
sensors

Article

Parkinson’s Disease EMG Data Augmentation and
Simulation with DCGANs and Style Transfer

Rafael Anicet Zanini * and Esther Luna Colombini

Laboratory of Robotics and Cognitive Science (LaRoCS), Universidade Estadual de Campinas (UNICAMP),
Campinas SP 13083-852, Brazil; esther@ic.unicamp.br
* Correspondence: rzanini@gmail.com

Received: 30 March 2020; Accepted: 28 April 2020; Published: 3 May 2020
����������
�������

Abstract: This paper proposes two new data augmentation approaches based on Deep Convolutional
Generative Adversarial Networks (DCGANs) and Style Transfer for augmenting Parkinson’s Disease
(PD) electromyography (EMG) signals. The experimental results indicate that the proposed models
can adapt to different frequencies and amplitudes of tremor, simulating each patient’s tremor patterns
and extending them to different sets of movement protocols. Therefore, one could use these models
for extending the existing patient dataset and generating tremor simulations for validating treatment
approaches on different movement scenarios.

Keywords: Parkinson’s disease; sEMG; DCGAN; style transfer; signal processing

1. Introduction

As one of the most common neurodegenerative diseases that affects approximately 10 million
people around the world [1], Parkinson’s Disease (PD) has been studied and investigated from different
manners and perspectives, in order to minimize the disease’s symptoms and impairments to patients.

Many studies around rest and action tremors have been conducted, whereas surface electromyography
(sEMG) stands out as one of the most common ways to measure muscle response to voluntary or involuntary
stimulation, being widely used as main input and feedback signal for artificial stimulation devices [2–4].
EMG is widely used clinically for the diagnosis of neurological and muscular pathology [5], and has
recently been used for several human–machine interface applications, such as controlling computer
interfaces, navigation through virtual reality environments, controlling robots, drones, and other
interesting applications [6].

However, acquiring such datasets from patients is a complicated and sometimes painful task.
Most patients that experience unpleasant effects during such experiments, such as tiredness, fatigue [7],
and a wide range of movements, are usually not possible due to the patient’s movement limitation
and impairment due to the disease.

Therefore, collecting, processing, and using recorded EMG signals for analysis is quite a challenging
approach, due to data scarcity and lack of dataset variation. Data augmentation is a promising alternative
approach for extending existing datasets, which could allow further research and analysis.

In this work, we propose two new data augmentation approaches based on Deep Convolutional
Generative Adversarial Networks (DCGANs) and Style Transfer for augmenting Parkinson’s disease
electromyography (EMG) signals with the use of two distinct EMG databases. To the best of our
knowledge, this work proposes the first methods for EMG augmentation based on real patient data.

2. Related Work

Biological signal simulation can be used for many applications. However, generating realistic
models requires a profound understanding of the simulated signal patterns and morphology [2].

Sensors 2020, 20, 2605; doi:10.3390/s20092605 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8981-6844
https://orcid.org/0000-0003-0467-3133
http://www.mdpi.com/1424-8220/20/9/2605?type=check_update&version=1
http://dx.doi.org/10.3390/s20092605
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 2605 2 of 23

Since PD’s tremor pattern is caused by a pathology with different intensity and manner for each
patient, it is quite challenging to create such a generic mathematical model that can effectively produce
an artificial signal similar to the real one.

Hamilton-Wright has presented a Physiologically Based Simulation for needle EMG [8], which simulates
how individual motor units (MUs) are triggered, and how the relationships are between quantitative features
of EMG signals and muscle structure and activation. Ahad [5] has successfully simulated EMG signals,
considering different parameters that affect motor unit triggers, such as Muscle excitation, recruitment
range, firing rate, and other parameters. However, his work simulates the effect of a simple contraction
force on a specific muscle (tibialis anterior), for which all the required parameters have been studied
and are well known. It does not simulate different movements of the muscle or the effect of a repetitive
pattern, such as those combining contractions and relaxations existing on an involuntary tremor pattern.

Guerrero et al. [9] propose a complete mathematical package implemented in R for pre-processing
and simulating EMG signals. Their simulation method is based on a simple heteroscedastic model-based
approach, which generates a generic EMG signal. However, the EMG it created based on specific parameters
such as EMG base frequency, signal length, active window size, signal mean value, standard deviation,
sampling rate, and a custom shape factor. This method requires that the simulated signal is deeply
understood, must be very regular, and always follows the same pattern. Such an approach cannot
adapt to different movement protocols or adapt to an individual’s specific EMG tremor pattern, whose
parameters are not known a priori, and present typical irregularities on frequencies and shape through
time. Such adaptability is desired when trying to augment a specific patient dataset, instead of generating
generic tremor patterns.

Previous work from the authors [10] has shown that it is possible to use EMG signals using
neural networks to predict tremor patterns in advance. This method could enable real-time assisting
devices, like Functional Electrical Stimulation (FES) devices, to operate with much more precise control
over the stimulus and the patient’s tremor. However, this previous work focused on predicting a
specific tremor pattern in time but did not provide a generic tremor simulator based on EMG signals.
In addition, the adopted metric (RMSE), used to compare the prediction with the real signal, cannot be
used when trying to generate a synthetic signal, since the shape and amplitudes might vary on time,
despite keeping the signal main frequency components.

In this work, we propose two new approaches to generate surface EMG signals based on existing
datasets. In our first proposed method, Neural Networks are trained to learn the specific EMG signal
tremor patterns, hence being able to reproduce such tremor for each patient. The resulting model
can also be employed as a feature extractor model, allowing us to further combine it with style
transfer techniques for the second method. The resulting combination will enable us to generate
a transformation model that simulates the tremor pattern not only on the original movement protocol
but on other movements based on datasets from healthy individuals. Such extension allows us to use
healthy patients datasets to investigate how PD can affect patients’ movements, on a much broader
perspective than those that we can collect with real patients during measurement experiments.

3. Materials

3.1. Data Acquisition and Pre-Processing

This section describes in more detail the two EMG databases used for this work and pre-processing
methods.

3.1.1. Parkinson’s Disease EMG Dataset

A private research dataset from real PD patients surface electromyography (sEMG) was obtained
and used with permission from the authors from previous work [11]. The dataset consists of 18 different
record sets, each one with 116,000 data points (approximately 60 s), acquired from multiple sessions
from five patients, one diagnosed with Essential Tremor (ET) and four diagnosed with PD according

Sensors 2020, 20, 2605 3 of 23

to UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic Criteria [12]. All four PD patients
have been diagnosed with primary PD, idiopathic usually by old age, and responsive to dopaminergic
medication. All acquisition procedures were previously submitted and approved by the Plataforma
Brasil ethical committee, and the patient selection was performed by neurologists from the Federal
University of Sao Paulo (UNIFESP).

EMG signals were collected from wrist extensor and flexor muscles with a 2 kHz Delsys Trigno™EMG
system (DELSYS INCORPORATED, Natick, MA, USA). The data collection and pre-processing methods
follow the same approach from previous work [11]. Additionally, a 10-point moving average filter was
applied to remove noise and high frequencies. All signals were re-scaled between –1.0 and 1.0, and
have been subtracted by the signal mean to have a standard scale between different experiments and
samples. The left images in Figure 1 show examples from the raw input data. The right images depict
the signal after smoothing, and re-scaling processes are applied.

Figure 1. (a) Flexor and (b) Extensor EMG signals, acquired with surface EMG sensors attached to the
patient’s forearm. (c) Flexor and (d) Extensor EMG signals, after 10-point moving average, re-scaling,
and mean subtraction.

3.1.2. NinaPro Dataset

NinaPro is an open EMG database (http://ninapro.hevs.ch/) offering different kinds of EMG
readings from different sets of patients. In this work, NinaPro database two (DB2) was used [13],
where data are collected from three exercises [14]:

1. Basic movements of the fingers and the wrist
2. Grasping and functional movements
3. Force patterns

Since we are interested in using consistent EMG readings from the wrist of patients, we have
selected the functional movement’s experiments. We only used the readings from eight electrodes
from a Delsys Trigno™Wireless EMG system (DELSYS INCORPORATED, Natick, MA, USA) (www.
delsys.com) that follows a similar acquisition system like the one employed in our private PD dataset,
positioned around the forearm in correspondence to the radio humeral joint [14]. The sEMG signals are
also sampled at a rate of 2 kHz, which is consistent with the PD patient readings we have used before.

During the acquisition, the subjects were asked to repeat the movements with the right hand.
Each movement repetition lasted five seconds and was followed by three seconds of rest. The protocol
includes six repetitions of 49 different actions (plus rest) performed by 40 intact subjects [15].

In this work, the data from the same type of exercises (wrist flexion or extension) were combined
with the pause periods to create one segment per each stimulus. The signals were also re-scaled between

http://ninapro.hevs.ch/
www.delsys.com
www.delsys.com

Sensors 2020, 20, 2605 4 of 23

–1.0 and 1.0 and were subtracted by the mean. For this data, no moving average filter was applied, since
we wanted to keep the original frequencies and characteristics of the content unchanged, to make sure it
would be possible to compare the resulting signal to other existing models. Figure 2 shows an example
of such a signal for one individual performing a wrist extension. In this work, we have selected the first
eight signals, since they are the ones connected to the Delsys Trigno wireless sensors and are similar to
our PD EMG dataset.

Figure 2. (a) Figure extracted from [13] showing the sensor disposition around the forearm. (b) Reference
signal from NinaPro database 2 for one of eight EMG channels from the Delsys Trigno acquisition
system after pre-processing steps.

3.1.3. Programming Language and Libraries

The main programming language used to implement the proposed models was Python 3. All existing
implementations used for DCGAN and Style transfer were based on existing repositories written in
Python. The main libraries used are open-source, available libraries:

• Tensorflow: used as the main back-end for tensor calculation
• Keras: used as an abstraction layer for creating NN models
• Jupyter Notebook: used as main python IDE for structuring code and scripts
• Pandas: used for the dataset and CSV processing
• NumPy: a scientific computing library which provides an efficient matrix and array calculations
• Matplotlib: a plotting library
• distance: library for calculating DTW distance
• fastdtw: library for calculating a faster implementation for DTW distance.

All proposed models and code are available on the following GitHub repository: https://github.
com/larocs/EMG-GAN.

3.1.4. Computational Resources

For this work, most of the training and evaluation of models were done on an HP ZBook 15 G3
notebook (HP Inc., Palo Alto, CA, USA), with an Intel Core i7 processor (Intel Corporation, Santa Clara,
CA, USA), 32 GB of random access memory (RAM), and an NVIDIA Quadro M2000M GPU (NVIDIA
CORPORATE, Santa Clara, CA, USA) with 4 GB of RAM. When additional computational power
was needed, ml.p3.2xlarge instances from AWS SageMaker Notebooks (Amazon Web Services, Inc.,
Seattle, WA, USA) were used, which are equipped with an NVIDIA Tesla V100 (NVIDIA CORPORATE,
Santa Clara, CA, USA) instance with 16 GB RAM to speed up the training process.

4. Proposed Methods

This work proposed two methods for EMG data augmentation. On the first one, based on DCGANs,
we train a generator that is capable of simulating each patient’s EMG tremor pattern and its correlated

https://github.com/larocs/EMG-GAN.
https://github.com/larocs/EMG-GAN.

Sensors 2020, 20, 2605 5 of 23

discriminator. In the second, based on neural style transfer and the trained discriminator from the
previous method, we apply the style from a PD patient on a set of healthy patient EMG signals, simulating
the expected tremor behavior on a different set of movements. We can also use the same inputs to train
a Fast Neural Style Transfer transformer network to use it as a fast transformation method. Figure 3
presents a simplified diagram of the proposed methods.

Figure 3. Proposed flow for the experimental setup.

4.1. EMG Signal Generation with DCGANs

Firstly introduced in 2014 [16], a GAN is a machine learning architecture that consists basically of
two networks: a generator and a discriminator. The generator produces data with the same dimensions
as those of training data, based on some latent space given as input. The discriminator tries to distinguish
the input that came from the training data from the generated data. Both networks are trained through
common steps, while the generator gradually gains the ability to create data that are similar to the
training data, the discriminator keeps trying to force the generator to improve by providing a better
classification between fake and real data.

There have been many variations and enhancements to this architecture so far (as listed on [17])
trying to optimize different aspects of such a model, like convergence, time to train, or the variety
of generated samples. The DCGAN variation was introduced by [18] as an extension of the GAN
architecture, where deep convolutional neural networks are employed for both the generator and
discriminator models. The authors also added some general recommendations for applying DCGANs,
which is intended to create a faster and more stable convergence of both generator and discriminator
models, such as:

1. Replacing pooling layers with stridden convolutions for the discriminator and fractional-strided
convolutions for the generator.

2. Using batch norm in both the generator and the discriminator.
3. Removing fully connected hidden layers for deeper architectures.
4. Using ReLU activation in the generator for all layers except for the output, which uses tanh.
5. Using LeakyReLU activation in the discriminator for all layers.

Based on DCGAN architecture, further developments have been made allowing GANs to be
widely utilized for producing multiple images, with current developments allowing the creation of
amazing high-resolution images [19].

Sensors 2020, 20, 2605 6 of 23

However, despite their current success and results that focused on image generation, DCGANs
have been less explored on time series and biological applications, where we shift to a multi-variable
1D context with intricate patterns varying through time. Yang et al. [20] and Engel et al. [21] present
the usage of GANs for generating sound waves and music, while [22] and [23] present the usage of
GANs for generating EEG and ECG signals, respectively. These works show the feasibility of using
such architectures for bio-signal generation, using Wasserstein GAN (WGAN) architecture on [22]
and bidirectional long short-term memory (BiLSTM) networks on [23]. Both works focused on also
generating one single channel from the original signals, with a lower quantity of data points and
complexity of patterns.

In this work, the DCGAN implementation available in [24] was used as a baseline, and the generator
and discriminator networks were extended to capture more relevant features from our EMG datasets.
Figure 4 shows the best architecture achieved for the proposed system. The resulting assessment was
based on the proposed metrics defined in Section 4.3 and on visual perception of the signal similarity.
For every change in model parameters or architecture, models were re-trained from scratch with the
same dataset to compare results.

Different architectures for the discriminator and generator were evaluated, including LSTM on
both models. However, due to the complexity of the tremor signal and high length of the generated
signal, those strategies took too long to train and have not achieved good results.

Typically, while creating GANs, the generator is of primary interest—the discriminator is an adaptive
loss function that gets discarded once the generator was trained. However, as we present in this paper,
the trained discriminator can also be used as a feature extractor that can be applied in combination with
other techniques, such as style transfer.

Figure 4. The proposed DCGAN architecture. Based on 400 points sampled randomly from the real dataset,
the generator generates 2000 points that simulate the behavior of real patient tremor. The discriminator
tries to distinguish the real data from the generated data, and both networks are updated based on the
combined losses from the classification.

The generator is denoted as G (or Gθ when considering the parameters), and the discriminator is
expressed as D (or Dr when considering the parameters). A zero-sum game between the generator G
and the discriminator D is performed incrementally, according to the original GAN idea to reach the
Nash equilibrium point [16]:

min
G

max
D

V(D, G) = Ex∼pdata(x)
[
logD(x)

]
+Ez∼pz(z)

[
log(1D(G(z)))

]
(1)

Sensors 2020, 20, 2605 7 of 23

4.1.1. Generator Model

A typical DCGAN generator proposed by Radford et al. [18] tries to generate 3-channel RGB
images from a latent space z, given by a random sample of numbers with length nz. The generator
combines several up-sampling and 2D convolutional layers, finally generating a 3-channel RGB output
with the same dimensions as the original training dataset.

Our best generator model consists of a deep convolution network that takes 400 point samples
(0.2 s) from the original sample and tries to generate a new dataset with 2000 points (1 s). It includes on
the end of the deep convolutional layers a moving average function that tries to smooth the generated
signal so it can be compared to the filtered EMG input signal. We have evaluated several different
parameters (such as the number of filters, layers, activation functions, and other settings) and reached
a fine-tuned architecture according to the parameters shown in the experimental results. Figure 5
presents our custom implementation, adapting the convolutional layers for 1D convolutions and
including a dense layer and moving average at the end of the generator pipeline.

Figure 5. Our best proposed DCGAN Generator (G) model adaptation to 1D convolutions, taking 400
random samples from the training dataset and applying a sequence of convolutions, up-sampling, and a
final dense and moving average layers for improving the generator’s performance while generating
EMG signals.

4.1.2. Discriminator Model

Our best discriminator model (D) consists of a deep convolution network that takes a batch of 100
randomly distributed samples with 2000 sequential points and tries to distinguish if they come from
the training dataset or the generator. For such a task, we have combined parallel deep convolutional
pipelines where each one generates extended features based on the input vectors. The pipeline combines
four convolutional stacks, as presented in Figure 6:

Figure 6. Proposed architecture for the DCGAN discriminator. Four features are extracted based on
the generated signal (G(z)) and are passed through four convolutional layers. * The last convolution is
adapted between 32 or 64 filters according to the different features. All filters are flattened and merged,
and finally put through a dense layer with sigmoid activation for the output P(z), determining the
probability of a sample being a fake or real one. The mini-batch discriminator is also merged to the
convolutional filters before the last dense layer is applied.

Sensors 2020, 20, 2605 8 of 23

Convolutional Filters on Raw Signal

This pipeline applies four convolutional layers, each one consisting of a combination of the layers
Conv1D + BatchNorm + ReLU + Dropout. The convolutional layers are applied to the raw EMG data to
project the signal into 32 filters. The result is combined with other filters with a simple concatenation.

Convolutional Filters on FFT

The same convolutional pipeline is applied to the FFT of the raw signal, which is obtained with
a custom lambda function on the input tensor. The pipeline provides a condensed representation of
the frequency domain for the signal, highlighting the tremor frequencies typical for each patient.

Convolutional Filters on an EMG Envelope Signal

The same convolutional pipeline is applied to the EMG envelope, which is obtained by getting the
absolute value of the EMG signal and using a moving average window with 100 points. The resulting
EMG peaks are known as EMG envelopes and provide an easier detection of tremor peaks, as shown
in Figure 7.

Figure 7. EMG envelope utilized on the DCGAN discriminator pipeline.

Convolutional Filters on Wavelet Expansion

The same convolutional pipeline is applied to a 2-level discrete wavelet transformation (DWT) of
the signal, using the Daubechies wavelet db7 as wavelet mother. DWT uses a high-pass filter to obtain
high-frequency components and a low-pass filter to capture low-frequency components. According
to [25], this family of wavelet functions can properly extract essential features from sEMG signals,
which could be successfully used for movement classification.

Mini-Batch Discrimination

The concept of mini-batch discrimination was introduced by [26] as a way to solve the issue with
GANs and mode collapse. Mode collapse is when a generator learns how to generate a sample that
fools the discriminator, but only for one particular case. The mini-batch discriminator adds a similarity
function to the discriminator, so it can compare multiple instances of the generated data and make
sure they differ from each other as a regular dataset would. This approach assures that the generator
can generate multiple diverse examples that match the criteria from the discriminator. Figure 8 depicts
an example of a mini-batch discriminator model.

Sensors 2020, 20, 2605 9 of 23

Figure 8. Mini-batch discriminator architecture. Features f (xi) from sample xi are multiplied through
a tensor T, generating a matrix Mi for every sample. Cross-sample distance is computed by the
L1-distance between the rows of Mi across samples i ∈ 1, 2, ..., n and apply a negative exponential.
The output o(xi) for this mini-batch layer for a sample xi is the sum of the cb(xi, xj)’s to all other
samples—Reproduced with permission from [26].

4.1.3. Evaluated Architectures

All models were implemented with the Keras framework using Tensorflow, with a default Adam
optimizer with a learning rate of 0.002 and a default training period over 5000 epochs. For improving
generalization of the models, dropout layers were introduced between convolutional layers, and the
results presented consider models trained for only one individual for the sake of comparison.

Different activation functions were also evaluated, and the best results were achieved with the given
recommendation from [18], using rectified linear units (ReLU) on generator hidden layers and LeakyReLU
on all discriminator layers, and hyperbolic tangent (tanh) for the output layer from the generator.

For the DCGAN architecture, different architectures were evaluated for the generator and discriminator
models. For this work, we highlight six different models, each one introducing an important improvement
from the previous model:

1. 3CNN-NOISE: this model uses the generator model as described in Figure 5, with the difference
of not having the last moving average layer. It uses only three of the proposed convolution filters:
the raw EMG, the FFT, and the envelope FFT. We have initially evaluated this model with a typical
set of 100 random points as latent space (z). However, we recognized that, due to the randomness
of the input data, it was challenging for the generator to create a consistent and smooth time
series, with the input data varying so much.

2. 3CNN: this model follows the exact same architecture as the previous model, with the distinction
that it uses a 400 point sample from the reference signal. This increase in the latent space dimension
(from 100 to 400) and the use of a coherent time-series signal allowed the resulting signal to be much
smoother and closer to the reference signal. As we can see from the results in Table 1, the DTW
and FFT metrics are much closer to this model than the previous one, and the only difference is the
latent space used for the generator.

3. WAVELET: this model uses the same generator from previous models and a 2-level wavelet
decomposition as a feature for the convolutional filters on the discriminator. This model was
created to evaluate the effectiveness of wavelet decomposition as a feature extractor for the EMG
signal. Results show that even with just 2 level decomposition, the signal is quite close to the
expected tremor pattern, and therefore we decided to include such feature on the next models.

4. 4CNN: this model uses the same generator from previous models, and employs the four proposed
feature pipelines. This model presented the best results. However, the generated samples are very
similar to each other, indicating a case of mode collapse.

5. 4CNN-MBD: this model uses the same generator from previous model (4CNN), but includes one
additional pipeline for a mini-batch discriminator (MBD) block. We can see that the resulting
signal is not as smooth as the previous one, but this model generates a whole batch of different
signals that are quite similar to the real samples. For creating a multi-purpose generator, the

Sensors 2020, 20, 2605 10 of 23

possibility of generating a whole set of distinct samples is relevant. In this sense, this model is an
improvement of the previous one, although the quality is not as good.

6. 4CNN-MBD-MA: this model uses the same discriminator from the previous model (4CNN-MBD),
with an additional layer of 10-point moving average (MA) at the end of the generator model.
This small change enabled the model to avoid mode collapse (as we kept the mini-batch discriminator)
and improved the generated samples’ quality, reducing their DTW distance and FFT MSE to the
reference signals. This is the reference model (EMG-GAN) considered for further analysis.

4.2. EMG Generation Combining Two Signals with Style Transfer

Style Transfer (ST) was introduced in 2015 on the computer vision domain as a technique that
allows us to recompose the content of an image in the style of another [27]. It has been widely used
for social apps that allow the addition or removal of facial features (like aging, beards, glasses, etc.),
or stylize a picture according to a famous artist, such as VanGogh, DaVinci, or Kandinsky.

The neural style algorithm introduced in [27] uses pre-trained models (VGG16) [28] as feature
extractors for images, using learned features to define the semantic loss terms (Lcont(c, x) and Lsty(s, x))
and then uses these terms to pose the optimization problem for style transfer. The output image
is synthesized by an optimizer that tries to minimize both loss functions, finding an image that
simultaneously matches the content representation and the style representation. In this work, we have
adapted the implementation to 1D time-series data, making adjustments on the proposed content loss
and style loss functions.

One disadvantage of such an approach for optimization relies on obtaining a stylized signal
based on a specific input content signal. Indeed, we need to run the whole optimization process with
both signals as input, the content, and the style. This approach requires a slow iterative optimization
process. Therefore, it is not suited for real-time style transfer, or for a more generalized model that can
stylize any given input signal.

4.2.1. Content Loss

The content loss (Lcont) is based on the mean squared error (MSE) of a given content feature layer
(Fl) between the content signal (Fl

cs) and the generated signal (Fl
gs). The feature layer can be used with

the raw data or any other layer from a model used as a feature extractor. In our case, we have used
the first convolutional layer from the raw EMG convolutional stack used within our discriminator.
The deeper the convolutional layer chosen, the more abstract are the filters, and therefore the less
similar the generated signal is to the content waveform. When the generated signal feature layer is
identical to the one from the content, the content loss is zero.

The content loss can be expressed with the following equation:

Lcont =
1
n

n

∑
i=1

(Fl
cs − Fl

gs)
2 (2)

During the evaluation of the model, we have identified that the competition between the content
loss function (Lcont) and the style loss function (Lsty) made it impossible for the optimizer to create
an output with higher amplitudes of tremor on the static part of the signals, since Lcont tries to keep the
amplitudes close to the content signal by the nature of the mean squared error (MSE). Therefore, it was
necessary to add a custom “EMG content loss function” (ELcont) that applies a mask on top of the
content loss to limit its influence only on the dynamic part of the content signal. The EMG mask was
configured to increase the importance of the content loss on parts of the signal whose amplitude is
higher than a specific threshold value (εcs). Then, for those parts, the difference between the content
features from the content signal and the generated signal is multiplied by an amplification factor (αcs),
to make sure that, for those critical points, the output will be closed to the content signal. The custom
EMG content loss (ELcont) can be defined according to the following Equation (3):

Sensors 2020, 20, 2605 11 of 23

ELcont =
1
n

n

∑
i=1
|Fl

cs − Fl
gs| ∗ αcs, for|Fl

cs| > εcs (3)

4.2.2. Style Loss

The style loss (Lsty) proposed by [27] is based on multiple feature layers; each feature loss is
calculated based on the Euclidean distance between the Gram Matrix for the generated signal and the
style signal, multiplied by its specific weight (ωl). The Gram Matrix calculates the vector alignment
between each feature by calculating the inner product between the feature map i and j in layer l.
The Gram Matrix of a feature set can be expressed as the following:

Gl
i,j = ∑

k
Fi,k

l Fj,k
l (4)

The loss function for style is significantly similar to our content loss, except that the Mean Squared
Error for the Gram-matrices is calculated, instead of the raw tensor outputs from the layers. The overall
style loss is the sum of each feature loss divided by the total number of feature layers (N) and channels
(M). Thus, let s and x be the original style EMG signal and the generated EMG signal, respectively,
and Al and Gl their respective style representations in layer l. Thus, the contribution of each layer (El)
is the following:

El =
1

4 ∗ Nl
2 ∗Ml

2 ∗∑
k
(Gl

i,j − Al
i,j)

2
(5)

and the overall style loss (Lsty):

Lsty =
L

∑
l=0

ωlEl (6)

In this work, we replaced the VGG16 used in [27] by the trained discriminator network used
for the DCGAN architecture. We took the four main discriminator convolutional stacks (raw signal,
FFT, FFT over envelopes, and wavelet expansion) as the feature layers for the style loss, calculating
the gram matrix for the convolutional filters for the style signal and the generated signal.

4.2.3. Total Loss

Finally, the total loss (Ltotal) is the sum of the style loss (Lsty) and the custom EMG content loss
(ELcont) weighted by their respective weights, (ωsty) and (ωcont). We have evaluated different weights
effect into the generated style transfer signal:

Ltotal = ωsty ∗ Lsty + ωcont ∗ ELcont (7)

4.2.4. EMG Transformation with Fast Neural Style Transfer

Fast neural style transfer [29] is an enhancement of the Style Transfer architecture that introduces
the concept of a transformer network. It is explicitly trained to learn how to translate the content image
to a stylized image with a feed-forward network, making the style transfer much faster and easier to
apply on input images. It also allows its extension to videos and real-time conversion of frames.

In this work, we used the concept of fast neural style transfer to train a transformer network.
This network receives an input EMG signal from a healthy individual—performing some functional
actions (like wrist flexion/extension, grasping, pointing index fingers, and others)—and applies
a transformation based on a PD patient EMG signal to simulate how the signal would look like if
performed by a PD patient. The transformer network is trained based on a set of content examples
(healthy individuals database coming from NinaPro) and the style (EMG signals from our private PD
patient dataset). For calculating the losses between content, style, and transformed signals, we use
the pre-trained discriminator from the DCGAN architecture as a feature extractor—thus allowing

Sensors 2020, 20, 2605 12 of 23

the transformer network to learn the individual patterns of each patient, according to the trained
discriminator and generator.

This approach allows us to extend the usage of the discriminator not only to generate additional
data for the given protocols (resting tremor) but also to transform existing datasets based on other
protocols from healthy patients into a simulated signal as they were generated/performed by the
PD’s patient.

The implementation was based on a Keras fast neural style transfer implementation https://
github.com/misgod/fast-neural-style-keras, and we have extended the architecture to adapt the
ResNet implementation for supporting 1D convolutions. Figure 9 details the proposed architecture.
The transformer network was adapted from ResNet50 architecture by converting the 2D residual
blocks to 1D residual blocks, including deconvolutional layers at the end, for generating an output
with similar dimensions to the input.

Figure 9. The proposed Fast Neural Style Transfer architecture. Based on sample data from NinaPro
database and a PD’s patient EMG data, we train a transformer network that is capable of applying the
tremor pattern on any input EMG signal. The discriminator trained during the DCGAN steps was
used as a feature extractor for the Style Loss calculation, while the Content Loss was calculated based
on MSE from the content signal plus a custom-designed loss for applying penalties where the EMG
content signal has higher amplitudes.

We have also customized the implementation of the content loss and style loss, according to the
architecture described in Section 4, and re-used the pre-processing routines for EMG data. For training
the transformer network, we also take a randomly sampled 20,000-point window from PD EMG dataset
(reference style) and a randomly sampled batch of 20,000-point windows from the NinaPro dataset.

Since the baseline implementation does not support L-BFGS (which is what the original authors
used), we have used Adam optimizer. Since Adam is a first-order optimizer, this has required more
hyperparameter tuning to get better results. However, creating a generic transformer network that can
effectively include the style signal, and adapting it to the input content signal is a much more complex
task than running an optimization function for two individual signals. Therefore, the results obtained
from the style transfer are better than those from the fast neural style transfer. The same effects noticed
on the first approach related to the selection of weights and features can also be extended to the fast
neural style transfer.

https://github.com/misgod/fast-neural-style-keras
https://github.com/misgod/fast-neural-style-keras

Sensors 2020, 20, 2605 13 of 23

4.3. Proposed Metrics

To evaluate the performance of the DCGAN and the style transfer techniques, it is important to
define a group of metrics that can effectively measure the generated signal similarity to the real signals.
According to Xu et al. (2018) [30], several metrics are defined for GANs, like Inception Score ([26]),
Mode Score ([31]), Kernel MMD ([32]), Wasserstein distance, Fréchet Inception Distance (FID) ([33]),
and many others. However, each of those metrics has benefits and disadvantages, and are usually best
suited for image generators.

For evaluating the generation of time-series data, Delaney et al. (2019) [34] proposed the use of
Dynamic Time Warping (DTW) and Maximum Mean Discrepancy (MMD). In this work, the authors
show that both metrics can successfully evaluate the quality of the generated data, with DTW being
the preferred metric since it is more robust against training instability and sensitivity to the relative
amplitude between the real and synthetic data.

For style transfer, Yeh et al. (2019) [35] proposes a different set of metrics to evaluate how effectively
the model transfers the style to the content based on user studies and empirical result evaluation.
However, this work focuses on evaluating how good the transfer of shapes and textures between
images is, which differs significantly from time-series data approaches.

In this work, we propose a set of different metrics for evaluating the result of the DCGAN model
and for evaluating the style transfer.

4.3.1. Fast Fourier Transform (FFT) Mean Squared Error (MSE)

Fourier analysis converts a time function into the frequency domain by decomposing the signal
into sinusoidal components and the frequency domain [36]. Fourier sinusoidal components can be
summed to reconstruct the time-domain waveform. Therefore, to measure the similarity between
two-time series signals, one can use the mean square error (MSE) between signals FFT magnitudes.
The FFT MSE was used for measuring the similarity between generated data and real data and also
used to evaluate the similarity between the generated signal and the style and component signals on
the style transfer step.

4.3.2. Dynamic Time Warping (DTW)

In time series analysis, DTW is one of the algorithms for measuring similarity between two temporal
sequences by comparing local cost functions between both sequences. DTW has been applied to temporal
sequences of video, audio, and graphics data. Recently, it has been widely used for automatic speech
recognition to cope with different speaking speeds. Other applications include speaker recognition [37]
and online signature recognition [38]. Figure 10 depicts a graphical representation of DTW.

Figure 10. Time alignment of two time-dependent sequences using DTW. In this figure, two examples
of DTW distances between real sample (upper signal) and generated sample (lower signal) for two
distinct epochs: (a) Epoch 4800 and (b) Epoch 4900.

Sensors 2020, 20, 2605 14 of 23

Due to the large volume of data used as input and output, FastDTW was used to approximate
the DTW metric as it reduces the computational time required to calculate DTW to O(N), where Nis
the number of points in the series [39]. The implementation was obtained from the standard python
library (https://pypi.org/project/fastdtw/).

4.3.3. EMG Envelope Cross-Correlation

Cross-correlation is a measure of similarity of two series as a function of the displacement of one
relative to the other. It has been commonly used for applications in pattern recognition, mainly applied to
neurophysiology. The cross-correlation function is similar to applying the convolution of two functions [36].
We have used the normalized cross-correlation, which takes into account also the standard deviation
and mean values of the signals, in order to have a better measure of similarity.

According to [40], cross-correlation can be useful for evaluating changes in an individual patient’s
muscle activation patterns, but not for comparing EMG patterns among different individuals. Therefore,
it can be an important measure for evaluating the distance between real data and fake data.

Since the shape and values of tremor peaks on EMG might vary a lot from reference and generated
signals, we have identified that the simple cross-correlation on raw signals would not capture the
similarity between them. Therefore, we have calculated the normalized cross-correlation between the
EMG envelopes (with a 100-point moving average on absolute values—see Figure 7), in order to check
if generated signals correctly captured tremor peaks.

4.3.4. Style Transfer Metrics

According to Yeh et al. (2019) [35], style transfer methods are currently evaluated mostly by visual
inspection on a small set of different styles and content image pairs. Such an approach could also be
considered for 1D style transfer by visually inspecting the shape of resulting signals. Aiming at a more
quantitative analysis over style transfer, Yeh et al. (2019) also introduces two metrics: effectiveness
(E), which measures whether transferred images have the desired style; and the coherence (C), which
measures the extent to which the original image’s content is preserved after the style transfer.

Typically, such metrics can be linked to the content loss and style loss functions, when using neural
style transfer approach. However, experience shows that generated samples with the same values for
style and content loss might show completely different qualitative results when visually inspected.
Since proposed metrics such as effectiveness and coherence require user studies for evaluating the
quality of the style transfer, and such studies seem unpractical for time series data, we had to propose
a different approach based on the two metrics used for the DCGAN generation.

According to [41], it is possible to calculate the DTW of a multi-dimensional time series by
calculating first the cross-distance matrix between all dimensions and later applying the DTW distance
calculation over the matrix. In this work, we want to evaluate the DTW distance from the generated
output from the style transfer process concerning the two original signals, the content, and the
style signals. Considering that the content and style signals can be completely independent of each
other, we can assume that the best alignment between content and style is the warping function that
minimizes the distance between both signals. Therefore, it is the warping function that produces the
DTW distance.

5. Results

This section describes the results for EMG signal generation based on the two proposed approaches.

5.1. EMG Signal Generation with DCGANs

The results for the different evaluated models are displayed in Table 1 and their respective
generated signals are shown in Figure 11.

https://pypi.org/project/fastdtw/

Sensors 2020, 20, 2605 15 of 23

Table 1. Comparison table for highlighted DCGAN architectures. The lower the DTW and FFT MSE
metric values, the better is the generated signal. The lower the discriminator loss, the better it is at
distinguishing fake from real samples. The lower the generator loss, the better it is at generating fake
samples closer to real samples. Model number 6 (4CNN-MBD-MA) shows the best overall results.

Model Latent
Space (z)

Disc.
Loss

Gen.
Loss DTW FFT MSE EMG Envelope

Cross-Correlation

1. 3CNN-NOISE Rand (100) 0.000002 16.118095 405.038863 130.188808 0.373913
2. 3CNN Sample (400) 0.005163 3.084711 132.185279 13.093062 0.205428
3. WAVELET Sample (400) 0.066975 2.680009 100.145536 16.564078 0.223018
4. 4CNN Sample (400) 0.035544 7.006461 93.439412 9.675622 0.624258
5. 4CNN-MBD Sample (400) 0.000203 10.275796 100.786512 18.916364 0.739453
6. 4CNN-MBD-MA Sample (400) 0.004439 10.636311 98.532786 13.531477 0.791920

Figure 11. Resulting generated signals for the different evaluated models. Model details and metrics
are described in Table 1 and on Section 4.1.3. (a) 3CNN-NOISE, resulting EMG signal is too noisy, and
the tremor peaks are too wide; (b) 3CNN, resulting signal is smoother, but tremor shape is still far from
reference signal; (c) WAVELET, shows promising results for capturing EMG tremor shape; (d) 4CNN,
shows great similarity to reference, but presents mode collapse and generate very similar outputs;
(e) 4CNN-MBD, fix the mode collapse issue, but signal is not so similar to reference; (f) 4CNN-MBD-MA,
presents our best results, generating EMG signal similar to reference and with a lot of variation on
generated samples.

Figure 12 shows the comparison of real samples vs. the generated samples using the proposed
EMG-GAN architecture. As we can see, the EMG signals seem quite similar, and, as Figure 13 shows,
the FFT MSE and the DTW distance are very low, indicating a high similarity on the signals.

Figure 14 shows a comparison of two epochs. Although the quality of the generated signal improves
over time, the visual perception of the quality of the generated signal sometimes might decrease. Both
metrics DTW and FFT MSE can help to distinguish the quality of the generated signals, showing that,
the lower the distance, the better the results. The cross-correlation, however, shows that the latter epoch
has a higher correlation, even though the overall quality seems worse. This can happen if the similarity
between the EMG tremor peaks is high, increasing the value of the correlation. This fact, isolated, does
not mean that the overall quality of the generated signal is better, but it shows that the peaks are captured
with higher fidelity.

Sensors 2020, 20, 2605 16 of 23

Figure 12. (a) reference input signal from PD’s EMG dataset; (b) generated signal based on the trained
generator model after 4800 epochs; (c) FFT of the reference signal; (d) FFT of the generated signal. It is
possible to see that the generated signal captures the main tremor frequencies well (around 5 Hz and
its multiples, 10, 15).

Figure 13. (a) DTW distance calculated between reference signals and generated signals along epochs;
(b) FFT MSE calculated between reference signals and generated signals along epochs.

Figure 15 shows a comparison of generated signals for two different PD’s patient datasets. Both models
were trained with the same generator and discriminator architectures, with the only difference in the
training dataset. As we can see, the models can effectively mimic each patient’s unique tremor pattern,
showing that the model can effectively capture tremor shape, frequency, and amplitudes. Training the
models with a mixed dataset from multiple patients did not give good results since the discriminator
has to handle multiple patterns and does not converge.

Sensors 2020, 20, 2605 17 of 23

Figure 14. (a) Reference and generated signals for epoch 4700; (b) Reference and generated signals
for epoch 4800. Even though both Generator and Discriminator losses are lower for epoch 4800,
the evaluated metrics (FFT and DTW) can correctly evaluate that the first generated signal is more
similar to the reference signal.

Figure 15. (a) Reference and generated signals for the PD reference patient with proposed DCGAN
architecture; (b) Reference and generated signals for a different patient dataset.

Sensors 2020, 20, 2605 18 of 23

Mode Collapse and Mini-Batch Discriminator

During the development of this work, it was possible to observe that the initially generated
samples were quite similar, almost identical to each other, which is a shred of clear evidence that the
generator is suffering from mode collapse. To prevent it from happening, we introduced the concept
of mini-batch discrimination into the discriminator as an additional pipeline concatenated to the other
discriminator components.

This additional component forced the generator to produce variations on the resulting samples
as it would happen into a regular random batch of real samples. However, this addition also causes
some of the examples to be evaluated as fake samples by the discriminator. Figure 16 shows the results
with and without the mini-batch discrimination component on the discriminator model.

Figure 16. (a) Generated samples without mini-batch discriminator; (b) Generated samples with mini-batch
discriminator; The results show clearly that the examples are very distinct when the Generator is
trained with a mini-batch discriminator component inside the Discriminator. Without such an element,
the generated samples tend to converge into a single example (mode collapse), with minimal variations
on the signal shape. However, the generator takes longer to converge, and the generator loss is also
affected, creating more instability in the training process.

5.2. EMG Generation Combining Two Signals with Style Transfer

In this work, we took a Keras based style transfer implementation as the baseline https://keras.
io/examples/neural_style_transfer/, and we re-used the pre-processing routines for EMG data and
the customization of the content and style loss calculated based on features from our previous trained
discriminator model. We take a 20,000 point window (equivalent to 10 s) from both PD EMG dataset
(reference style) and from the NinaPro database (reference content). The optimizer used is based
on Scipy library implementation of Limited-Memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(L-BFGS), a second-order method for optimization that, according to [27], is more suited for style
transfer tasks. The output is initialized with a random vector, and we run the optimizer for 20 epochs
(each epoch runs the optimization function 100 times). Figure 17 shows the comparison of results for
different weights for the content weight and the style weight. It is also possible to initialize the output
vector with the original content vector, which provides a faster convergence of the optimizer.

According to the selected weight values, we can have a higher level of detail from the style signal
on the output signal, including not only the EMG tremor peaks but also the variations within the peaks.
If we reduce the weight of the style, the peaks get higher amplitude, but the detailed EMG pattern
gets lost on the style transfer. Similar behavior appears with the content weight: the lower the content
weight, the lower is the amplitude and similarity of the output signal to the content signal. The higher
the content weight, the more visible is the content signal within the output signal.

https://keras.io/examples/neural_style_transfer/
https://keras.io/examples/neural_style_transfer/

Sensors 2020, 20, 2605 19 of 23

Figure 17. Generated outputs for different values of ωsty and ωcont. From left to right, we gradually
decrease ωsty and increase ωcont, showing the resulting effect on the generated signal. (a) ωsty = 5.0/
ωcont = 0.1; (b) ωsty = 4.0/ωcont = 1.0; (c) ωsty = 2.0/ωcont = 2.0; (d) ωsty = 1.0/ωcont = 4.0;

It is also possible to change the feature layers from the discriminator model for style and content
features. If we want a higher level of abstraction on the style (fewer details on the time-series), we can
select the last convolutional layers as feature layers for the style loss. For the content loss, we are using
the raw input signal as a feature since we want to keep the output as close as possible to the content.
If we want a higher degree of abstraction also on the content, we can select deeper convolutional layers
as features. In this work, we tried to keep the frequency characteristics of the style over the amplitude
and keep the shape and amplitude of the content signal. Figure 18a,b present the general metrics,
comparing the FFT of the generated signal against the style and content signals.

Figure 18. (a) FFT comparison between generated signal and style signal for style transfer; (b) FFT
comparison between generated signal and content signal for style transfer. (c) As expected, the FFT
MSE between generated signal and style decreases over time, while FFT MSE against the content
increases over time, since we are using style features to drive the overall tremor frequencies on the style
transfer process; (d) FFT comparison between generated signal and content signal for fast neural style
transfer; (e) FFT comparison between generated signal and style signal for fast neural style transfer;
(f) Generated output based on the fast neural transformer network.

5.3. EMG Transformation with Fast Neural Style Transfer

Figure 18d,e shows the FFT comparison of reference samples (content and style) vs. the generated
signal with the fast neural style transfer approach. As we can see, the FFT of the combined signal is
much closer to the FFT of the style rather than the content FFT. However, by observing Figure 18f,
we can clearly see that the shape of the content signal is still present on the resulting signal after the
transformation of the content signal by the trained transformer network, showing that this method
can also be used for transferring style EMG signals to content EMG signals. The results, however,
are worse than those obtained with the typical style transfer based on loss optimization, as we still

Sensors 2020, 20, 2605 20 of 23

have a lot of undesired FFT components on the generated signal (comparison between Figure 18a,b
and Figure 18d,e).

6. Discussion

During the development of the proposed models for DCGAN, it was possible to validate significant
findings when trying to generate 1D complex bio-signals such as EMG tremor signals:

1. General recommendations from [18] are still valid and useful, such as using stridden convolutions
for the discriminator, batch norm in both the generator and the discriminator, and ReLU activation
in the generator for all layers except for the output.

2. While trying to replicate complex output shapes, it is essential to add different convolutional
pipelines that focus on specific features from the signal. In our case, adding both FFT analysis
and wavelet decomposition to the discriminator model was essential for generating better results.

3. Using 1D convolutions and adapting all blocks (like residual blocks) gave us better results than
trying to use 2D representations of the time-series signals.

4. We have evaluated different architecture parameters for the Generator model, using a different
number of convolutional layers, filters, and different input sizes for the latent space. It was possible
to see during experiments that, with a lower and random latent space, the model takes longer
to converge, and the generated signal is not as good as expected. By increasing the number of
points and by introducing the sampling of the real signal as input, it was possible to generate
better results.

5. Defining metrics that can effectively evaluate the performance of the generator vs. the reference
signals are also important and might vary a lot depending on the features that we want to preserve
from the original signals. In our case, the FFT and DWT were the best evaluation metrics for
raw EMG. Normalized cross-correlation is only able to capture similarity between reference and
generated signals if we apply it over the EMG envelopes, since raw EMG data vary too much
over peak shapes and amplitudes.

6. Mini-batch discriminator is vital if we wish to create a generator that can create a wide range of
variations on the generated signals. However, this can reduce the stability and convergence of the
generator if not configured properly together with other features on the discriminator model.

7. It was possible to see that the proposed method successfully simulates given input EMG patterns,
even when tremor is not well identifiable within the EMG signal, showing great potential for
generalization to generate many other types of movement besides tremor patterns. The proposed
architecture can be extended by Future work that can explore such potential of proposed models
for other types of EMG signal applications.

For the development of the style transfer, it was essential to find a pre-trained model that can
extract crucial style features from the EMG signals. In our case, re-using the discriminator trained on
the previous step represented a considerable advantage, and made it possible to transfer the tremor
pattern to the content signal effectively. It is also important to evaluate carefully the weights used on
the style transfer since different features might affect the output result differently.

Future work could extend the results of this work by collecting new datasets from PD’s patients
performing similar movements like those available on the NinaPro database (e.g., wrist extension,
flexion) in order to validate that the style transfer method proposed is really an optimal approximation
to real patients’ movements. This could support finding optimal weights for the content and style and
also evaluate better the level of feature abstraction needed to generate a realistic sample. We could
also use the proposed methods to assess the differences between primary and secondary PD patients,
utilizing the discriminator models to classify both types of disease. Another possibility is to extend the
DCGAN architecture for conditional input embedding (C-DCGAN), similar to the approach from [42],
making it possible for the DCGAN model to adapt the generated signal based on the selected patient
given as an additional parameter to the generator. To improve even further EMG signal generation,

Sensors 2020, 20, 2605 21 of 23

additional features from the input signal could also be explored, like using PCA decomposition or other
EMG features to the discriminator model pipeline, to improve the results from the generator model.

7. Conclusions

This paper proposes two new data augmentation methods for EMG signal generation using
DCGANs and Style Transfer, creating a reference implementation based on Python. It contributes with
three main findings to its field. First, we have shown that the usage of DCGANs with domain-specific
discriminator CNN pipelines can successfully simulate EMG tremor behavior, not only mimicking
generic tremor patterns but patient and protocol-specific characteristics. Such achievement can support
the development of new assisting treatments for reducing tremors on PD patients by extending existing
datasets and reducing the necessary time for real patient experiments for capturing data. Second,
we have validated that the DTW distance and FFT MSE can be defectively used as a measurement for
the evaluation of EMG signal generation. Finally, by utilizing the Style Transfer approach, we were
able to successfully transfer tremor patterns for different protocols and datasets, simulating patients
tremor on various circumstances and protocols using existing healthy patient datasets. Such results
can provide the basis for building Parkinson’s disease signal simulators, allowing patients to spend
less time on data acquisition experiments, and allowing the generation of more data for supporting
further assisting technology development.

Author Contributions: R.A.Z. and E.L.C. conceived and designed the experiments; R.A.Z. performed the
experiments; R.A.Z. analyzed the data with support from E.L.C.; R.A.Z. wrote the paper and E.L.C. reviewed and
contributed to the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was funded by Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP #2020/06249-4).

Acknowledgments: We want to acknowledge the collaboration from professor Maria Claudia Ferrari de Castro
and the Federal University of Sao Paulo (UNIFESP) for their contribution to this work by providing the PD’s EMG
dataset used as the basis for our findings.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. World Health Organization. Neurological Disorders: Public Health Challenges; World Health Organization:
Geneva, Switzerland, 2006.

2. Petersen, E.; Rostalski, P. A Comprehensive Mathematical Model of Motor Unit Pool Organization, Surface
Electromyography, and Force Generation. Front. Physiol. 2019, 10, 176. [CrossRef]

3. Philipson, B.J. System and Methods for Emg-Triggered Neuromuscular Electrical Stimulation. U.S. Patent
2009/0171417A1, 2 July 2009.

4. Bó, A.P.L. Compensation Active de Tremblements Pathologiques des Membres supéRieurs via la Stimulation
éLectrique Fonctionnelle. Ph.D. Thesis, Université Montpellier II, Montpellier, France, 2010.

5. Ahad, M.A. Analysis of Simulated Electromyography (EMG) Signals Using Integrated Computer Muscle
Model. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2019.

6. Morón, J.; DiProva, T.; Cochrane, J.R.; Ahn, I.S.; Lu, Y. EMG-based hand gesture control system for robotics.
In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS),
Windsor, ON, Canada, 5–8 August 2018; pp. 664–667. [CrossRef]

7. Kostić, V.S.; Tomić, A.; Ječmenica-Lukić, M. The Pathophysiology of Fatigue in Parkinson’s Disease and its
Pragmatic Management. Mov. Disord. Clin. Pract. 2016, 3, 323–330. [CrossRef] [PubMed]

8. Hamilton-Wright, A.; Stashuk, D.W. Physiologically based simulation of clinical EMG signals. IEEE Trans.
Biomed. Eng. 2005, 52, 171–183. [CrossRef] [PubMed]

9. Guerrero, J.A.; Macías-Díaz, J.E. A package for the computational analysis of complex biophysical signals.
Int. J. Mod. Phys. C 2019, 30, 1950005. [CrossRef]

10. Zanini, R.A.; Colombini, E.L.; de Castro, M.C.F. Parkinson’s Disease EMG Signal Prediction Using Neural
Networks. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics
(SMC), Bari, Italy, 6–9 October 2019; pp. 2446–2453.

http://dx.doi.org/10.3389/fphys.2019.00176
http://dx.doi.org/10.1109/MWSCAS.2018.8624056
http://dx.doi.org/10.1002/mdc3.12343
http://www.ncbi.nlm.nih.gov/pubmed/30363584
http://dx.doi.org/10.1109/TBME.2004.840501
http://www.ncbi.nlm.nih.gov/pubmed/15709654
http://dx.doi.org/10.1142/S0129183119500050

Sensors 2020, 20, 2605 22 of 23

11. Pinheiro, W.C.; Bittencourt, B.E.; Luiz, L.B.; Marcello, L.A.; Antonio, V.F.; de Lira, P.H.A.; Stolf, R.G.;
Castro, M.C.F. Parkinson’s Disease Tremor Suppression. In Proceedings of the 10th International Joint
Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), Porto, Portugal,
21–23 February 2017; pp. 149–155. [CrossRef]

12. Hughes, A.; Daniel, S.; Kilford, L.; Lees, A. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease:
A clinico-pathological study of 100 cases. J. Neurol Neurosurg. Psychiatry 1992, 56, 938–939. [CrossRef]

13. Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.M.; Elsig, S.; Giatsidis, G.; Bassetto, F.;
Müller, H. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data
2014, 1, 140053. [CrossRef]

14. Gijsberts, A.; Atzori, M.; Castellini, C.; Müller, H.; Caputo, B. Movement Error Rate for Evaluation of Machine
Learning Methods for sEMG-Based Hand Movement Classification. IEEE Trans. Neural Syst. Rehabiliation
Eng. 2014, 22, 735–744. [CrossRef]

15. Atzori, M.; Cognolato, M.; Müller, H. Deep Learning with Convolutional Neural Networks Applied to
Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands. Front. Neurorobot.
2016, 10, 9. [CrossRef]

16. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y.
Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661.

17. Lucic, M.; Kurach, K.; Michalski, M.; Gelly, S.; Bousquet, O. Are GANs Created Equal? A Large-Scale Study.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NeurIPS 2018);
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates,
Inc.: Montréal, QC, Canada, 2018; pp. 698–707.

18. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434.

19. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and
Variation. arXiv 2017, arXiv:1710.10196.

20. Yang, L.C.; Chou, S.Y.; Yang, Y.H. MidiNet: A Convolutional Generative Adversarial Network for
Symbolic-Domain Music Generation. arXiv 2017, arXiv:1703.10847.

21. Engel, J.; Agrawal, K.K.; Chen, S.; Gulrajani, I.; Donahue, C.; Roberts, A. GANSynth: Adversarial Neural
Audio Synthesis. arXiv 2019, arXiv:1902.08710.

22. Hartmann, K.G.; Schirrmeister, R.T.; Ball, T. EEG-GAN: Generative adversarial networks for electroencephalograhic
(EEG) brain signals. arXiv 2018, arXiv:1806.01875.

23. Zhu, F.; Ye, F.; Fu, Y.; Liu, Q.; Shen, B. Electrocardiogram generation with a bidirectional LSTM-CNN
generative adversarial network. Sci. Rep. 2019, 9, 6734. [CrossRef]

24. Linder-Norén, E. Keras-GAN. 2017. Available online: https://github.com/eriklindernoren/Keras-GAN/
tree/master/dcgan (accessed on 11 June 2019).

25. Mane, S.; Kambli, R.; Kazi, F.; Singh, N. Hand Motion Recognition from Single Channel Surface EMG Using
Wavelet & Artificial Neural Network. Procedia Comput. Sci. 2015, 49, 58–65. [CrossRef]

26. Salimans, T.; Goodfellow, I.J.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved Techniques for
Training GANs. arXiv 2016, arXiv:1606.03498.

27. Gatys, L.A.; Ecker, A.S.; Bethge, M. A Neural Algorithm of Artistic Style. arXiv 2015, arXiv:1508.06576.
28. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv

2014, arXiv:1409.1556.
29. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution.

In ECCV; Springer: Cham, Switzerland, 2016.
30. Xu, Q.; Huang, G.; Yuan, Y.; Guo, C.; Sun, Y.; Wu, F.; Weinberger, K.Q. An empirical study on evaluation

metrics of generative adversarial networks. arXiv 2018, arXiv:1806.07755.
31. Che, T.; Li, Y.; Jacob, A.P.; Bengio, Y.; Li, W. Mode Regularized Generative Adversarial Networks. arXiv 2016,

arXiv:1612.02136.
32. Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Schölkopf, B.; Smola, A.J. A Kernel Method for the

Two-Sample-Problem. In Advances in Neural Information Processing Systems 19; MIT Press: Cambridge,
MA, USA, 2007; pp. 513–520

33. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Klambauer, G.; Hochreiter, S. GANs Trained by a Two
Time-Scale Update Rule Converge to a Nash Equilibrium. arXiv 2017, arXiv:1706.08500.

http://dx.doi.org/10.5220/0006152501490155
http://dx.doi.org/10.1136/jnnp.55.3.181
http://dx.doi.org/10.1038/sdata.2014.53
http://dx.doi.org/10.1109/TNSRE.2014.2303394
http://dx.doi.org/10.3389/fnbot.2016.00009
http://dx.doi.org/10.1038/s41598-019-42516-z
https://github.com/eriklindernoren/Keras-GAN/tree/master/dcgan
https://github.com/eriklindernoren/Keras-GAN/tree/master/dcgan
http://dx.doi.org/10.1016/j.procs.2015.04.227

Sensors 2020, 20, 2605 23 of 23

34. Delaney, A.M.; Brophy, E.; Ward, T.E. Synthesis of Realistic ECG using Generative Adversarial Networks.
arXiv 2019, arXiv:1909.09150.

35. Yeh, M.C.; Tang, S.; Bhattad, A.; Zou, C.; Forsyth, D. Improving Style Transfer with Calibrated Metrics. arXiv
2019, arXiv:1910.09447.

36. Semmlow, J.; Griffel, B. Biosignal and Medical Image Processing; CRC Press: Boca Raton, FL, USA, 2014.
37. Shahin, I.; Botros, N. Speaker identification using dynamic time warping with stress compensation technique.

In Proceedings of the IEEE Southeastcon’98 ‘Engineering for a New Era’, Orlando, FL, USA, 24–26 April 1998;
pp. 65–68.

38. Miguel-Hurtado, O.; Mengibar-Pozo, L.; Lorenz, M.G.; Liu-Jimenez, J. On-Line Signature Verification by
Dynamic Time Warping and Gaussian Mixture Models. In Proceedings of the 2007 41st Annual IEEE International
Carnahan Conference on Security Technology, Ottawa, ON, Canada, 8–11 October 2007; pp. 23–29.

39. Salvador, S.; Chan, P. Toward Accurate Dynamic Time Warping in Linear Time and Space. Intell. Data Anal.
2007, 11, 561–580. [CrossRef]

40. Wren, T.; Do, K.P.; Rethlefsen, S.; Healy, B. Cross-correlation as a method for comparing dynamic
electromyography signals during gait. J. Biomech. 2006, 39, 2714–2718. [CrossRef]

41. Ten Holt, G.; Reinders, M.; Hendriks, E. Multi-dimensional dynamic time warping for gesture recognition.
In ASCI 2007—Proceedings of the 13th Annual Conference of the Advanced School for Computing and Imaging;
Advanced School for Computing and Imaging (ASCI): Heijen, The Netherlands, 2007.

42. Fu, R.; Chen, J.; Zeng, S.; Zhuang, Y.; Sudjianto, A. Time Series Simulation by Conditional Generative
Adversarial Net. arXiv 2019, arXiv:1904.11419.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3233/IDA-2007-11508
http://dx.doi.org/10.1016/j.jbiomech.2005.09.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials
	Data Acquisition and Pre-Processing
	Parkinson's Disease EMG Dataset
	NinaPro Dataset
	Programming Language and Libraries
	Computational Resources

	Proposed Methods
	EMG Signal Generation with DCGANs
	Generator Model
	Discriminator Model
	Evaluated Architectures

	EMG Generation Combining Two Signals with Style Transfer
	Content Loss
	Style Loss
	Total Loss
	EMG Transformation with Fast Neural Style Transfer

	Proposed Metrics
	Fast Fourier Transform (FFT) Mean Squared Error (MSE)
	Dynamic Time Warping (DTW)
	EMG Envelope Cross-Correlation
	Style Transfer Metrics

	Results
	EMG Signal Generation with DCGANs
	EMG Generation Combining Two Signals with Style Transfer
	EMG Transformation with Fast Neural Style Transfer

	Discussion
	Conclusions
	References

