (8)	-0.0208 (10)	-0.0016 (9)
05	0.0577 (13)	0.0408 (11)	0.0734 (14)	-0.0052 (10)	-0.0097 (10)	0.0028 (10)
N1	0.0536 (14)	0.0459 (13)	0.0485 (13)	0.0113 (11)	-0.0110 (11)	-0.0038 (10)
N2	0.0470 (13)	0.0358 (11)	0.0512 (13)	-0.0061 (10)	-0.0130 (10)	-0.0056 (10)
C1	0.0504 (16)	0.0572 (18)	0.0418 (15)	0.0054 (14)	-0.0056 (12)	-0.0088 (13)
C2	0.073 (2)	0.063 (2)	0.078 (2)	0.0111 (18)	-0.0283 (19)	-0.0188 (17)
C3	0.075 (2)	0.085 (3)	0.086 (3)	0.030 (2)	-0.033 (2)	-0.026 (2)
C4	0.057 (2)	0.105 (3)	0.0506 (19)	0.001 (2)	-0.0073 (15)	-0.0122 (19)
C5	0.073 (2)	0.085 (3)	0.065 (2)	-0.024 (2)	-0.0119 (18)	-0.0052 (19)
C6	0.074 (2)	0.061 (2)	0.058 (2)	0.0000 (18)	-0.0095 (17)	-0.0041 (15)
C7	0.064 (3)	0.174 (5)	0.083 (3)	-0.001 (3)	-0.019 (2)	-0.014 (3)
C8	0.0442 (14)	0.0397 (14)	0.0443 (14)	0.0046 (11)	-0.0120 (11)	-0.0054 (11)
C9	0.0491 (16)	0.0327 (13)	0.0562 (17)	-0.0046 (12)	-0.0066 (13)	-0.0058 (12)
C10	0.0404 (14)	0.0388 (14)	0.0536 (16)	-0.0057 (11)	-0.0042 (12)	-0.0036 (12)
C11	0.0360 (13)	0.0313 (12)	0.0484 (15)	-0.0019 (10)	-0.0116 (11)	-0.0057 (10)
C12	0.0583 (18)	0.0345 (14)	0.0574 (18)	-0.0089 (13)	-0.0008 (14)	-0.0027 (12)
C13	0.0577 (18)	0.0446 (16)	0.0587 (18)	-0.0117 (14)	0.0060 (14)	-0.0016 (13)
C14	0.0380 (14)	0.0435 (15)	0.0500 (16)	0.0057 (12)	-0.0003 (12)	-0.0076 (12)
C15	0.067 (2)	0.075 (2)	0.059 (2)	-0.0006 (18)	-0.0183 (16)	-0.0083 (16)
S3	0.0428 (4)	0.0556 (4)	0.0502 (4)	-0.0075 (3)	-0.0006 (3)	-0.0061 (3)
S4	0.0370 (3)	0.0335 (3)	0.0558 (4)	0.0017 (3)	-0.0102 (3)	-0.0105 (3)
O6	0.0583 (13)	0.0745 (15)	0.0614 (14)	0.0071 (11)	0.0061 (10)	-0.0172 (11)
O7	0.0567 (13)	0.0655 (14)	0.0760 (15)	-0.0230 (11)	-0.0049 (11)	0.0085 (11)
08	0.0558 (12)	0.0375 (10)	0.0670 (13)	0.0009 (9)	-0.0179 (10)	-0.0167 (9)
09	0.0357 (10)	0.0473 (11)	0.0733 (14)	0.0022 (8)	-0.0071 (9)	-0.0108 (9)
O10	0.0561 (12)	0.0486 (12)	0.0730 (14)	0.0048 (10)	-0.0105 (10)	-0.0238 (10)
N3	0.0508 (14)	0.0434 (12)	0.0499 (13)	-0.0085 (10)	-0.0123 (10)	-0.0094 (10)

N4	0.0463 (12)	0.0333 (11)	0.0522 (13)	0.0067 (10)	-0.0115 (10)	-0.0075 (9)
C16	0.0480 (16)	0.0589 (18)	0.0405 (15)	-0.0075 (14)	-0.0046 (12)	-0.0086 (12)
C17	0.065 (2)	0.067 (2)	0.073 (2)	0.0022 (18)	-0.0188 (17)	-0.0230 (17)
C18	0.064 (2)	0.106 (3)	0.080 (3)	0.019 (2)	-0.0204 (19)	-0.035 (2)
C19	0.0507 (19)	0.136 (4)	0.0482 (19)	-0.011 (2)	-0.0060 (15)	-0.026 (2)
C20	0.074 (2)	0.098 (3)	0.056 (2)	-0.042 (2)	-0.0102 (18)	-0.0086 (19)
C21	0.069 (2)	0.065 (2)	0.0556 (19)	-0.0159 (17)	-0.0133 (16)	-0.0063 (15)
C22	0.057 (2)	0.232 (7)	0.084 (3)	-0.010 (3)	-0.017 (2)	-0.058 (4)
C23	0.0421 (14)	0.0379 (13)	0.0457 (15)	0.0003 (11)	-0.0125 (11)	-0.0075 (11)
C24	0.0525 (17)	0.0449 (16)	0.0581 (18)	0.0098 (13)	0.0056 (14)	-0.0136 (13)
C25	0.0606 (18)	0.0347 (14)	0.0553 (17)	0.0108 (13)	-0.0033 (14)	-0.0128 (12)
C26	0.0360 (13)	0.0343 (13)	0.0486 (15)	0.0025 (10)	-0.0110 (11)	-0.0093 (11)
C27	0.0389 (14)	0.0419 (14)	0.0550 (16)	0.0079 (12)	-0.0007 (12)	-0.0139 (12)
C28	0.0471 (15)	0.0337 (13)	0.0550 (16)	0.0065 (11)	-0.0063 (12)	-0.0121 (11)
C29	0.0403 (14)	0.0422 (15)	0.0499 (16)	-0.0041 (12)	-0.0003 (12)	-0.0084 (12)
C30	0.067 (2)	0.078 (2)	0.0555 (19)	0.0052 (18)	-0.0188 (16)	-0.0127 (16)

Geometric parameters (Å, °)

S1—01	1.425 (3)	С3—Н3	0.9300
S1—O2	1.425 (2)	C5—H5	0.9300
S1—N1	1.644 (2)	C6—H6	0.9300
S1—C1	1.759 (3)	С7—Н7А	0.9600
S2—O3	1.421 (2)	C7—H7B	0.9600
S2—O4	1.438 (2)	С7—Н7С	0.9600
S2—N2	1.647 (2)	С9—Н9	0.9300
S2—C11	1.747 (3)	C10—H10	0.9300
S3—O7	1.424 (2)	C12—H12	0.9300
S3—N3	1.641 (2)	C13—H13	0.9300
S3—O6	1.423 (2)	C15—H15C	0.9600
S3—C16	1.758 (3)	C15—H15B	0.9600
S4—O9	1.423 (2)	C15—H15A	0.9600
S4—N4	1.651 (2)	C16—C17	1.390 (5)
S4—O8	1.436 (2)	C16—C21	1.382 (5)
S4—C26	1.751 (3)	C17—C18	1.374 (6)
O5—C14	1.210 (3)	C18—C19	1.378 (7)
O10—C29	1.209 (3)	C19—C20	1.382 (6)
N1-C8	1.416 (4)	C19—C22	1.507 (6)
N2-C14	1.380 (3)	C20—C21	1.381 (6)
N1—H1	0.8600	C23—C28	1.386 (4)
N2—H2A	0.8600	C23—C24	1.392 (3)
N3—C23	1.417 (4)	C24—C25	1.373 (4)
N4—C29	1.381 (3)	C25—C26	1.383 (4)
N3—H3A	0.8600	C26—C27	1.385 (3)
N4—H4	0.8600	C27—C28	1.374 (4)
C1—C6	1.382 (5)	C29—C30	1.492 (5)
C1—C2	1.382 (5)	C17—H17	0.9300
C2—C3	1.391 (6)	C18—H18	0.9300
C3—C4	1.371 (6)	C20—H20	0.9300
C4—C5	1.379 (7)	C21—H21	0.9300

C4—C7	1.505 (6)	C22—H22A	0.9600
C5—C6	1.395 (5)	C22—H22B	0.9600
C8—C13	1.392 (3)	C22—H22C	0.9600
C8—C9	1.382 (4)	C24—H24	0.9300
C9—C10	1.378 (4)	C25—H25	0.9300
C10—C11	1.381 (3)	C27—H27	0.9300
C11—C12	1.387 (4)	C28—H28	0.9300
C12—C13	1.375 (4)	C30—H30A	0.9600
C14—C15	1.490 (5)	C30—H30B	0.9600
C2—H2	0.9300	C30—H30C	0.9600
O1—S1—O2	120.70 (15)	C4—C7—H7B	110.00
O1—S1—N1	104.06 (14)	C4—C7—H7C	110.00
O1—S1—C1	109.20 (17)	C4—C7—H7A	109.00
O2—S1—N1	108.23 (14)	H7B—C7—H7C	109.00
O2—S1—C1	107.86 (15)	С8—С9—Н9	120.00
N1—S1—C1	105.84 (14)	С10—С9—Н9	120.00
O3—S2—O4	119.35 (12)	C11—C10—H10	120.00
O3—S2—N2	108.69 (12)	C9—C10—H10	120.00
O3—S2—C11	110.10 (13)	C13—C12—H12	120.00
04—S2—N2	103.10 (12)	C11—C12—H12	120.00
04-82-C11	108.62 (12)	C8—C13—H13	120.00
N2 - S2 - C11	106.04 (12)	C12—C13—H13	120.00
N3—S3—C16	105.24 (14)	C14-C15-H15C	109.00
07 - 83 - C16	109.50 (15)	H15B-C15-H15C	110.00
06-83-N3	107.70 (13)	C14-C15-H15A	109.00
06-83-C16	108.13 (15)	H15A-C15-H15B	110.00
06-83-07	120 60 (14)	H15A - C15 - H15D	110.00
07—S3—N3	104 61 (14)	C14—C15—H15B	109.00
08 - 54 - C26	108.63(12)	S3-C16-C17	119.5(3)
09—S4—N4	108.81 (12)	S3-C16-C21	120.2(3)
08—S4—N4	100.01(12) 102.93(12)	C_{17} C_{16} C_{21}	120.2(3) 120.3(3)
08 - 54 - 09	119 59 (12)	C16-C17-C18	120.5(3) 1196(4)
09 - 54 - C26	109.97 (13)	C17 - C18 - C19	119.0(4) 1213(4)
N4 - S4 - C26	105.97(13) 105.93(12)	C_{18} C_{19} C_{22}	121.3(+) 121.2(5)
S1_N1_C8	105.95(12) 123.5(2)	$C_{10} - C_{10} - C_{22}$	121.2(5) 120.6(5)
$S_{1} = 101 = C_{1}$	125.5(2) 125.40(18)	$C_{20} = C_{10} = C_{22}$	120.0(3) 118.2(4)
$S_2 = N_2 = C_1 + C_2 $	123.40 (18)	C10 C20 C21	110.2(4)
S1 N1 H1	118.00	$C_{19} = C_{20} = C_{21}$	122.0(4)
$S_1 = N_1 = H_1$	117.00	C10 - C21 - C20	110.0(4)
$S_2 = N_2 = M_2 A$	117.00	$C_{24} = C_{23} = C_{26}$	117.4(2) 121.6(2)
C14 $N2$ $N2$ $C22$	117.00	$N_{3} = C_{23} = C_{24}$	121.0(2)
53 - 103 - 0.23	122.06(19) 125.40(19)	$N_{3} = C_{23} = C_{28}$	119.0(2)
54 - 104 - 0.29	123.40 (18)	$C_{23} = C_{24} = C_{23}$	120.0(3)
C_{23} N_{3} H_{2A}	119.00	C_{24} C_{25} C_{20}	119.9(2)
S_{0} NJ H_{0}	117.00	54-020-025	119.41 (19)
C_{29} IN4 H_{4}	117.00	54-0.20-0.27	119.8 (<i>2</i>)
34 114	11/.00	$C_{23} = C_{20} = C_{27}$	120.7(2)
$C_2 - C_1 - C_0$	120.0(3)	$C_{20} = C_{21} = C_{28}$	119.1 (3)
51-01-00	119.6 (3)	C23 - C28 - C27	120.8 (2)

S1—C1—C2	119.8 (3)	O10—C29—C30	124.3 (3)
C1—C2—C3	118.4 (4)	N4—C29—C30	114.7 (2)
C2—C3—C4	122.2 (4)	O10-C29-N4	121.0 (3)
C3—C4—C5	118.6 (4)	C16—C17—H17	120.00
C5—C4—C7	120.6 (4)	C18—C17—H17	120.00
C3—C4—C7	120.8 (4)	C17—C18—H18	119.00
C4—C5—C6	120.8 (4)	C19—C18—H18	119.00
C1—C6—C5	119.4 (4)	C19—C20—H20	119.00
C9—C8—C13	119.7 (2)	C21—C20—H20	119.00
N1—C8—C13	121.7 (3)	C16—C21—H21	121.00
N1—C8—C9	118.5 (2)	C20—C21—H21	121.00
C8—C9—C10	120.6 (2)	C19—C22—H22A	109.00
C9—C10—C11	119.4 (3)	C19—C22—H22B	110.00
S2-C11-C12	119.58 (19)	C19—C22—H22C	109.00
S2-C11-C10	119.7 (2)	H22A—C22—H22B	109.00
C10-C11-C12	120.6 (2)	H22A—C22—H22C	109.00
C11—C12—C13	119.7 (2)	H22B—C22—H22C	109.00
C8—C13—C12	119.9 (3)	C23—C24—H24	120.00
N2—C14—C15	114.8 (2)	C25—C24—H24	120.00
O5—C14—C15	124.7 (3)	C24—C25—H25	120.00
O5—C14—N2	120.5 (3)	C26—C25—H25	120.00
C1—C2—H2	121.00	C26—C27—H27	120.00
C3—C2—H2	121.00	C28—C27—H27	120.00
C4—C3—H3	119.00	C23—C28—H28	120.00
C2—C3—H3	119.00	C27—C28—H28	120.00
C4—C5—H5	120.00	C29—C30—H30A	109.00
С6—С5—Н5	120.00	C29—C30—H30B	109.00
C1—C6—H6	120.00	$C_{29} - C_{30} - H_{30}C$	109.00
С5—С6—Н6	120.00	H30A—C30—H30B	109.00
H7A - C7 - H7C	109.00	H_{30A} C_{30} H_{30C}	109.00
H7A - C7 - H7B	109.00	$H_{30}B = C_{30} = H_{30}C$	109.00
	109.00		109.00
O1—S1—N1—C8	-173.5 (3)	S4—N4—C29—O10	1.7 (4)
O2—S1—N1—C8	57.0 (3)	S4—N4—C29—C30	-178.4(2)
C1—S1—N1—C8	-58.4 (3)	C2—C1—C6—C5	-1.6 (4)
O1—S1—C1—C2	-159.9 (2)	S1—C1—C2—C3	-175.9(3)
O1—S1—C1—C6	22.5 (3)	C6—C1—C2—C3	1.8 (5)
O2—S1—C1—C2	-27.0 (3)	S1—C1—C6—C5	176.1 (2)
O2—S1—C1—C6	155.3 (2)	C1—C2—C3—C4	-0.5 (6)
N1—S1—C1—C2	88.7 (3)	C2—C3—C4—C5	-1.0(6)
N1—S1—C1—C6	-89.0 (3)	C2—C3—C4—C7	179.5 (4)
O3—S2—N2—C14	48.6 (2)	C7—C4—C5—C6	-179.2(3)
O4—S2—N2—C14	176.2 (2)	C3—C4—C5—C6	1.3 (5)
C11—S2—N2—C14	-69.7 (2)	C4—C5—C6—C1	0.0 (5)
O3—S2—C11—C10	-27.0 (3)	N1—C8—C13—C12	-179.1 (3)
O3—S2—C11—C12	155.3 (2)	C13—C8—C9—C10	0.8 (4)
O4—S2—C11—C10	-159.3 (2)	N1—C8—C9—C10	177.9 (3)
O4—S2—C11—C12	22.9 (3)	C9—C8—C13—C12	-2.0 (4)
N2—S2—C11—C10	90.4 (3)	C8—C9—C10—C11	1.0 (4)

N2—S2—C11—C12	-87.3 (2)	C9—C10—C11—S2	-179.4 (2)
N3—S3—C16—C17	86.6 (3)	C9—C10—C11—C12	-1.6 (4)
N3—S3—C16—C21	-91.3 (3)	S2-C11-C12-C13	178.2 (2)
O6—S3—N3—C23	-57.2 (3)	C10-C11-C12-C13	0.4 (4)
O7—S3—N3—C23	173.4 (2)	C11—C12—C13—C8	1.4 (4)
C16—S3—N3—C23	58.0 (3)	S3—C16—C17—C18	-175.7 (3)
O6—S3—C16—C17	-158.6 (2)	C21—C16—C17—C18	2.1 (5)
O6—S3—C16—C21	23.6 (3)	S3—C16—C21—C20	176.0 (2)
O7—S3—C16—C17	-25.4 (3)	C17—C16—C21—C20	-1.8 (4)
O7—S3—C16—C21	156.8 (2)	C16—C17—C18—C19	-0.5 (6)
O8—S4—N4—C29	-176.4 (2)	C17—C18—C19—C20	-1.3 (6)
O9—S4—N4—C29	-48.6 (2)	C17—C18—C19—C22	179.1 (4)
C26—S4—N4—C29	69.6 (2)	C18—C19—C20—C21	1.6 (5)
O8—S4—C26—C25	-23.8 (3)	C22-C19-C20-C21	-178.8 (3)
O8—S4—C26—C27	158.2 (2)	C19—C20—C21—C16	0.0 (5)
O9—S4—C26—C25	-156.4 (2)	N3—C23—C24—C25	-180.0 (3)
O9—S4—C26—C27	25.6 (3)	C28—C23—C24—C25	1.7 (4)
N4—S4—C26—C25	86.2 (2)	N3—C23—C28—C27	-179.0 (3)
N4—S4—C26—C27	-91.9 (2)	C24—C23—C28—C27	-0.6 (4)
S1—N1—C8—C9	128.8 (3)	C23—C24—C25—C26	-1.3 (4)
S1—N1—C8—C13	-54.2 (4)	C24—C25—C26—S4	-178.2 (2)
S2—N2—C14—C15	179.5 (2)	C24—C25—C26—C27	-0.2 (4)
S2—N2—C14—O5	-1.4 (4)	S4—C26—C27—C28	179.2 (2)
S3—N3—C23—C28	-127.2 (3)	C25—C26—C27—C28	1.2 (4)
S3—N3—C23—C24	54.5 (4)	C26—C27—C28—C23	-0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
N1—H1…O5 ⁱ	0.86	2.14	2.841 (3)	138	
N2—H2A····O4 ⁱⁱ	0.86	2.06	2.876 (3)	158	
N3—H3A····O10 ⁱⁱⁱ	0.86	2.18	2.859 (3)	136	
N4—H4···O8 ^{iv}	0.86	2.05	2.867 (3)	157	
С13—Н13…О2	0.93	2.49	3.062 (4)	120	
C22—H22 <i>A</i> ···O6 ^v	0.96	2.59	3.338 (5)	135	
С24—Н24…О6	0.93	2.46	3.026 (4)	119	

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z.