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Three-dimensional printing (3DP) has recently gained importance in the medical industry, especially in surgical specialties. It uses
different techniques and materials based on patients’ needs, which allows bioprofessionals to design and develop unique pieces
using medical imaging provided by computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, the
Department of Biology and Medicine and the Department of Physics and Engineering, at the Bioastronautics and Space
Mechatronics Research Group, have managed and supervised an international cooperation study, in order to present a general
review of the innovative surgical applications, focused on anatomical systems, such as the nervous and craniofacial system,
cardiovascular system, digestive system, genitourinary system, and musculoskeletal system. Finally, the integration with
augmented, mixed, virtual reality is analyzed to show the advantages of personalized treatments, taking into account the
improvements for preoperative, intraoperative planning, and medical training. Also, this article explores the creation of devices
and tools for space surgery to get better outcomes under changing gravity conditions.

1. Introduction

Additive manufacturing (AM), also called three-
dimensional printing (3DP), is a manufacturing process
that has ramped its participation into industry as it offers
unique characteristics in order to produce objects in a dig-
ital fabrication workflow. For several years, AM has paved
its path into medical industry by creating useful and innova-
tive solutions to daily common problems. These solutions
are mainly group into three different categories: (1) AM used
as presurgical tool, (2) AM used as intrasurgical tool, and (3)
AM used as an implant or replacement [1]. Each one of these
categories has posed and solved challenges for engineers and
medical doctors, and, in this process, commercial solutions
have been created and added to medical industry which is
commonly used for design and construction of surgical
mechatronic systems and anatomical training simulation
procedures [2–8].

As a presurgical tool, AM has introduced a simple
yet powerful tool for medical doctors and surgeons:
physical 3D-printed models [9]. Created based on reverse-
engineering of 3D medical data acquisition procedures, a vir-
tual model with precise detail can be obtained [10]. Surgeons
will use these models for procedure planning as they will have
in their hands a replica of what they will find when they
expose their patients during surgery [11]. Better outcomes,
more reliable surgeries, costs saving, and shorter postopera-
tory procedures are among the benefits of using 3D-printed
anatomical models [12].

As an intrasurgical tool, AM has helped doctors and
engineers to create tools and devices that assists surgeons
during medical procedures in the operating room (OR).
One of the more developed devices is the 3D-printed surgi-
cal guide [13]. Guides are tools created by using a similar
procedure as compared to anatomical models, however, they
mimic an organ’s complex surface to obtain a jig that will
allow the surgeon to perform a cut, drill, or resection in a
more precise and clean procedure. These guides have proved
to more effective in resection as compared to typical free

hand cutting techniques [13]. Other medical devices that
use the potential of AM previously depicted in this article
are also being developed, such as hearing aids, dental
aligners, and frames for glasses [14, 15].

Finally, the application that is currently in the focus of
researchers is how AM can be used as a functional implant
and, in the future, as a fabrication technique for fully opera-
tive organs [16]. Being able to obtain anatomical models
from medical images has open the discussion of whether
these replicas might evolve into utile organs [9]. The scien-
tific community has started to design and 3D-print scaffolds
with intricate shapes that have proved to serve as a favorable
medium to promote cellular activity and differentiation [17].
In the meantime, AM is currently being used to successfully
create implants with complex shapes and topologies for
orthopaedic and maxillofacial surgeries among others [18].

AM is not new, however, its introduction to the medical
field was just in the last decade, and applications are still
being developed with an increased demand from patients,
hospitals, and insurance companies that have embraced
Anatomical Engineering as a useful and high exponential
growth field [19]. This article is the focus in surgery, which
presents a clear and comprehensive view to some of the most
interesting and promising applications of AM and the use of
its potential to solve complex problems and, ultimately,
increases the quality of life of patients [20, 21].

Since the beginning of the use of 3D printing in the med-
ical field in the 1990s, there has been an exponential devel-
opment in the different areas of surgery, which was
initially to educate patients and surgeons; additionally, its
use is being applied in the creation of new organs. Thereby,
the following question was raised: what are the advances and
the outcomes in the applications of 3D printing in surgery at
the presurgical, intrasurgical, and postsurgical settings in
each group of surgical subspecialties? The main objective
of this work is to have a better knowledge of this developing
technology and thus, with this highly specialized group of
surgeons and engineers, be able to develop new 3D technolo-
gies and promote their concomitant use with high-resolution
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images: magnetic resolution image (MRI), computerized
tomography (CT), and ultrasound (US) in order to have a high
impact on the health of patients [22].

2. Additive Manufacturing Techniques

With the advent of CT and MRI, the medical field achieves
the ability to visualize in-body accurate geometries without
surgery intervention [23, 24]. Using computer-aided design
(CAD) software, healthcare professionals could model the
anatomical topology from cardiac vasculature to the skeletal
system [25, 26]. CT and MRI can provide a 16 bits map with
65.536 shades of gray approximately [27, 28], allowing med-
ical specialists to diagnose and engineers to design models by
the identification of the region of interests (ROI) [29]. The
volumetric representation of the ROI is obtained by a format
called Standard Triangle Language (STL), which is the first
step to create the physical model using additive manufactur-
ing techniques (AMT) [30]. Currently, the main AMT
includes, but is not limited to fused deposition modeling
(FDM), stereo-lithography (SLA), selective laser sintering
(SLS), selective laser melting (SLM), electron beam melting
(EBM), and direct energy deposition (DED). This section
focuses on describing these 3DP principles and its applica-
tion on the field.

FDM is the most widespread AMT that uses a heated
nozzle to melt engineering thermoplastic, such as lactic poly-
acid (PLA), acrylonitrile butadiene styrene (ABS), and poly-
methylmethacrylate (PMMA). The extrusion nozzle is built
in an XYZ axis Cartesian robot platform to build layer-by-
layer 3D parts [31]. FDM demands no special ventilation;
however, high room temperature variation can affect the
process [31, 32]. FDM was successfully used to fabricate
patient-specific implants with varying densities for cranial
defects and femur parts [33] and biocompatible nanocompos-
ites for tissue engineering applications [34, 35]. One disadvan-
tage of FDM, since it works with thermoplastics, is that it can
only be sterilized using cold solutions [36].

Stereolithography (SLA), also known as photo-
solidification or resin printing, creates 3D parts layer-by-
layer through photo-polymerization [37]. SLA uses optical
light to scan over a reservoir filled with light-curable resin
and induces the molecules to link and solidify specific resin
surface regions. Printed parts by SLA method are especially
good to recreate cavities, such sinuses and neurovascular
channels [37]. The disadvantages of the SLA model structure
include low mechanical strength and long manufactory time
[38, 39].

Selective laser sintering (SLS) is based on the fusion of
powder. It employs a high-power laser as a heat source to
sinter powder material (usually nylon, polyamide, or metals)
to build-up 3D parts layer-by-layer [40]. The powder mate-
rial diameter should be in the order of 50 μm to improve the
model’s mechanical properties and topological surface.
Unlike SLA, this process is self-supporting, and each layer
is deposited over another. SLS shows promising applications
for bone tissue engineering [41] and other numerous bio-
medical applications such as oral, maxillofacial, neurologi-
cal, and orthopaedics surgery [39, 40, 42]. Selective laser

melting (SLM), a subcategory of SLS, is used to fully melt
the powder material and bind them in layers, instead of only
fusing the metal powder to bond specific regions.

Electron beam melting (EBM) employs an electron beam
in a high vacuum chamber at a very high temperature to
melt the metal powder and fabricate metal parts layer-by-
layer [26, 43, 44]. Typical materials used in the EBM process
for surgery applications are commercially pure titanium
(CP-Ti), titanium alloys, stainless steel, magnesium alloys,
and nickel alloys [37, 43, 45, 46].

Directed energy deposition (DED) concentrated a heat
source, such as an electron beam or a laser, to melt in situ
delivery of powder to fabricate 3D objects [47]. Beyond
manufacturing layer-by-layer 3D objects, DED can also
restore existing parts or add material over the currently
fabricated structure and perform surface modification [44].
DED processes have a better cooling effect and refabricating
capability [48]. As a disadvantage, DED presents low fabri-
cation efficiency compared to EBM and SLM [26].

Finally, SLS, SLM, EBM, and DED are attractive
methods to manufacturing porous metallic structures with
complex shapes, which are well desired for patient-specific
surgical implants to improve bone-in-grown and reduce
bone-metal elastic modulus mismatch, thereby allowing for
long-term implant stability [26, 49, 50]. However, one disad-
vantage is the residual stress that may cause interlayer
debonding or crack [26]. The most common materials used
for this purpose are CP-Ti and titanium alloys [26, 45, 51].

3. Surgical Applications

3.1. Craniofacial and Nervous System

3.1.1. Head and Neck. 3DP offers the possibility to under-
stand complex structures, fractures, and malformations in
craniofacial and head and neck surgery. Moreover, the big-
gest impact of this technology arises when merged with vir-
tual preoperative planning. As a result, surgical CAD/CAM
(computer-aided manufacturing) guides and patient-
specific implants (PSI) can be created to improve surgical
precision and reduce surgical time despite performing
increasingly complex reconstructions [52, 53]. Due to its
intricate anatomy and important cosmetic function, 3DP is
having a relevant impact in this anatomical region
(Figure 1). In fact, Pettersson et al. reported in 2019 that
the craniomaxillofacial surgery department designed 73.5%
of the 3D-printed implants used in Finland per annum [54].

The most common surgical application of this technol-
ogy in craniomaxillofacial trauma is in orbital floor fracture
reconstructions. The goal of this type of surgery is to preserve
the shape and volume of the orbit, restore its function, repair
any aesthetic impairment, and prevent future sequelae. This
procedure involves placing a standard preformed mesh or a
PSI. There are two main types of PSI: physically prebent in
patient-specific 3D model implants and patient-specific man-
ufactured implants. ORBITA III randomized multicentric
clinical trial showed that PSI could restore orbital volume
more precisely than standard preformed ones [55]. Further
studies comparing those groups of PSI have reported that
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patient-specific manufactured implants may be superior for
orbital reconstruction (orbital volume difference p = 0:029)
[56]. Hence, improvement in outcomes seems to be related
with the degree of customization of the implant.

Furthermore, 3DP proves to be of use in congenital sur-
gery. Le Fort osteotomies and monobloc frontofacial
advancement surgery benefit from a combination of virtual
planning and surgical guides. Computer-assisted surgery is
particularly useful for management of complex cranial mal-
formations such as plagiocephaly, oxycephaly, hypertelor-
ism, Crouzon disease, and Treacher Collins syndrome [57,
58]. Moreover, these types of surgeries can be performed
in combination with orthognathic surgery and temporo-
mandibular joint reconstruction. 3DP is having a deep
impact in these procedures as orthognathic surgery was at
the forefront of virtual planning development, and TMJ
reconstruction surgery was an early adopter of custom-
made prosthesis [59, 60].

Head and neck surgery also benefit from rapid AM [53].
The most common application is related with bone resection
and reconstruction during oncologic surgery. In these cases,
fibular flaps can be virtually designed, and guides can be
printed to increase precision and reduce surgical time [61,
62]. In addition, dental rehabilitation can be performed
simultaneously with dental implants [62]. Furthermore,
3DP can have a special impact in education. Although in
its early stages, positive interventions have been published
for teaching head and neck anatomy at undergraduate and
graduate level [63, 64], thus, increasing anatomical under-
standing and reducing dependency on cadaveric workshops.

Cost-effectiveness of 3DP in various areas of medicine is
yet to be assessed. However, maxillofacial surgery is at the
forefront in the validation of this technology under several
clinical trials [18]. For instance, Ayoub et al. concluded in

a 2014 clinical trial that CAD surgery significantly shortened
the time of transplant ischemia and defect reconstruction
[65]. Dumas et al. described manufacturing costs for a 3D-
printed skull model of $200 (labor cost included) with a
turnaround time of 24 hours [66]. These papers advocate
for the economic feasibility of 3DP [67].

Future prospects in head and neck reconstructive sur-
gery are paired with tissue engineering and bioprinting.
Recent studies have shown how novel biomaterials and poly-
meric 3DP may aid in the management of congenital pathol-
ogies like microtia or alveolar cleft and in acquired tissue
defects [68, 69]. In conclusion, rapid AM is reshaping cra-
niofacial and head and neck surgery. It is an efficient solu-
tion that improves surgical outcomes and reduces surgical
time, especially in pathologies that require fine 3D
conformation.

3.1.2. Brain and Spinal Cord. 3DP is developing at a rapid
pace with countless biomedical applications especially in
highly demanding, precise, and technological fields such as
neurosurgery. 3DP technologies obviate the need to learn
on the patient. This section provides a brief overview of
the current state-of-the-art of 3DP applications in neurosur-
gery focusing on three general areas: (a) creation of 3D-
printed patient-specific anatomical and pathological models;
(b) creation of 3D-printed neurosurgical instruments,
devices, and implants; and (c) creation of 3D bioprinted
scaffolding for tissue engineering and research.

The creation of patient-specific models is perhaps the
most impactful application of 3DP technologies and has
shown to enhance presurgical planning, surgical simulation
with recreation of surgical scenarios and complications
(e.g., intraoperative dural sinus injury), surgical training,
patient education, and interdisciplinary communication

R S: –141.548mm 1

B: 3: HUESO 6.625 mm

B: 3: HUESO 0.625 mm B: 3: HUESO 0.625 mm

Y R: –12.188mm G A: 57.337mm

Figure 1: Computerized tomography (CT) of coronal, transverse, and sagittal planes that shows the orbital floor fracture. 3D-printed CT
model is shown with the appropriate mesh, and this technique is used to provide a better approach in the treatment of skull fractures.
Used with permission from the author Dr. Javier Asensio-Salazar.
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(e.g., awake craniotomies and endonasal endoscopic proce-
dures) [70–76].

Patients expect utmost proficiency and mastery from
their neurosurgeons. Neurosurgical mastery requires com-
prehensive anatomical knowledge and hours of deliberate
practice in the operating room and skill lab. Unfortunately,
the case volume and overall surgical exposure during neuro-
surgical training (for each trainee) have declined as a result
of strict duty-hour restrictions and the current global pan-
demic [77, 78]. Now more than ever, surgical simulation
with 3D-printed models plays a pivotal role in neurosurgery
training and anatomy teaching [72, 79]. Physical 3D printed
models that recreate patient-specific anatomy and pathology
can be readily manipulated to help better understand
approach-specific and complex pathoanatomical relation-
ships that are otherwise hard to visualize using other tradi-
tional means and allow for practicing the different phases
of the operation in a safe environment (Figure 2). One area
of growing interest is open cerebrovascular neurosurgery—a
daunting field that requires immediate action [80] and
unique surgical dexterity. Numerous studies have shown
the utility of 3D-printed models for presurgical planning,
approach selection (e.g., feasibility of using smaller “key-
hole” craniotomies), aneurysm clip selection, configuration,
and simulation [72, 73, 79, 81].

Other reported applications are brain arteriovenous mal-
formation resection [79, 82] and endovascular techniques
[83, 84]. Applications in skull base neurosurgery are 3D-
printed models for simulating endoscopic techniques such
as endonasal transphenoidal approaches and tumor resec-

tions and open techniques such as transtemporal
approaches, anterior clinoidectomies, middle, and posterior
fossa approaches [72, 79, 85–87]. Applications in hydro-
cephalus treatment and pediatric neurosurgery are models
simulating neuroendoscopic third ventriculostomies and
pineal biopsies, external ventriculostomy, and craniosynos-
tosis repair [72, 79]. Noteworthy applications in spine sur-
gery are planning of complex spinal deformity cases,
simulators of pedicle screw placement with accurate haptic
feedback of cortico-cancellous interface, C2 laminar screw
placement, and research [70, 88–90]. Finally, macroscopic
and microscopic pathological 3D-printed models can also be
used for research by reproducing complex physiology and
flow dynamics as in arteriovenous malformation niduses
[91] and brain aneurysms even with endothelial lining [74].

3DP allows for rapid and inexpensive prototype
manufacturing of surgical instruments (such as microfor-
ceps), devices such as patient-specific navigation molds,
headrests for frameless gamma knife surgery, synthetic
custom-made cranioplasties for covering bony defects, and
spinal implants [90, 92, 93]. 3D printed scaffolds can be
engineered for biological ingrowth or engrafting with appli-
cations in research and transplantation [94]. The complex
3D extracellular microenvironment [95] of human tissues
can be replicated using 3DP techniques by providing a phys-
ical matrix and incorporating cell-supporting molecules for
culturing human and cancer cells, developing tumor models,
and manufacturing implantable tissue grafts [96]. The
desired external geometry and internal structure of tissue
scaffolds are readily controlled.

(a)

(b)

(c)

Figure 2: Postprinting result. (a, b) The printed brain can be combined with the tumor print (red) in order to establish the relationships of
the adjacent anatomic structures. (c) The tumor can be painted to determine the separation from the brain parenchyma. This is a cost-
effective procedure that can help to improve the three-dimensional visualization of the brain tumors to improve the management [71].
Used with permission from Elsevier.
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3.2. Cardiovascular System

3.2.1. Cardiothoracic. 3DP in cardiothoracic surgery has
broad applications [97]. This section is focus on three signif-
icant applications: congenital heart defects (CHD) and
mitral valve disease, pulmonary interventions, and for edu-
cational purposes.

Congenital heart defects (CHD) present with a wide
range of complex and unique structures. Traditional imag-
ing methods such as CT, ultrasound, and MRI are not very
useful for assessing the unique and usually intricate spatial
relationships associated with CHD [98, 99], since its 2-
dimension projection differs significantly from the operating
room reality. Therefore, 3D-printed models have significant
advantages regarding presurgical planning and simulation of
cardiac surgeries [100]. These models display with high
fidelity the complex anatomical defects of patients with
CHD and enable a comprehensive evaluation of the unique
spatial relationships that other methods cannot obtain [101].

Several studies show the utility of 3D-printed models in
clinical decision-making, interventional planning, facilitat-
ing communication between physicians and patients, and
enhancing medical education for medical students and sur-
gical residents [98–100, 102]. A recent systematic review
assessing the current applications and the accuracy of 3DP
for CHD concluded that patient-specific 3D models repli-
cated with high accuracy complex cardiac anatomies dem-
onstrate a substantial value in preoperative planning,
surgical simulation, and decision-making and intraoperative
orientation [103].

The mitral valve anatomy is difficult to assess, due to its
relation to the left ventricular outflow tract (LVOT), its posi-
tion in the posterior aspect of the heart, and the complex
relation between the ventricle, subvalvular apparatus, and
the LVOT. Since there are no medical options for the treat-
ment for severe mitral valve regurgitation, its treatment
relies on surgical repair or replacement, which faces many
challenges [104]. From the steep learning curve, the success
of the procedure is based on the surgeon expertise, to
the difficult planning before interventions, since it is chal-
lenging the interpretation of the valve’s anatomy from a
2D or 3D echocardiographic projections [105]. Several
authors have used 3DP to simulate different mitral valve
pathological process, with rigid plastic and silicone-cast
based on the 3D transoesophageal echocardiography.
These models allow the physicians for preoperative plan-
ning and device testing on minimally invasive valve sur-
gery simulators [106].

Preoperative planning with 3DP is useful for a trans-
catheter mitral valve replacement (TMVR), an alternative
treatment for severe symptomatic mitral valve disease that
is not amenable for surgery due to increased intraoperative
risk [107]. TMVR has a highly prevalent complication
which is LVOT obstruction after device placement (8.2-
11.2%). By using a 3D anatomical model, the surgeon
can insert a transcatheter valve into the model to simulate
and delimitate the neo-LVOT, thus making the necessary
modifications to the catheter used to avoid an obstruction
after deployment [108].

3DP plays a crucial role in the management of complex
respiratory diseases. The high variability in the anatomy of
the tracheobronchial tree [109] makes standardized inter-
ventional treatments very challenging especially for stent
placement.

Tracheobronchial stents are indicated to treat complex
central airway obstruction with both intrinsic and extrinsic
airway compression [110], to maintain airway patency and
provide ventilation to the lung. Due to the broad variability
on the diameter of the airway, angles of ramification of the
main bronchus, a precise fit can be challenging to achieve,
causing complications such as fracture and migration of
the stent, formation of granulation tissue, and possible ero-
sion and perforation of the trachea [111]. Patient-specific
3D stents made of different materials (silicone and elastic
thermoplastic) that can produce nonstandard geometrical
figures could help prevent the later complications associated
with unfitted bronchial stents. Additionally, some groups are
testing biodegradable stents, as used in cardiology, that
could prevent all together the risk of having devices
implanted indefinitely [112].

The utility of 3DP, as a didactic tool for educational pur-
poses at every level of training, is extremely promising. 3D
teaching engages visual and tactile representations that
improve understanding of complex diseases such as CHD,
achieving a rapid understanding of anatomical defects hard
to depict on a 2D image [101, 113, 114]. Some studies have
demonstrated that medical students perform better at iden-
tifying cardiac anatomy when using 3D-printed models vs.
cadaveric traditional learning [115]. Other studies assessed
the efficacy of 3D models of ventricular septal defects as part
of a CHD curriculum for medical students showed a statisti-
cally significant difference between the experimental and
control groups in satisfaction, perceived learning quality,
and structural conceptualization [116] (Figure 3).

3DP will play a significant role in the future of care of
CHD patients by promoting surgical interventions tailored
to the unique CHD anatomy of each patient and creating a
dynamic and real-life didactic tool for medical training and
communication with patients and caregivers, since teaching
patients their conditions with 3D models allows might give
them more confidence in explaining their condition, knowl-
edge on their disease, and overall improved satisfaction in
the consult [100].

3.2.2. Vascular. Since the first application of 3DP in vascular
surgery, in which a life-size replica of the aneurysm was
made prior to the endovascular procedure for surgical plan-
ning, many studies have been published in the last 20 years
[118]. To date, no randomized controlled study on 3D pro-
totyping in vascular surgery is available [119–121], and most
of the published studies are descriptive and case series. 3DP
in vascular surgery is mainly applied to (a) infrarenal and
juxtarenal abdominal aorta aneurysms, (b) thoracic aortic
aneurysms, and (c) other approaches to large vessels such
as celiac trunk, splenic artery, carotid, subclavian, and femo-
ral arteries, as well as the portal vein.

Most vascular surgeons plan their surgeries using CT
and magnetic resonance imaging, in some cases, also
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Doppler ultrasonography to obtain complementary hemo-
dynamic details [122]. Among the printing techniques,
FDM is one of the most popular and least expensive [123].
3DP is evolving in vascular and endovascular surgery, pro-
viding images from large vessels to the smallest ones, allow-

ing total control of the area for planning surgeries. One of
the utilities of 3DP is to work aortic fenestrations in complex
cases of thoracoabdominal aortic aneurysms, reducing surgi-
cal time and achieving an improvement in measurements;
achieving to merge an experience of performing surgery

Posterior view Sagittal view

RSVC

Entrance of 
right pulmonary

veins

Entrance of 
le� pulmonary

veins

Entrance of 
IVCAorta

Atriotomy

Le� SVC

Right SVC

Right superior
cavo-pulmonary

connection

Aorta
RPA

LPA

Le� superior
cavo-pulmonary

connection

Le� pulmonary veins
to morphologic

right atrium

Right pulmonary veins
to morphologic

right atrium

Figure 3: Simulated 3D-printed flexible, intact-heart model used in the surgical planning for complex total cavopulmonary connection.
LPA: left pulmonary artery; RPA: right pulmonary artery; RSVC: right superior vena cava; IVC: inferior vena cava; RA: right atrium; Ao:
aorta; LA: left atrium; LV: left ventricle; RV: right ventricle; SVC: superior vena cava [117]. Used with permission from Elsevier.
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while planning, which would reduce interobserver human
error during the preoperative phase [124, 125].

This technology allows decreasing the learning curve of
vascular surgeons in many centers, reducing fluoroscopy
time, and improving decision making in the choice of stents
[120]; in complex cases, it manages to discard indications
based on experimental models, where the desired results
are not achieved, improving decision making in each case
ranging from the choice of devices to the angular challenges
of the real simulation, but it is the force to which it is sub-
jected that provides great realism in cases of challenging
hemodynamic management (Figure 4) [126, 127].

It is important to note that CT measurements for sched-
uling endovascular procedures are based on the central flow

line. However, even modern workstations can not accurately
predict the duration of treatment in cases of severe aortoiliac
tortuosity [127]. These patients tend to shorten due to the
combination of native aortic remodeling, stent conformabil-
ity, and stiffness of guidewires and delivery systems during
endovascular aneurysm repair [128]. Arterial deformations
caused by endovascular equipment depend on multiple fac-
tors, such as the morphology of the arteries, the state and
degree of arterial calcification, and the type of device used
[129]. At present, their prediction is mainly based on the
surgeon’s experience [130].

Attempts to predict the clinical application of 3DP are
currently speculative [121, 131]. The additional cost and
time required to produce devices with current 3DP still limit

(a)

Segmental
artery

Renal
artery

Celiac axis

SMA

(b)

Visualization guide Marking guide

(c) (d)

Figure 4: 3D modeling processes for 3D aortic model. (a) Individual modeling of the central line of graft using the patient’s computed
tomography (CT) images. (b) 3D computerized models for the graft guides consisting of the visualization (left) and the marking (right).
(c) 3D printed guides. (d) Intraoperative view of the 3D printed guides in the TAAA. SMA: superior mesenteric artery; CA: celiac artery;
RA: renal artery; TAAA: thoracoabdominal aortic aneurysm [137]. Used with permission from Elsevier.

8 BioMed Research International



their widespread use in hospitals; stereolithographic models
can facilitate preoperative planning at least in complex cases.
Their limitations are related to the properties of the mate-
rials, which do not accurately mimic those of tissues, and
their inability to simulate events such as bleeding and other
intraoperative complications that surgeons may encounter
[132, 133]. However, its great limitation is the manufactur-
ing time, which usually takes 48 hours to have a final model,
which significantly delays the corrective power in emergency
situations [134].

Some centers already use this technology for the genera-
tion of specific models adapted to the patient and training
templates for staff [135]. The accuracy of the quality of
3DP adapted to the vascular anatomy of the patient in cur-
rent comparative studies shows high-quality predictive
results (<1 mm difference of the printed vessel wall whether
aortic or coronary compared to that predicted in digital
imaging and communication in medicine (DICOM) stud-
ies), this for FDM and Polyjet technologies [136].

3.3. Digestive System

3.3.1. Gastrointestinal. Over time, novel technologies and the
introduction of diagnostic imaging have reshaped the prac-
tice of surgery. In this context, it allows the creation of
graspable, patient-specific, anatomical models generated
from medical images. The ability to hold and show a physi-
cal object facilitates the understanding of complex anatomi-
cal details such as seen in invasive gastrointestinal tumors
located, for instance, in the pelvic cavity or in situs inversus
[16, 138–140]. Patient counselling, as well as medical educa-
tion, and surgical training, will definitely benefit from AM.
Pietrabissa et al. found that the most common application
of 3DP in gastrointestinal surgery was surgical planning,
education, training and anatomical comprehension of the
disease [141].

One of the more challenging procedures in gastrointesti-
nal surgery is esophagectomies and the subsequent recon-
struction. To date, the rate of complications is high despite
multiple efforts and different strategies [142, 143]. If esopha-
gectomies are performed, this situation has led to the devel-
opment of alternative treatment technologies like esophageal
transplantation. For instance, Takeoka et al. developed a
scaffold-free structure with a mixture of cell types using
bio-3DP. His team transplanted the structure into the
esophagus of murine models with good functional results.
The successful outcome was related to the higher content
of human bone marrow-derived mesenchymal stem cells
[144, 145]. In a similar study, and using tissue-engineered
scaffolds, Park et al. demonstrated that those which had
3DP polycaprolactone (PCL) scaffolds presented better mus-
cle regeneration. Also, better epithelialization was observed
with polyurethane- (PU-) nanofiber (Nf) scaffolds [146]. In
the case of inoperable esophageal tumors, the major treat-
ment of choice in order to alleviate dysphagia is the use of
esophageal stents such as self-expandable metallic stent
(SEMS) and self-expandable plastic stent (SEPS), however,
there is a current development of novel personalized 3D-
printed esophageal stents with the goal of improving the

symptoms and to provide local anticancer therapy
(Figure 5) [147].

In the case of complex anatomy, 3DP is useful for the
better visualization and planning of complex surgeries. Some
potential examples of the advantageous use of AM technol-
ogy are in the surgical planning of aortoesophageal fistula
repairs and laparoscopic resection of multiple esophageal
diverticula [148]. Having a 3D anatomical model resembling
the anatomy that will be explored in the OR enables to
develop strategies for saving time, with optimum postopera-
tive results.

In terms of medical education and training, multiple
institutions like the University of North Carolina and the
University of Toronto have acknowledged the need of
3D-printed organs for a surgical simulation curriculum
[149, 150]. Some procedures that started to use 3DP for
training are in the treatment of pyloric stenosis [151] and dis-
section of the complex vascular anatomy of the celiac trunk
[152]. A recent paper published by Stier et al. showed a novel
use of quantitative three-dimensional computed tomography
volumetry (3D-CT) of the upper gastrointestinal tract in bar-
iatric surgery, where they found that it facilitates the identifi-
cation of the postsurgical three-dimensional gastric anatomy
and also can be used as an additional diagnostic tool in post-
bariatric patients with postprocedural complications or prior
to revisional procedures [153].

The use of 3DP in colorectal surgery has also impacted
the treatment at many levels. For example, the use of indi-
vidualized models of stomas in order to educate patients
and find the right fit of ostomy bags in patients with difficult
abdominal wall anatomy [154, 155][17, 18]. With regard to
preoperative planning and intraoperative guidance for
laparoscopic resection of liver metastases due to colorectal
cancer, it is evidenced in the review done by Emile and
Wexner that 3D models were supportive, especially in those
tumors that were not palpable or recognized by intraopera-
tive ultrasonography, as well as described in by Witowski
et al., where obtained that the patients presented a decrease
in postoperative complications, being considered a cost-
effective technique [154, 156, 157].

One of the most promising aspects of surgical planning
and 3DP is pelvic surgery. Hamabe and Ito developed a 3D
model of pelvic muscles and neurovascular structures for
total mesorectal excision (TME) and lateral pelvic lymph
node dissection (LLND). They demonstrated a better
anatomical recognition that facilitates the dissection and
resection with optimum postoperative results [158]. Also,
another novel 3D-printed device was carried out by
Rodriguez-García et al. to perform transanal endoscopic
surgery without pneumorectum [159]. Chen et al. demon-
strated that the preoperative use of 3D models for the resec-
tion of right colon tumors resulted on a decrease in operative
time, amount of bleeding and greater resection of lymph
nodes in comparison with those cases in which these models
were not used [160]. Likewise, Sahnan et al. demonstrated
that, when 3DP is used for the repair of anal fistula,
the results this technology improve the anatomical assess-
ment and its correlation with imaging during surgery, as
well as serving as a medium to enhance the education of
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trainees and a useful adjunct for communication with
patients [161, 162].

Like every developing technology, it is still facing several
limitations. For instance, the lack of elasticity of some mate-
rials precludes the use in certain cases where dissection plan-
ning is key. In terms of surgical planning, the high cost of
3DP equipment may limit the use of this technique in set-
tings of limited financial resources; therefore, surgeons may
choose to limit such techniques to complex or refractory
cases. Future improvements in clinical applicability, in terms
of raw materials to print with, speed of printing and reduced
costs, are likely to make 3DP more widespread.

3.3.2. Hepatopancreatobiliary. The impact and influence of
3DP in hepatopancreatobiliary surgery have become a rele-
vant and innovative tool for planning and performing com-
plex surgeries, management of malignancies as well as
surgical trainee, and patient education [16, 164–168]. The
high precision that these models give to the surgeon is useful
for the spatial orientation of relevant anatomic structures
including portal vessels and hepatic veins, liver segments,
biliary system, and pancreatic tumor location thereby
enhancing surgical approach [168, 169].

In hepatobiliary surgery, the main application of 3DP is
surgical planning, which is approximately 47% [170]. Never-
theless, the usefulness of this technology is not only based on

this purpose, in fact, it showed an important value with
intraoperative navigation during the surgery, from 80% of
success for stent placement and wire manipulation to 100%
for needle puncture [19, 171]. Indeed, studying the anatomic
structures previous to the surgery and knowing the patient-
specific anatomy clearly enhance the procedure [165, 170,
172].

The most common surgery for which 3D models were
used is the resection of hepatic malignant neoplasms; how-
ever, its value in liver transplantation was also outstanding,
especially for the use of landmarks and surgical procedure
[169, 170, 173]. In spite of the fact that the surgical outcomes
were not different among different studies, and most of the
studies reported optimal results from the surgical planning
point of view (Figure 6) [170]. Randomized controlled trials
are necessary for assessing the outcomes.

In biliary surgery, 3D models were mainly used for train-
ing purposes of choledochoscopy and ampullectomy, as well
as the development of biliary stents [167, 174–176]. How-
ever, recently, some studies have shown the inclusion in
other biliary pathologies. Zeng et al. reported a great stereo-
scopic sense in diagnosis and treatment of hilar cholangio-
carcinoma; moreover, 3DP models improved the precision
of the procedures and better patient outcomes [177]. In
addition, Allan et al. found that these models were signifi-
cantly useful in the treatment of congenital biliary cysts with
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Figure 5: (a) Visualization of 3D depth maps models of the esophagus. Techniques to determine the localization, length, and depth of the
Barret’s lesions through the endoscopy camera. (b) 3D printed model of the esophagus that shows the measurements for the lesions (C and
M) and also the endoscopy video frames are shown [163]. Used with permission from Elsevier.
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high accuracy in the replication of anatomical structures,
although there were differences in dimensional measure-
ment between the original CT and the 3D model [178]. On
the other hand, literature about the use of gallbladder 3D
models is still scarce; indeed, it is only known that proto-
types from this organ are similar and could satisfy the surgi-
cal planning [179].

In the case of pancreatic neoplasms, some case series in
pancreatic adenocarcinoma and mucinous neoplasm have
published its utility facilitating a more detailed and compre-
hensive anatomy as well as a clear and direct way for preop-
erative planning and surgical training [19, 172, 180].
However, there is lack of evidence of the use of this innova-
tive tool in pancreatitis and its complications. Nevertheless,
recent studies have extrapolated this 3DP with bioprinting
for generation of artificial pancreatic islets, which findings
are promising for future treatment for some diseases as type
1 diabetes mellitus [181, 182].

In regard to the patient education, studies stated that
3D-printed hepatobiliary organs reassured the patients giv-

ing them approximately a 25% chance of improving in their
understanding about anatomy, physiology, tumor character-
istics, and the procedure itself, as well as a better sense for
the decisions taken for their treatment as well as the surgical
risks [166, 172]. Some of the disadvantages of this innovative
tool are the time taken for its creation and the cost; indeed,
each model has a cost that ranges from 400 USD to 1000
USD, which are factors that have to be taken into account
[170]. However, the benefits that this technology gives us
are extremely useful for surgeons, residents, and patients,
especially in complex cases, hence, as happened with other
technological tools, and this one is expected to be widely
accessible for several institutions and adopted by more sur-
geons in their everyday practice in the near future [165, 183].

3.4. Genitourinary System

3.4.1. Reproductive. 3DP has in recent years become novel
and useful tool in the field of obstetrics and gynecology for
the preoperative diagnosis and planning of complex female

(a)

(b)

(c)

Figure 6: Four aspects of 3D print MSG with portal venous variations. (a)–(c) Shows the different anatomical variations of the portal vein in
relation to the medial segmental graft. 3D: three-dimensional; MSG: medial segment graft; P4: portal vein to the medial segment [184]. Used
with permission from Elsevier.
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reproductive tract pathologies as well as patient education
and the creation of customized devices. 3D-printed models
use images generated from CT imaging, ultrasound, or
MRI, classically used to evaluate such pathologies, to create
anatomic replicas, devices, implants, and surgical instru-
ments customized to individual patients [185, 186].

Currently, the most common application of 3DP in the
field of obstetrics and gynecology is the creation of patient-
specific 3D-printed anatomic and pathologic models. This
has very meaningful uses gynecologic surgery as they allow
optimal preoperative surgical planning with improved con-
cordance with intraoperative findings, better surgeon experi-
ence with improved conceptualization of the lesion, and
ultimately improved patient outcomes [187, 188]. Recent lit-
erature has described 3D printed models being used for the
successful planning of many surgical procedures, such as
for complex female genital tract malformations, cervical can-
cer [189], multiple uterine myomas [190], endometrial can-
cer[191], breast cancer tumors [192], and surgical planning
of complicated caesarean delivery [193]. Not only can these
models be created via noninvasive imaging techniques, they
can create accurate life-sized representations of the unique
contours of the structures it represents to determine optimal
resection margins and approach.

3DP also has a promising role in the evaluation of Mul-
lerian anomalies and rare female genital tract malforma-
tions. A case study by Tomlin et al. reported a rare case of
unilateral cervical atresia in obstructive hemivagina with
ipsilateral renal anomaly (OHVIRA) that was correctly iden-
tified preoperatively via 3DP from 3D MRI, but is typically
often missed by standardized CT and traditional MRI [186].

3DP can also be applied to the creation of patient-
specific medical devices and customization of instruments
and tools used in surgery to decrease costs and increase
patient satisfaction and comfort [194, 195]. Most medical
devices are made in standardized sets of shapes and sizes
and often do not provide the best fit for the patient using
them. This can result in poor fit and discomfort that can
subsequently lead to discontinuation and suboptimal results,
thus, necessitating the ability to customize based on the
patients’ unique anatomic needs. Customized pessary fabri-
cation via a 3D-printed mold, for example, was explored
by Barsky et al. to address the common factors limiting effi-
cacy and proper mechanical fit in women with unique ana-
tomic considerations. Likewise, 3D-printed customized
vaginal stents and dilators have been successfully created to
safely and comfortably fit the pediatric and adolescent pop-
ulation, when none currently exist [196]. Further applica-
tions of this extend to the creation of custom 3D printable
gynecologic devices that can provide individualized
patient-specific tissue stretching to optimize tissue healing
and remodeling [197].

3DP has also allowed for better patient education
through the creation of accurate tangible models that allow
patients to understand their organ anomalies or the physical
context of their tumor in the presurgical discussion and
decision-making process [185]. This can help surgeons dem-
onstrate tumor location, volume, and its extent in relation to
surrounding structures to help patients come to terms with

the feasibility of fertility sparing surgery, such as in the treat-
ment of early stage cervical cancer (Figure 7) [189].

3D-printed pelvic models based on in vivo imaging can
also be used for educational purposes among health profes-
sionals and sex educators. A novel 3D-printed educational
anatomic kit created by Abdulcadir et al. demonstrates
models of female and male reproductive anatomy permitting
the representation of variations in sex development and
morphology, including models of clitorises of women who
have undergone female genital mutilation, all of which are
based on in vivo imaging [198]. 3DP can also supplement
simulation-based medical education, which has a unique
place in postgraduate gynecological training. From vaginal
repair models allowing residents to train in the repair of
injuries resulting from sexual assault [199] to a hemorrhagic
cervical cancer model that can be made to bleed, look and
feel real [200], these allow residents a low-risk and low-
cost opportunity to refine their surgical skills.

3.4.2. Renal. During the last decade, 3DP has gained impor-
tance in urology. This multiple dimension technology has
shown diverse benefits within the urology field such as
improvement of surgical skills, evaluation before hands-on
exposure to real scenarios, and improvement of patient edu-
cation and surgical outcomes. Additionally, when compared
with cadaver and animal training, 3DP models have shown
superiority due to its lower cost, easier access [202–204],
and ability to achieve a realistic surgical experience in a
learner-centered environment. This allows repetitive prac-
tice, graduated advancement, exposure to multiple clinical
scenarios, and errors in a zero-risk platform [205, 206].

Mimicking the characteristics of the human urinary tract
using 3DP has been a challenge. Nevertheless, organ models
and anatomical phantoms have been created using innova-
tive materials such as wax, hydrogel, agarose gel, polyvinyl
alcohol, and silicone. These materials allow recreation of
the consistency and anatomy of the genitourinary tract for
training, education, and for the development of newer surgi-
cal devices [203, 207, 208]. Nowadays, 3DP is mostly used in
order to train and plan for partial nephrectomies (PN), per-
cutaneous nephrolithotomy (PCNL), pediatric laparoscopic
pyeloplasty, and renal transplantation [204, 205, 209, 210].
Multiple benefits of 3DP in PN include shorter operating
and ischemia times [210–212], decreased blood loss,
enhanced clamping precision [208, 213], and an improved
structural identification [214]; PCNL benefits of preopera-
tive simulation have been observed in mean fluoroscopy
times, number of percutaneous access attempts, need for
needle repositioning [203], accuracy in stone localization,
fragmentation time, and requirement for flexible nephro-
scopy for stone clearance [209, 215]. As for kidney trans-
plantation, this technology has advanced; in recent years, it
has been used as training material in fully immersion simu-
lations with robotic surgery. Studies have found that resi-
dents can better understand how to set up and suture the
renal artery and vein anastomoses [216], and that after sim-
ulation, they can perform the arterial, venous, and the ure-
terovesical anastomosis within the expected times [217].
Bendre et al. used the Global Evaluative Assessment of
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Robotic Skills (GEARS) to evaluate residents’ performances
in robotic-assisted dismembered pyeloplastic before and
after training with 3D silicon-based renal models. After
training, there was a significant improvement in depth per-
ception, surgical speed, and confidence [218].

Historically, imaging finding is the only available evi-
dence for the patient to understand their diagnosis, possible
surgical approach, risks, and possible complications. How-

ever, with the development of personalized 3DP, studies
have shown that patients describe a better understanding
of basic kidney physiology, kidney anatomy, tumor charac-
teristics, better knowledge of the planned surgical procedure,
and an overall better comprehension of the disease and the
intervention [211, 212, 219–222].

Definitely, the use of this technology appears to be a
promising way to improve surgeon’s training and enhance
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Figure 7: (a) Closed 3D printed model. (b) The speculum entering the vaginal canal. (c) 3D printed intrapelvic organs and its anatomical
position. (d) Presence of 3D printed gross tumor attached to the uterine body. (e) Tandem used in brachytherapy procedures is inserted
through the speculum and placed inside the cervix and uterine canal. These phantom models help in teaching physicians the process of
intracavitary procedures in cervical cancers [201]. Used with permission from Elsevier.
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the patient’s assessment of the procedure. Nevertheless,
there are some challenges like the use of more realistic mate-
rials, the model’s reusability, and the accessibility of this
technology in different institutions to overcome the high
costs related (Figure 8). Therefore, more surgeons could
use 3DP in everyday practice [223, 224]. Many believe that
the future of 3DP technology in the urological field consists
of building tissue scaffolds with functionality that can grow
organs via biofabrication [206, 209, 225]. However, further
studies are needed to assess the feasibility of these advances.

3.5. Musculoskeletal System

3.5.1. Upper Extremities. As the 3DP revolution unravels in
the healthcare field, orthopaedical specific applications are
becoming increasingly popular due to the versatility in creat-
ing patient-specific components [227]. 3DP enables the next
level of personalized patient care by creating custom instru-
ments and hardware [39]. This section will examine the cur-
rent literature on 3D-printed orthopaedic tools for patient-
specific upper extremity malunion correction, primary frac-
ture fixation, surgeon instrumentation and preoperative
planning models, and total shoulder prosthesis (Figure 9).

Upper extremity osteotomies are commonly performed
to restore anatomical alignment after bony deformity or

malunions secondary to trauma [228]. For example, in the
pediatric population, 3DP guides for correctional osteo-
tomies for both-bone forearm fractures have been proven
advantageous. In a case series out of Osaka, Japan, 20
patients with symptomatic malunited forearm fractures
treated with 3D-printed osteotomy guided osteotomies had
an improved average forearm arc range of motion and grip
strength from 76 to 152 degrees and from 82% to 94%,
respectively, compared to the unaffected side [229]. A differ-
ent case series conducted in Shrined Hospital seven patients
with forearm malunion treated with osteotomy with 3D-
printed correctional guides had improved forearm supina-
tion and pronation by 25 degrees and total rotation greater
than 120 degrees [230]. As seen in the aforementioned stud-
ies, the implementation of 3D-printed osteotomy guides for
forearm fracture malunions can improve range of motion.

The utilization of 3D-printed guides and plates for pri-
mary fracture fixation has been explored for scaphoid and
distal radius. In the case of scaphoid fractures, historically,
high rates avascular necrosis has urged researchers to inves-
tigate the benefits of 3DP for achieving anatomical reduction
[231]. In a study by Schweizer et al., 22 patients for scaphoid
fixation for nonunion with and without 3D-printed patient-
specific guides for fracture reduction, authors found that the
patient-specific guide group achieved a more accurate

(a) (b) (c)

Figure 8: Pyeloplasty is a surgical procedure performed in cases of ureteropelvic junction (UPJ) obstruction. (a)–(c) For surgical training,
the 3D-printed models are placed within laparoscopic consoles to recreate and performed the pyeloplasty procedure [226]. Used with
permission from Elsevier.

(a) (b) (c) (d)

Figure 9: Computer-assisted preoperative planning of a scaphoid fracture. (a, b) Green: scaphoid and lunate bones of the hand. Light blue:
proximal scaphoid fragment. Violet: distal scaphoid fragment. (a) Scaphoid fragments before the reduction. (b) Scaphoid fragments after the
reduction. (c, d) 3D-printed K-wires are placed in to reduce the two scaphoid fragments in order to have a better sealing of the bone [232].
Used with permission from Elsevier.
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fracture reduction with an average residual displacement of
7 degrees versus 26 degrees in the control [232]. In the case
of distal radius fractures, 3D-printed patient-specific plates
have been found to have higher yield strength than tradi-
tional plates, 1043N versus 876N, respectively. The higher
yield strength in the 3D-printed plates is theorized to occur
due to better mechanical properties of titanium alloy powder
or the 3D plate’s ability to contour better the patient’s bony
anatomy allowing for better screw purchase [233].

3D-printed models of patient-specific anatomy can be
used to prebend plates. An article out of Chunbgbuk South
Korea discusses a technique for using 3D-printed models
of fractures to allow for prebending plates for clavicle frac-
tures [234]. These 3D-printed clavicle plates allow for
enhanced plate contouring of each patient’s unique clavicle
geometry, which can have substantial variation based on
gender and race. Also, this technique allows for more
straightforward fracture reduction, minimizing soft tissue
dissection.

The application of 3D-printed patient-specific instru-
mentation (PSI) for total shoulder arthroplasty has been
shown to improve precision and reduce the incidence of
component malposition [235–237]. Although many factors
influence the functional life of a prosthetic shoulder, subop-
timal positioning of the glenoid component has a significant
correlation with the risk of implant failure [238]. PSI and
custom prosthesis facilitate a reproducible way to improve
the accuracy of implant placement, particularly in the setting
of severe deformity and bone loss. In a multisurgeon cadav-
eric study by Throckmorton et al., shoulders with radio-
graphically confirmed osteoarthritis was randomized to PSI
or standard instrumentation for anatomic and reverse
TSA. Although no difference was found in reverse TSA, in
anatomic TSA, PSI improved mean deviation in version
from 8 to 5 degrees and inclination from 7 to 3 degrees.
Additional clinical outcome studies are needed to define
the cost-effectiveness of such technology [239].

3.5.2. Lower Extremities. The role of 3DP in lower extremity
orthopaedic surgery cannot be understated [240]. Within
just a few decades, 3DP has come to play a substantial role
in the pre-, intra-, and postoperative stages of treatment in
orthopaedics (Figure 10).

3DP provides surgeons with patient-specific anatomic
models, enabling extremely precise preoperative planning
including optimization of the surgical approach, planning
placement of reduction clamps and implants, and the need
for additional resources to be used intraoperatively
[241–243]. These models accentuate bone defects poorly
conceptualized with 2D imaging, allowing surgeons to pre-
cisely address the damaged bone and/or cartilage defects
and provide the advantage of touch which recalibrates visual
perception, enabling a more comprehensive understanding
of the clinical problem [242, 244–246]. These models have
successfully been used in complex pelvic and acetabular
trauma, distal femoral fractures, and distal femoral osteo-
tomies, and have been found to reduce radiation exposure
and the risk of iatrogenic neurovascular complications
[246–249]. In addition, 3DP simulations and models assist

with implant positioning in revision total hip arthroplasty
(THA) with complex acetabular defect, with moderate to
high accuracy, and satisfied clinical outcome [250].

A large contribution from 3DP has been personalized
implants, unique not only to patient’s anatomy, but custom-
izable in terms of microstructures (i.e., porosity) and physi-
cal properties [251]. 3DP implants are lighter and more
comfortable to the patient and can also facilitate minimally
invasive surgery [242, 243, 252, 253]. In addition, some
implants, like precountered plates, have the added benefit
of reducing surgical time and blood loss and improved fit
in trauma cases [254]. One of the best-known implants in
arthroplasty is the custom triflange which is a patient-
specific implant for the treatment of severe bone loss in total
hip revisions [246, 255–257]; however, custom knee
implants are also used in primary total and partial knee
arthroplasty and in patients with previous displaced tibial
plateau fractures [256–258].

3DP additionally can create high-resolution bone graft,
allowing for exquisite control of porosity and bone intercon-
nectivity, both of which are essential for regeneration and
osteointegration [251]. This technology allows, for instance,
in situ repair of osteochondral defects through autologous
implantation of chondrocytes and bone marrow cells using
scaffolds [259]. It also allowed for the incorporation of
metallic particles and bone growth proteins into bone graft,
which has been shown in animal studies to promote regen-
eration [260, 261].

Beyond bone graft and personalized implants, preopera-
tive models themselves additionally have the potential to be
sterilized and be use intraoperatively, as has been done in
complex periacetabular trauma injuries [262, 263]. Other
intraoperative 3DP tools have included personalized locking
and cutting guides for standard total knee replacements,
ACL femoral tunnel guides, and intraoperative models for
tibial plateau fractures, distal tibial fractures, talar fractures,
and deformity correction [241, 242]. Personalized instru-
ments for pelvic tumor cases have also been found to
improve accuracy in simulated surgeries, in addition to

Figure 10: Surgical correction of valgus knees through the use of
osteotomy procedure, which consist in the removal or insertion of
a wedge of bone near a damaged cartilage in order to provide a
well-distributed weight area over the affected knee. Four 3D-
printed Kirschner wires are inserted through the guide. Depth
and orientation checked under fluoroscopy [249]. Used with
permission from Elsevier.
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reducing simulated operative time [264]. Moreover, 3DP
instruments have been found to not only have higher quality
than conventional tools but also to be cost-effective [252].

3D-printed models can help assess the degree of anat-
omy restoration postoperatively [251]. Additionally, cus-
tomized sockets and prostheses have been made for use
after lower limb amputation surgery [265, 266]. 3DP has
even been used for rapid production of custom-fit ankle-
foot orthoses following subject gait analysis; this custom-fit
model was found to at least be comparable to the prefabri-
cated ankle foot orthoses (AFOs) and has been especially
helpful in children who are rapidly growing [241, 267].

From preoperative planning to patient-specific models,
instruments, and implants; from microscopically engineered
bone graft to orthoses, 3DP has quickly been picked up by
and applied by orthopaedic surgeons. While the evidence
supporting 3DP in orthopaedics is both reflected in recent
publication trends and remains promising, there remains
room for improvement [240]. Further investigations can
focus on maximizing high-value patient care, surgeon edu-
cation, and patients’ functional outcomes related to 3DP
technologies. As the field continues to advance—now with
4- and 5D-printing—these different printing modalities have
vast potential for simultaneously producing “smarter,”
stronger products and enabling excellent patient care [268].

4. Exponential Innovations

4.1. 3D Printing Integration with Augmented, Mixed, and
Virtual Reality. The pressing necessity for the continuous
improvement of medical imaging technologies has driven
the use of new advanced visualization techniques such as
augmented reality (AR), mixed reality (MR), virtual reality
(VR), and 3DP in the field of surgery. The goal of these
innovative applications is to integrate data found in the
medical images into the OR in order to offer patients more
precise and personalized treatments [269]. To date, most
research has mainly only demonstrated the feasibility of
implementation; but the results are quite promising [270].

To visualize or print an anatomical reconstruction from
the images, the creation of a 3D-digital model (3DDM) is
required [271]. The workflow to build it involves several
sequential steps, including (1) 3D data acquisition, (2) ana-
tomical segmentation, (3) conversion DICOM files to a 3D
mesh file format, and (4) creation of a computer-aided
design (CAD) file [272]. From herein, the resulting model
can be uploaded into a virtual space and/or printed as a
physical 3D mirror. This process requires dedicated and
trained personnel, expensive tools, and time-consuming
software [273]. For these reasons, its current implementa-
tion in clinical practice remains limited.

In surgery, there are three areas in which the integration
of 3DP with AR, MR, and VR is gaining special attention:
preoperative planning, intraoperative support, and educa-
tion training. For example, it has been applied on prostate
and kidney cancer, showing improvements in clinical out-
comes, surgical planning and intraoperative guidance, and
training (Figure 11) [274]. The benefits of these technologies
in preoperative planning lie in the increased awareness of

anatomical details in complex surgical cases and the ability
to identify risks and challenges before surgery, allowing the
planning of a safe surgical strategy and potentially avoiding
the occurrence of unexpected events [275], a surgical “Men-
tal Map.”

As an intraoperative support tool, 3DDM has also
proven their usefulness, reducing the dependence on preop-
erative interpretation of imaging data and providing an ana-
tomically correct, “twin” model in real time [276]. AR
platforms superimpose 3D virtual models on physical
objects in real space, allowing simultaneous interaction with
both [277]. In this regard, even though, the main limitation
remains the lack of accuracy in spatial registration, in Ortho-
paedic Oncology, it could be beneficial in tumor resection
surgeries. Additionally, this technology could be advanta-
geous to guide osteotomy cutting planes [278]. Recently,
there have been developments of systems that, from selected
anatomical segments in the 3DDM, allow printing and
incorporation into the operative field, of a customized
patient reference that provides an automatic registration of
the image in real space through a smartphone augmented
reality application [279].

Today, advanced 3D modeling (3DDM) and visualiza-
tion technologies have an exciting and most promising range
of applications in the fields of simulation, education, and
training. The integration of AR, MR, VR, and 3D printing
enables efficient training of physicians [280]. Preoperative
evaluation and simulation using 3D imaging data allow sur-
geons to gain valuable experience and preoperatively prac-
tice surgical steps in a safe setting [281]. Additionally,
these technologies allow real surgeries to be supervised by
telepresence [282]. There is no doubt that recent progress
in the integration of simulation and virtual modeling into
the OR has highlighted the potential benefits of these tech-
nologies, however, the concrete clinical impact on operative
and postoperative outcomes remains to be defined [283].

4.2. 3D Printed Medical Devices and Tools for Space Surgery.
Human space activities in recent decades have mostly taken
place on the International Space Station (ISS); however,
there is growing interest in exploring beyond low Earth orbit
(LEO), such as the Moon and Mars. Operational require-
ments and constraints are closely linked to mission objec-
tives, destination, duration, and necessary resources,
influencing the scope of human activity and technology
needed to complete missions. Sustaining and supporting
the human presence in space require the use of medical
devices compatible with the space environment and artificial
environments of a spacecraft or planet-based habitat, also
considering operational limitations [284].

Preserving human health in space is primarily done
through telemedicine-compatible equipment, allowing
ground-based experts to be part of examinations. However,
the great distances in planetary exploration lead to time
delays in communication with medical personnel on Earth,
affecting the application of telesurgery in space missions, a
technique already shown as a useful tool when there is the
need to invasively treat patients who are geographically sep-
arated from their physicians [285].
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The practice of space medicine also relies on the Crew
Health Care System, essential for ensuring crewmember
health and safety, including Countermeasures System, Envi-
ronmental Health System, and Health Maintenance System.
Upcoming missions beyond LEO are planned based on the
perceived threat level to health or life of an operation and
the identified levels of care needed, on which planning of
the medical support is based [286]. Surgery in space is
thought possible in missions with a level of care four or
higher rating, such as in crewed LEO missions and lunar/
planetary surface exploration, when lasting more than 30
days. A wide variety of surgical procedures have already
been conducted during simulated zero gravity parabolic
flights [286]. Nonetheless, there are challenges to performing
surgery in a microgravity environment, especially in deep
space missions, which includes surgical and anaesthetic pro-
cedures and techniques, and ongoing crewmember training
to maintain surgical skills throughout a mission [287].

Although space surgery is a high interest area, there is a
current lack of validated devices, procedures, and training.
Moreover, existing levels of care are built on data from an
astronaut population only, not considering potential health
issues arising from commercial astronauts or space tourists.
The medical history and training of these latter groups are
extremely variable; meaning, an equivalent level of care for
commercial activity may require surgery as a need/option
for shorter missions. Simulated crewed space missions,
known as analogue missions, offer a controlled environment

for recreating scenarios where surgery may be fundamental,
such as medical emergencies [288].

The possibility of applying space robotic surgery might
be impractical, due to the size, weight, and time-sensitive

3D Printing

AR

VR

Le�

Figure 11: Examples of 3D printing (top), AR (middle), and VR (bottom) technologies. Top row: Stratasys J750 Digital Anatomy Printer;
3D printed kidney tumor model with the kidney in clear, collecting system (semi-transparent), lesion (purple), renal artery (pink), renal vein
(light blue), and collecting system (dark blue); 3D printed prostate cancer model with the prostate clear, lesion—blue, neurovascular bundles
(yellow), rectal wall (white), bladder neck, and urethra (pink). Middle row: HoloLens-AR headset; AR kidney tumor model shown projected
in a room with the kidney (pink), tumor (gray), artery (red), vein (blue), and collecting system (yellow); prostate cancer model shown
projected in a room with the prostate (transparent), lesions (blue), neurovascular bundles (purple), bladder neck, and collecting system
(yellow). Bottom row: person wearing HTC Vive VR headset; kidney tumor model; prostate cancer model configuration colours as at the
middle row picture, also with arterial supply (red) [274]. Used with permission from Elsevier.

Figure 12: 3D printed instruments for space surgery applications
[290]. Used with permission from Elsevier.
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nature of surgical robots [287]. Medical devices, such as
blood collectors, are examples of versatile tools used for both
clinical research and health monitoring [289], and some can
be produced in space using 3DP. Another possibility is to
produce medication in space, although little is known
regarding their pharmacodynamics and pharmacokinetics
in microgravity. More research is also required to identify
ways of safely sterilizing and recycling 3D printed medical
devices, robotics [6], and tools (Figure 12). Space surgery is
still in its infancy; however, it is ripe for innovation and
could benefit particularly by combining with the rise and
expansion of frontier technologies like artificial intelligence
and augmented reality [290].

5. Conclusion and Future Insights

3DP is a manufacturing process that has ramped its partici-
pation into industry as it offers unique characteristics with
the aim to produce objects in a digital fabrication workflow.
It has been well-developed in recent years reflected in a vari-
ety of surgical specialties, such as head and neck surgery,
neurosurgery, general surgery, cardiovascular surgery, urol-
ogy, gynecology, and orthopaedics. The main impact of this
tool is divided into 3 pillars: medical training, surgical plan-
ning, and patient education. Obtaining anatomical models of
the pathology of interest allows better comprehension and
permits an accurate surgical approach. The applications are
classified into three different categories: (1) presurgical tool,
(2) intrasurgical tool, and (3) implant or replacement. The
main manufacturing techniques are fused deposition model-
ing (FDM), stereo-lithography (SLA), selective laser sintering
(SLS), selective laser melting (SLM), electron beam melting
(EBM), and direct energy deposition (DED).

The exponential innovations of this technology are hav-
ing high expectations that will provide a major benefit in the
future. In turn, the research and development of this technol-
ogy have a potential impact with the integration of augmented,
mixed, and virtual reality. Besides, other important applica-
tions are medical devices and tools for space surgery in order
to bring better patient management during spaceflight (diag-
nosis and treatment). Finally, there is an interesting growing
field called “Endoscopic - Intracorporeal 3D Bioprinting,”
which consists of creating tissues that help to regenerate dam-
aged organs during a robotic surgery procedure.
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