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Whole-exome sequencing of individuals from an isolated
population implicates rare risk variants in bipolar disorder
F Lescai1,2,3, TD Als1,2,3, Q Li4, M Nyegaard1,2,3, G Andorsdottir5, M Biskopstø5, A Hedemand1,2,3, A Fiorentino6, N O’Brien6, A Jarram6,
J Liang4, J Grove1,2,3,7, J Pallesen1,2,3, E Eickhardt1,2,3, M Mattheisen1,2,3, L Bolund1,3,8, D Demontis1,2,3, AG Wang9, A McQuillin4,
O Mors2,3,8, J Wang3,4 and AD Børglum1,2,3

Bipolar disorder affects about 1% of the world’s population, and its estimated heritability is about 75%. Only few whole genome or
whole-exome sequencing studies in bipolar disorder have been reported, and no rare coding variants have yet been robustly
identified. The use of isolated populations might help finding variants with a recent origin, more likely to have drifted to higher
frequency by chance. Following this approach, we investigated 28 bipolar cases and 214 controls from the Faroe Islands by whole
exome sequencing, and the results were followed-up in a British sample of 2025 cases and 1358 controls. Seventeen variants in 16
genes in the single-variant analysis, and 3 genes in the gene-based statistics surpassed exome-wide significance in the discovery
phase. The discovery findings were supported by enrichment analysis of common variants from genome-wide association studies
(GWAS) data and interrogation of protein–protein interaction networks. The replication in the British sample confirmed the
association with NOS1 (missense variant rs79487279) and NCL (gene-based test). A number of variants from the discovery set were
not present in the replication sample, including a novel PITPNM2 missense variant, which is located in a highly significant
schizophrenia GWAS locus. Likewise, PIK3C2A identified in the gene-based analysis is located in a combined bipolar and
schizophrenia GWAS locus. Our results show support both for existing findings in the literature, as well as for new risk genes, and
identify rare variants that might provide additional information on the underlying biology of bipolar disorder.
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INTRODUCTION
Bipolar disorder is a disturbance of mood in which patients display
episodes of depression, often characterised by low mood, loss of
pleasure and energy, and episodes of hypomania or mania, with
irritable mood, increased energy and reduced sleep: this condition
affects about 1% of the world’s population.1 The estimated
heritability of bipolar disorder is about 75%.2 There is a substantial
overlap in genetic aetiology with schizophrenia with several loci
influencing susceptibility to both disorders, for example, at
CACNA1C and PIK3C2A.3–5 Analysis of data from common variants
in genome-wide association studies (GWAS) has shown the
genetic correlation between the two disorders to be as high as 0.
68.6 Although common variants may explain a large proportion of
the variance in liability to bipolar disorder (and other psychiatric
disorders), a substantial part of the estimated heritability is still
unaccounted for.6,7 Rare risk variants not effectively assessed by
GWAS may explain part of this hidden heritability.
Whole genome or whole-exome sequencing studies have

proved successful in identifying rare variants for Mendelian
disorders and more recently also for complex disorders.8 Among
psychiatric disorders, in particular exome sequencing studies in
autism have successfully identified rare transmitted variants and
de novo mutations conveying large effect on disease risk.9,10

In bipolar disorder, only few whole genome or whole-exome

sequencing studies have been reported, most of which investi-
gated large pedigrees, and no rare coding variants have yet been
robustly identified.11

Owing to the increased genetic drift during founding, followed
by population expansion, isolated populations may be particularly
useful in identifying rare disease variants that may appear at
higher frequencies compared with outbred populations,12–14 as
has been shown previously for several monogenic15,16 as well as
some complex disorders.17 Variants with a recent origin are thus
more likely to have drifted to higher frequency by chance in a
smaller isolated population compared with a larger outbred
population.18 Furthermore, isolated populations are relatively
homogeneous in genetic background and environmental expo-
sure, and control cohorts might reflect better the composition of
the population they are drawn from, as they often represent a
larger proportion of that population compared with controls from
outbred populations.
The population of the Faroe Islands is an isolated population. It

was founded by a small number of individuals in the nineth
century and has experienced limited immigration for several
centuries.19 Owing to the extensive founder and drift effects with
rare variants drifting to increased frequencies, certain monogenic
disorders appear at highly increased frequencies in the
population.20 For instance, in the Faroese population glycogen
storage disease III (GSD3, OMIM #232400) is caused by a single
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nonsense mutation that is 4250 times more frequent than in
outbred populations.21

We aimed to identify rare risk variants in bipolar disorder, by
investigating whole-exome sequences of 28 individuals with
bipolar disorder and 214 controls from the isolated population
of the Faroe Islands. The results were followed-up in a British
sample of 2025 bipolar disorder cases and 1358 controls, as well as
by enrichment analysis of large GWAS data sets and by the
analysis of significant physical connectivity among proteins
encoded for by genes nominally significant in this study.

MATERIALS AND METHODS
Faroese subjects
Patients were included from the Department of Psychiatry, National
Hospital in Torshavn, the capital of the Faroe Islands. The patients included
were interviewed by trained interviewers using a brief version of Present
State Examination. Based on the hospital records and the interview, a
clinical description was made of each patient by an experienced
psychiatrist. The final diagnosis was made by best-estimate by an
experienced psychiatrist (AGW) on the basis of all the material and
records, according to ICD-10, Diagnostic Criteria for Research. All patients
included had bipolar disorder according to ICD-10 and bipolar disorder
type 1 according to DSM-IV. Controls were included by public advertising
and assessed as having no psychiatric record and confirming this in a short
interview.
Genomic DNA was purified from whole blood samples at the Faroese

Genetic Biobank according to standard procedures used in the
laboratories.
The study has been approved by the local scientific ethical committee of

the Faroe Islands.

British subjects
The UCL bipolar disorder subjects comprised 2025 subjects suffering from
bipolar disorder type I (83%) or bipolar disorder type II. All subjects had
been given a National Health Service (NHS) clinical diagnosis of ICD-10
bipolar disorder and then needed to fulfill the criteria for the lifetime
version of the Schizophrenia and Affective Disorder Schedule (SADS-L)22

which provides a research diagnostic criteria (RDC) diagnosis.23 The UCL
control sample comprised in total 1358 subjects. This included 878
subjects with no first-degree family or personal history of psychiatric
illness, supplemented with an additional 480 unscreened normal British
subjects obtained from the European Collection of Animal Cell Cultures
(ECACC). The bipolar subjects and the screened controls underwent
ancestral screening to be included only if at least three out of four
grandparents were English, Scottish, Welsh or Irish and if the fourth
grandparent was non-Jewish European. National Health Service multi-
center research ethics approval was obtained. All participants provided
signed consent. DNA samples were collected from blood or saliva samples
and genomic DNA was purified using standard techniques.

Sequence processing
Library and sequencing. The library preparation was performed according
to the manufacturer’s instructions, and the exome was captured using
Agilent SureSelect version 3 (Agilent Technologies, Santa Clara, CA, USA).
The libraries were sequenced on an Illumina HiSeq2500 (Illumina, San
Diego, CA, USA).

Mapping. The sample reads were aligned to the genome (reference
GRCh37) using BWA version 0.7.4 (http://bio-bwa.sourceforge.net),
converted to BAM format and indexed using SAMtools (version 0.1.18,
https://samtools.github.io). The samples were re-aligned, marked for
duplicates and recalibrated using GATK24 and Queue (version 2.7-2,
https://software.broadinstitute.org/gatk/) as pipeline manager.

Variant calling. The variants were called using HaplotypeCaller and
UnifiedGenotyper, processed with VQSR following the best practices for
the version in use, and pre-filtered by ‘PASS’ at the output of each caller.
The calls were merged by including, in order of priority, all ‘PASS’
HaplotypeCaller variants and all ‘PASS’ calls unique to UnifiedGenotyper.
This implies that (i) in case of overlapping ‘PASS’ variants, the calls from
HaplotypeCaller were included, (ii) in case of overlapping variants filtered

by VQSR in HaplotypeCaller and ‘PASS’ in UnifiedGenotyper, the
UnifiedGenotyper calls were included and (iii) all ‘PASS’ non-overlapping
variants unique to each Caller were included.

Annotation. The variants were annotated using the snpEFF (version 3.3 h,
http://snpeff.sourceforge.net), EPACTS (version 3.3, http://genome.sph.
umich.edu/wiki/EPACTS) and Variant Effect Predictor (version 75, http://
www.ensembl.org/info/docs/tools/vep/index.html) tools from ENSEMBL,
and the variant type using the GATK VariantAnnotator. On the basis of this,
the variant calls were grouped into single-nucleotide polymorphisms
(SNPs), insertions, deletions and multiallelelic calls. SIFT, Polyphen and
Loftee have been used to annotate missense mutation with additional
predictions about potentially damaging consequences. The group of
multiallelic calls comprise the variant types identified by GATK as
‘MULTIALLELIC_COMPLEX.Other’ and ‘MULTIALLELIC_MIXED’: the first
includes the variants represented by multiple alleles containing insertions
or deletions (or a combination hereof) of different sizes, whereas the
second includes the variants in which multiple alternative alleles can be a
combination of SNPs, insertions and/or deletions.

Genotyping and validation
Genotyping of the UCL sample and genotype validation on Faroese
samples was performed using the Sequenom MassARRAY iPLEX
technology25 or Fluidigm technology.26 An in-house Perl script was used
to process the VCF file with the significant variants and format the
polymorphisms according to Sequenom and Fluidigm requirements.
The output for Sequenom was used to design the amplicon and
extension primers using the Sequenom Assay Design Suite version 1.0
(Sequenom, San Diego, CA, USA) with high multiplexing iPLEX presets. The
genotyping was performed according to manufacturer’s standard
protocols for iPLEX. The variants that failed Sequenom design or
genotyping were typed with Fluidigm: the output of our scripts was
processed with D3 Assay Design, and the samples were processed
according to Fluidigm. In both cases all genotyping results were manually
checked to verify the cluster plots.

Statistical analyses
Pairwise coefficients of Identity By Descent and kinship coefficients (kij) was
estimated using the method of moments approach27 as implemented in
the R-package SNPRelate,28 to identify unknown relationships and
confirming known first-degree relationships. These analyses were con-
ducted on a filtered set of single-nucleotide variants (SNVs), filtered by LD-
pruning (r2o0.002), a missing rate o0.005 and a minor allele frequency
40.01. The cryptic relatedness evident from the results of these analyses
(results not shown), was corrected for in the association analysis, by
adopting the EMMAX29 approach as implemented in EPACTS and
suggested previously in the literature.12

The primary analyses of the Faroese variants data were performed using
EPACTS v.2.6. 4 samples have been excluded by EPACTS QC filters (1 case,
3 controls), resulting in a final dataset of 27 cases and 211 controls ready
for the analysis. To analyse the single variants according to our hypothesis,
we filtered for all called variants either novel or by frequency lower than
0.05 in 1000 Genomes (CEU+GBR) and present in at least 3 individuals in
our dataset. Subsequently, the single-variant analysis on the selected
subset was performed using the ‘q.emmax’ statistics,29 to account for any
hidden relatedness of the sample. This method was chosen because of its
ability to handle related individuals. The method has been originally
developed for quantitative traits, but can be applied to binary traits in the
spirit of Armitage trend test giving reliable P-values but potentially
inaccurate effect measures, which we therefore ignore. This is not an exact
method but based on asymptotic approximations that may not be
accurate when there are small cell counts.
For the gene-burden statistics, the ‘Emmax CMC-like’ method was

employed.29,30 To collapse the rare variants into gene-loci, the variants
were selected by allowing a maximum minor allele frequency (calculated
on the entire sample) of 5%, and having the following consequences, as
annotated by VEP: transcript_ablation, splice_donor_variant, splice_accep-
tor_variant, stop_gained, frameshift_variant, stop_lost, initiator_codon_
variant, inframe_insertion, inframe_deletion, missense_variant, transcript_
amplification, splice_region_variant, incomplete_terminal_codon_variant.
The statistical analyses of the genotypes from the replication phase for

the single-marker analysis were conducted using Fisher’s exact test, as
implemented in PLINK 1.9.18
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The replication of the gene-based tests from the British population was
performed using the AssotesteR package in R (http://cran.r-project.org/
package=AssotesteR), and choosing the classic CMC test, as the approach
implemented on EPACTS can only be used with a larger genome/exome-
wide dataset. To account for multiple testing, empirical P-values have been
calculated with 1000 permutations, as implemented in the R-package.

For the risk gene enrichment analysis we used MAGMA31 and default
settings, as well as INRICH32 with default settings, using top-1% GWAS
results. INRICH uses a permutation procedure on genomic intervals,
whereas MAGMA is based on a multiple regression model. We used
publicly available summary statistics from single-marker GWASs33 con-
sidering only variants outside the broad MHC-region (chr6:25M-35M) and

Figure 1. The figures report the Manhattan plots of the single-variant analysis with q.emmax (a) and gene-based CMC-like emmax (b) as
implemented in EPACTS. The horizontal red line indicates the significant thresholds (P-value threshold of 5.78 × 10− 7 for single-marker tests,
and 3.12 × 10− 6 for the gene-based tests). Significant variants are annotated with their corresponding gene from ENSEMBL data.
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filtered for info score ⩾ 0.8. Genes were annotated using Ensemble
(GRCh37.p13). Information about the genetic correlation pattern in the
data (linkage disequilibrium) was obtained using the 1000 Genomes
European panel.34

For the protein–protein interaction analysis DAPPLE was used, which
looks for significant physical connectivity among proteins encoded by the
genes associated in the study. DAPPLE builds interaction networks from
proteins encoded by the genes reported in the association study and
connected either by direct interactions (that is, when both were
significantly associated) or indirect interactions (that is, through proteins
not resulting from the association analysis). To identify candidate loci, a
score is calculated for each gene by enumerating the number of its
connections and comparing this number to the values obtained in
permuted networks (50 000 permutations).35 The P-value of this test is the
one we refer to in the description of this study.

RESULTS
Whole exomes from 28 bipolar cases and 214 controls were
sequenced at an average depth of 35 × . After mapping the
sequences to the GRCh37 version reference of the
human genome, the bam files were processed using GATK
(see ‘Materials and Methods’ section), and a total of 259 904
variants were called. These included 230 797 SNVs, 10 029
insertions and 13 198 deletions: among those we annotated
2575 loss-of-function (LoF) variants and 54 967 missense muta-
tions. Overall, 47 800 of the called variants were novel, and were
not present in dbSNP.

Single variant analysis
We designed the study to target rare risk variants (that might have
increased in frequency in the isolated Faroese population) and,
consequently, we included only variants at frequencies lower than
0.05 (or not present) in the 1000 Genomes data (CEU and GBR
samples, release 20110521) (Supplementary Figure 1). In addition,
given the small discovery sample size, we limited the analysis to
those variants appearing in more than 2 individuals (allele count
42). This filtering strategy produced an analysis-ready dataset of
86 563 variants, corresponding to an experiment/exome-wide
significance threshold of 5.78 × 10− 7 for single-variant association
after Bonferroni correction.
For association analysis we used the mixed model method q.

emmax,29 implemented in the software package EPACTS, to adjust
for relatedness and population structure within the sample. This
analysis resulted in 17 variants in 16 genes surpassing exome-wide
significance (Figure 1a). We decided to follow-up all variants with a
nominal P-value o10− 6 adding up to a total of 24 variants from
18 loci (Supplementary Table 1 and Supplementary Table 2).
As both common and rare risk variants often occur in the same

genes/loci,36,37 we investigated whether the identified top-18 loci

showed risk enrichment for common variants in large bipolar and
schizophrenia GWAS data sets,33,38 using the two methods INRICH
and MAGMA.31,32 Interestingly, we found evidence of enrichment
for schizophrenia risk by INRICH (P-value = 0.031) assessing the
top-1% associated SNPs, and by MAGMA (P= 0.052), supporting
the validity of the identified rare variants as a group. This
enrichment reflects that several of the identified rare variants are
located in loci showing P-values in the order of 10− 4 to 10− 6 in
the GWAS (Table 1). Noteworthy, the PITPNM2 missense variant is
located in a genome-wide significant locus, and it is only
described in the ExAC database (http://exac.broadinstitute.org/)
with a frequency of 0.0006793. Furthermore, the observed
enrichment indicates that some of the rare variants identified
may influence susceptibility to both bipolar disorder and
schizophrenia.
We did not observe any enrichment for bipolar common variant

risk, which may be due to a substantially smaller sample size than
is the case for the schizophrenia GWAS, providing relatively low
power for the enrichment analysis in bipolar disorder.
We next followed-up the top-24 rare variants by genotyping a

British sample of 2025 bipolar cases and 1358 controls. We chose a
British sample as the Faroese population was founded partly by
individuals from the British Isles and partly by Scandinavian
Vikings,40 suggesting that risk variants may be shared among the
British and Faroese populations.41 Fifteen variants from 13 loci
were successfully genotyped; 9 were either not present in the
British cohort or failed genotyping (Supplementary Table 1). The
NOS1 missense variant was the only variant showing significant
association withstanding Bonferroni correction (P= 0.002,
Pcorrected = 0.032; Table 1).

Gene-wise analysis
To perform collapsing statistics on the rare variants, we collapsed
into gene-loci those variants with predicted significant biological
effects on the coding regions (see ‘Materials and Methods’
section) and a maximum minor allele frequency of 5% in the
whole dataset. The CMC-like burden test30 resulted in 419
nominally significant genes at Po0.01, and three genes
significant exome-wide after Bonferroni correction (Figure 1b)
and including more than one rare variant.
In an attempt to replicate the results, we genotyped all variants

that contributed to the three significant gene-based tests in the
British sample (Supplementary Table 3). However, only in the case
of NCL were all variants present in the British sample. Thus, a
regular replication test could be performed solely for NCL, which
showed significant association (P= 0.029, Table 1).
On the nominally significant burden associations (419 genes at

P-value o0.01), we performed a DAPPLE analysis,35 investigating

Table 1. Selected single variant and gene-burden results.

Gene Marker Consequence P-value
Faroese

P-value UK
(corrected)

Support in GWAS

NOS1 rs79487279 missense_variant 4.09E− 07 0.002 (0.032) The NOS1 locus has a lead signal in schizophrenia
with P-value of 1.24× 10− 6 (rs2293052)33

PITPNM2 12:123489064_C/A missense_variant 1.93E− 07 NA In highly significant schizophrenia locus with a lead
P-value of 2.19 × 10− 14 (rs2851447)33

NCL Gene test — 5.04E− 07 0.016 (0.029) —

PIK3C2A Gene test — 9.46E− 07 NA PIK3C2A has a significant lead signal with P-value of 6.46× 10− 9

in a combined bipolar and schizophrenia GWAS (rs4356203)39

The table summarises the most significant results of the study, both from single-variant analysis and gene-based tests. We report only results exome-wide
significant in the Faroese population after Bonferroni correction (nominal P-values thresholds of 5.78 × 10− 7 for the single variants and 3.12 × 10− 6 for the
gene tests). The P-value for the UK sample was calculated with a Fisher exact test on the genotype model with PLINK 1.9, and we report in parenthesis the P-
value after Bonferroni correction. In the last column we indicate whether our finding is supported by genome-wide association studies (GWAS).
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whether the genes implicate a limited set of underlying mecha-
nisms detectable by protein–protein interactions. The analysis
supported 16 of the genes from the gene-burden analysis, in
terms of protein–protein connectivity (Supplementary Table 4).
Remarkably, the most significant gene in this analysis was NCL,
with a corrected P-value of 0.002 (Figure 2), which supports the
observed association of NCL with bipolar disorder, and suggests
that more members of its interaction network might be implicated
in disease susceptibility.

DISCUSSION
Targeting rare risk variants we sought to take advantage of using
an isolated population, in which some of the variants that are very
rare in outbred populations have been found highly increased in
frequency, including mutations for rare Mendelian disorders. Risk
alleles identified in isolated populations may, however, either be
extremely rare in other populations or appear private and not
observed elsewhere.17,42 Findings using isolated populations may
therefore not necessarily generalise to other populations, thus
making replication difficult. To reduce this limitation, we selected
a related British population for replication analysis, and also
sought more indirect support of the findings via enrichment
analysis of common variants from GWAS data and interrogation of
protein–protein interaction networks within the discovery data
set. Although the discovery sample was very limited in size, and

thus prone to yield spurious findings, the study identified
significant associations with single variants and genes that could
be replicated in the follow-up sample and/or were supported by
other lines of evidence.
Among the most interesting findings, the NOS1 missense

variant is intriguing. The variant is classified by SIFT as ‘deleterious’
on transcript ENST00000338101, and while predicted as ‘benign’
by Polyphen it is classified as ‘probably damaging’ by LoFtool
(Supplementary Table 2, for more details). This polymorphism
shows exome-wide significance in the Faroese population and
replicates in the British sample. NOS1 encodes the neuronal nitric
oxide (NO) synthase. NO is a gaseous neurotransmitter thought to
have important roles in several behavioural domains. It acts as the
second messenger of the N-methyl-D-aspartate receptor and
interacts with both the dopaminergic as well as the serotonergic
system.43,44 Investigations of animal models and human genetic
studies have implicated NOS1 with both mood disorders and
schizophrenia but with partially conflicting results.44,45 Notably,
the NOS1 locus yields P-values of 10− 6 in the most recent
schizophrenia GWAS.33 Our findings support a role of this enzyme
in bipolar disorder susceptibility and suggest the identified rare
missense variant as a causal variant, providing a good basis for
functional studies which relevance is further highlighted by the
existence of numerous pharmaceutical targets for the mechan-
isms of action of NO.44,46

Figure 2. The plot shows the most significant connections resulting from a DAPPLE analysis of the 419 nominally significant genes (P-value
o0.01) in the CMC-like emmax burden test in EPACTS of the Faroese sample. The colour code indicates the corrected P-value range of the
DAPPLE analysis (seed scores).
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A synonymous variant in FBXO21, a gene that neighbours NOS1,
showed similar associations. No apparent evidence from the
literature seems to implicate FBXO21 with mental disorders, and
the observed association is probably due to the strong linkage
disequilibrium with the NOS1 variant (r2 = 0.897).
The identified PITPNM2 missense variant was only seen in the

Faroese population. PITPNM2 encodes a phosphatidylinositol
transfer protein with limited functional information. It is located
in a highly significant schizophrenia GWAS locus that harbours
multiple genes.33 Thus, the present results not only suggest
PITPNM2 to be involved in bipolar disorder but also point to the
gene as the causal culprit in this multi-gene schizophrenia locus.
Although the P2RX7 variants fell just below the significance

threshold and did not replicate in the British sample, it is worth
noting that the gene has previously been associated with bipolar
disorder,39,47 including a study of a British sample overlapping
with the present sample, showing association with another P2RX7
variant.8 The gene belongs to a family of purinoreceptors for ATP,
which function as ligand-gated ion-channels, and seem to have
a role in the ATP-induced glutamate transmission in the
hippocampus.48

The gene-based analysis highlighted the NCL gene, showing
exome-wide significance and replication in the British sample. NCL
and part of its interaction network is involved in the synthesis and
maturation of ribosomes.49 Ribosomal DNA transcription appears
to be decreased in specific cortical layers of post mortem brains in
unipolar depression but not bipolar disorder.50 Interestingly, this
gene was also significant in our DAPPLE analysis. Furthermore, the
NCL interaction network emphasized by the DAPPLE analysis
included PIK3C2A, which too surpassed exome-wide significance
in the Faroese population and is supported by genome-wide
significance in GWAS combining bipolar disorder and
schizophrenia.4 Both PIK3C2A and PITPNM2 are part of the phos-
phatidylinositol pathway, which have been widely implicated in
mental disorders such as bipolar, depression and schizophrenia4,51

Finally, the String Database52 identifies an indirect interaction of
NCL, through MDM2 with CREBBP. This transcription factor is also
in DAPPLE output, although not significant in terms of con-
nectivity, and its pathway has been connected to mental illnesses
in a large body of literature.53 This might open opportunities to
further investigate the regulation of transcription by these
proteins in brain cells.
Summarizing, our results show support both for existing

findings in the literature of bipolar disorder as well as for new
risk genes in the disease aetiology. In particular, we identify rare
variants that may provide direct leads informing on the underlying
biology of bipolar disorder and schizophrenia.
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