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Abstract

Background: Cotton (Gossypium hirsutum) is one of the most important economic crops and
provides excellent fibers for textile manufacture. In addition to its industrial and agricultural
importance, the fiber cell (plant trichome) also is a biological model system for exploring gene
expression and regulation. Small RNAs regulate many aspects of plant growth and development.
However, whether small RNAs are involved in regulation of fiber cell development is unknown.

Results: We adopted a deep sequencing approach developed by Solexa (lllumina Inc.) to
investigate global expression and complexity of small RNAs during cotton fiber initiation and
development. We constructed two small RNA libraries prepared from wild type (WT) and fuzz/
lintless (fl Mutant in the WT background) cotton ovules, respectively. Each library was sequenced
individually and generated more than 6-7 million short sequences, resulting in a total of over 13
million sequence reads. At least 22 conserved candidate miRNA families including 111 members
were identified. Seven families make up the vast majority of expressed miRNAs in developing
cotton ovules. In total 120 unique target genes were predicted for most of conserved miRNAs. In
addition, we identified 2 cell-type-specific novel miRNA candidates in cotton ovules. Our study has
demonstrated significant differences in expression abundance of miRNAs between the wild-type
and mutant, and suggests that these differentially expressed miRNAs potentially regulate
transcripts distinctly involved in cotton fiber development.

Conclusion: The present study is the first to deep sequence the small RNA population of G.
hirsutum ovules where cotton fibers initiate and develop. Millions of unique miRNA sequences
ranging from 18~28 nt in length were detected. Our results support the importance of miRNAs in
regulating the development of different cell types and indicate that identification of a
comprehensive set of miRNAs in cotton fiber cells would facilitate our understanding of the
regulatory mechanisms for fiber cell initiation and elongation.

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19788742
http://www.biomedcentral.com/1471-2164/10/457
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2009, 10:457

Background

MicroRNAs (miRNAs) are a class of short (~21 nt), endog-
enous non-coding small RNAs that have base pair
sequences complementary with specific target genes to
repress their translation or induce their degradation.
While in animals regulation of gene expression by miR-
NAs is achieved by sequence-specific targeting of the 3'
untranslated region of mRNAs, the plant miRNAs gener-
ally interact with their targets through perfect or near-per-
fect complementarity to direct mRNA degradation [1,2]. A
growing number of new miRNAs in plants have been
identified in recent years. To date, more than 1000 genes
encoding miRNAs have been annotated in Arabidopsis, rice
and other plant species [3]. Moreover, several other classes
of small RNAs (also known as small interacting RNAs, siR-
NAs), distinguished by their origin and biological func-
tion, have been identified. These include heterochromatic
siRNAs, trans-acting siRNAs (ta-siRNAs), natural antisense
siRNAs (nat-siRNAs), Piwi-interacting RNAs [4], and a
recently identified class of small RNAs associated with
gene promoters (PASRs) and 3' termini (TASRs) [5].

Identification of comprehensive sets of miRNAs and other
small RNAs in different plant species is a critical step to
facilitate our understanding of regulatory mechanisms or
networks for target genes and cell development. The
higher plants contain diverse cell types. Each of them has
its own initiating program, structure and biological func-
tion. Cellular differentiation is accompanied by changes
in transcription, translation and many other physiological
processes [6]. Cotton fibers are single-celled epidermal tri-
chomes and provide an outstanding model for investiga-
tion of cellular and developmental events which also
occur in Arabidopsis leaf trichomes [7]. The development
of a fiber cell is a complex morphological and molecular
process, which is characterized by cell cycle status, tran-
scriptional control and multiple cytoskeletal functions
comprising an integrated hierarchy of regulation.
Recently, a number of genes controlling early fiber initia-
tion and late development have been identified, and some
of them have been functionally characterized.
GhMYB109, a putative ortholog of AtMYBGLY1, is specifi-
cally expressed in fiber cell initials and elongating cells
[8]. Moreover, ectopic expression of GaMYB2 induces a
single trichome in epidermis of Arabidopsis seeds [9].
Two cotton genes containing WD40 domains comple-
ment the Arabidopsis ttg] mutant [10]. Comparative stud-
ies on Arabidopsis leaf trichomes and multiple gene
expression have provided great insights into the cotton
ovular fiber development [6,11-13]. Using microarray
technology, hundreds of transcripts were analyzed and
exhibited distinct expression patterns during the early
stage of fiber cell development [6,11-16]. Using a compu-
tational approach, we initially identified 37 potential
miRNAs from cotton (G. hirsutum); further, 96 potential
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targets were detected for these potential miRNAs [17].
More recently, several other labs also performed in silico
identification of dozens of conserved miRNAs from the
same species [18-20]. Amongst the putative targets these
studies reported were transcription factors (e.g. MYB),
auxin responsive proteins and other genes related to fiber
development [17,18]. To explore the role of small RNAs
in cotton fibers, Abdurakhmonov and co-workers recently
analyzed small RNA sequences from 0-10 days post anthe-
sis (DPA) developing cotton ovules and obtained hun-
dreds of small RNAs [21]. Although 583 unique sequence
signatures of small RNAs were achieved, only two con-
served miRNAs were detected. It is most likely that the tra-
ditional method does not sequence deeply enough to
sample the full complexity of small RNAs in ovules.
Recently developed high-throughput sequencing technol-
ogies provide a powerful approach to identify and quan-
tify SRNAs/miRNAs [22]. Small RNAs are best discovered
and measured by deep sequencing methods that have
high sensitivity and specificity [23-25]. Additionally, it is
feasible to explore or annotate miRNAs in organisms
whose genome sequences have not been completed. Here,
we adopted a deep sequencing method developed by Sol-
exa (Illumina Inc.) to identify small RNAs from cotton
ovules and analyze abundance and complexity of small
RNAs. We constructed two small RNA libraries prepared
from wild type (WT) and fuzz/lintless (Mutant in the
same background) cotton ovules, respectively. Samples
were collected from 0-10 DPA developing cotton ovules,
which cover major morphological changes as well as sev-
eral underlying developmental processes including fiber
initiation and elongation [11]. Each library was
sequenced individually and generated more than 6-7 mil-
lion short sequences, with a total of over 13 million
sequence reads. We obtained more than 100 conserved
miRNAs representing 36 families from the cotton ovules.
Many of them were originally identified in this study. In
addition, two non-conserved novel miRNA candidates
were identified.

Results

Analysis of sequences

Previous studies have demonstrated that cotton fiber
development is a complex process that involves a large
number of gene expression and regulation [6,7,26]. To
understand whether small RNA is involved in the process,
we employed a upland cotton cultivar Xuzhou 142 (wild
type) and a fuzzless-lintless mutant in Xuzhou 142 back-
ground, both of which were genetically identified [27]
and are phenotypically similar except for the feature of the
mutant seeds bearing few or no fibers (Figure 1). Microar-
ray analyses of transcripts demonstrated that a number of
genes in the wild-type and fl mutant ovules were differen-
tially expressed between 0-10 DPA [11]. Based on the fact,
we reasoned that deep sequencing ovular small RNA
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Figure |

Developing wildtype and mutant ovules. Excised ova-
ries exhibiting developing ovules from Gossypium hirsutum
Xu-142 wildtype (WT) and fuzzless-lintless mutant (M)(in Xu-
142 background), harvested at different days post anthesis
(DPA). The young cotton trichomes from the wildtype have
been slightly and gently plucked open with a pair of tweezers
to exemplify and visualize the presence and length of the rap-
idly elongating trichomes that are virtually absent in the
mutant.

would provide a full view of small RNA components and
differential expression profiles of small RNAs between the
wild-type and mutant. Thus, two small RNA libraries were
constructed from the wild-type and mutant ovules. Deep
sequencing the libraries generated 7,055,692 and
6,517,694 sequence reads from the wild-type and mutant
ovules, respectively. After the removal of low quality reads
and corrupted adapter sequences (reads < 18 nt and reads
> 28 nt), 6,584,945 reads (4,124,219 unique sequences)
remained for the wild-type and 6,069,470 reads
(3,391,661 unique sequences) for the mutant. The major-
ity of small RNAs was 21-24 nt for both libraries (> 90%),
with 24 nt small RNA being the most abundant (Figure 2,
Additional file 1), which is within the typical size range
for Dicer-derived products and in agreement with most of
the previous results [28-30].

The dataset was used to query the non-coding RNAs
sequences deposited at NCBI GenBank http://
www.ncbi.nlm.nih.gov/ and the Rfam database [3] in
order to separate the small RNAs that match to non-cod-
ing sequences such as rRNA, tRNA, snRNA and snoRNA.
These accounted for 332,455 reads (46,542 unique
sequences) in wild-type and 292,158 reads (45,612
unique sequences) in mutant. Since the cotton genome
has not been completely sequenced, we used Short Oligo-
nucleotide Analysis Package (SOAP, http://soap.genom
ics.org.cn)[31] to annotate small RNA sequences that map
to TIGR Cotton Transcript Assemblies (TIGR) http://
plantta.jcvi.org/. With only 70,667 TAs available, less than
10% of the small RNAs from each library were mapped.
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Identification of conserved candidate miRNAs

Aligning small RNA sequences to known miRNAs resulted
in 496,654 and 816,359 matches for wild-type and
mutant, respectively. At least 22 conserved potential
miRNA families including 111 individual candidate miR-
NAs were identified, with miRNA families 167, 172 and
156/157 being the most abundant (Table 1, Figure 3,
Additional file 2). MiR167 dominated in both libraries
and accounted for 59.1% (WT) and 66.8% (M) of all con-
served miRNA reads. Several miRNA families such as
miR159, miR162 and miR894 had moderate abundance
of expression. In contrast, some miRNA families showed
very low abundance of expression in ovules, with several
read counts only. The varied abundance of the miRNA
families suggests that miRNA genes would be differen-
tially transcribed during the early fiber cell development.
Diversity of cotton fiber miRNAs also can be found in the
aspect of the amount of members they contain. The largest
miRNA family size identified was miR169 that consisted
of 13 members and miR165/166, miR156/157 and
miR399 possessed 11, 10 and 8 members, respectively,
whereas 16 miRNA families such as miR162, miR170 and
miR394 had only one member detected in the cotton
ovules (Figure 4).

Amongst the conserved miRNAs families, ten (consisting
of 15 individual candidate miRNAs) have not been iden-
tified before in cotton by any of the earlier, mostly in silico,
studies [17-19,21,32]. These miRNAs can be considered
as new but species-conserved miRNAs in G. hirsutum.
These included miR159a/b/c/f, miR170, miR319a/c/e,
miR473a, miR477, miR479, miR530, miR535a, miR858
and miR894. (Table 1, Additional file 2). We also com-
pared miRNAs from this study to those computationally
predicted and found there were 22 overlaps of miRNA
families (Additional file 3), indicating that most of the
previously predicted miRNAs could be recovered by the
deep-sequencing method.

The number of reads reflects enrichment of miRNAs. Most
of the miRNA read frequencies exhibit significant differ-
ences between the two libraries. Expression of miR165/
166, miR159, miR160, miR162, miR167, miR171,
miR172, miR390, miR393, miR394, miR396, miR403,
miR408, miR503, miR535 and miR894 were significantly
up-regulated in mutant compared to the wild-type,
whereas miR156/157, miR164, miR168, miR169,
miR395, miR397 and miR399 showed down-regulation
in mutant relative to the wild-type. The abundantly pre-
sented families like miR165/166, miR160 and miR167
were expressed very highly in the mutant. MiR399 was
detected 6-fold higher in wild-type than in mutant. Sev-
eral other miRNA families such as miR393, miR408 and
miR530 also showed higher levels of expression in
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Figure 2

Abundance of small RNA sequences with different
size derived from wild-type and mutant libraries. All
of the reads are of high quality, ranging from 18-28 nt in
length.

mutant than in wild-type. To a lesser degree, miR395 and
miR397 showed comparatively low expression levels in
mutant. Interestingly, the highly enriched miR156/157
family was found at similar levels in both libraries.

Analysis of novel miRNA candidates

Since the completely sequenced genome of cotton is una-
vailable, unique small RNA sequences were mapped to
cotton TIGR Plant Transcript Assemblies sequences to
identify potentially novel miRNAs. Also, because of the
unknown background of cotton small RNA population, it
is rather challenging to confidentially identify non-con-
served miRNAs. Secondary structures were predicted and
analyzed for stable stem-loop hairpins. Following BLASTn
search and hairpins structure prediction, two putative G.
hirsutum unique miRNAs were detected (Figure 5), both of
which meet the new criteria of miRNA annotation [25].
We found that the two miRNAs (named ghr-miRNVL1
and ghr-miRNVL2) have structures that feature both
miRNA and miRNA* (Table 2, Figure 5). For ghr-
miRNVL1, 1074 reads were detected at the 5' and 9 reads
at the 3'. Ghr-miRNVL2 had 313 5' reads and 3 3' reads.
Ghr-miRNVL1 and ghr-miRNVL2 were found in both
wild-type and mutant libraries, suggesting that the 2
miRNA candidates are G. hirsutum-specific.

Prediction of miRNA targets

Targets were predicted for all identified miRNA families.
In total 120 unique target genes were predicted for 21 of
the conserved miRNA families (Additional file 4). Only
genes with known or putative functions were presented.
Some miRNA families have multiple target sites (e.g.
miR399g), suggesting that these miRNAs are functionally
divergent. Additionally, a single gene may potentially be
targeted by several miRNAs (e.g. miR171a/b/f). On the
basis of the biological functions described by UniProt

http://www.uniprot.org/, these target genes can be
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grouped into 10 categories. The majority of targets fall
into the category of transcription regulation, indicating
these genes encode transcript factors (Table 3). Several
other groups contain genes regulating transport, oxidative
reduction, signal transduction pathway, and enzymes
involved in metabolisms, respectively. Unfortunately,
none of the target genes have been predicted for the two
novel candidate miRNAs. This is most possibly attributed
to the incomplete cotton genome.

Discussion

To date, more than one thousand plant miRNA genes
have been annotated and some of them have been well
characterized [3]. However, the number of plant miRNAs
appears not to be saturated and many other functional
miRNAs in plant species remain to be investigated. Com-
pared to annotated miRNAs from Arabidopsis and rice,
very few miRNAs from cotton plants have been identified.
Recently, several studies performed in silico identification
of miRNAs from G. hirsutum [17-19,32]. Approximate 18
highly conserved miRNA families were detected and sev-
eral less conserved miRNAs (or families) were found.
When compared to the miRNAs predicted previously,
most of them could be recovered by deep sequencing, and
only a small portion of them (e.g. miR391 and miR400)
were not [17-19,32]. These missing miRNAs might be
attributed to the fact that the sequences (e.g. EST or GSS)
used for prediction were derived from tissues such as
leaves or roots rather than ovules. Also, it was likely that
false positive predictions were included. On the other
hand, several miRNAs (or families) such as miR159,
miR172, miR319, miR473, miR477, miR479, miR530,
miR535, miR858 and miR894 were not successfully pre-
dicted, suggesting that these miRNAs may be tissue-spe-
cific in cotton ovules. MiR172 and miR390 have been
recently cloned from cotton (G. hirsutum) ovule using a
traditional cloning approach [32], both of which were
also detected in this study.

The present study is the first to deep sequence the small
RNA population of G. hirsutum ovules where cotton fiber
cells initiate and develop. Millions of unique siRNA
sequences ranging from 18~28 nt in length were detected.
Analysis of the evolutionary conservation of these miR-
NAs revealed 111 individual conserved miRNAs belong-
ing to 22 families. Together with the several G. hirsutum
miRNAs existing in miRBase (Release 12.0, Sept, 2008,
www.sanger.ac.uk/Software/Rfam/ftp.shtml), this study
will bring the number of miRNAs in G. hirsutum up to
120.

The vast majority of conserved miRNAs from cotton
ovules is not surprising. Most of the miRNAs identified in
this study are conserved in Arabidopsis and only a few are
conserved in other plant species. The phenomenon can be
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Table I: Identified known (or conserved) candidate miRNA
families in Gossypium hirsutum wildtype (WT) and fuzz/lintless
mutant (M) ovules.

miRNA Family Sequence Reads Ratio
WT M (WT/M)

156/157 96705 94568 1.0 o

159* 642 949 0.7 o

160 46 129 04 ok

162 542 762 0.7 o

164 8183 6863 1.2 o

165/166 4951 11909 0.4 ok

167 293960 545537 0.5 o

168 1633 1208 1.4 ok

169 523 441 1.2 ok

170* | I 1.0

171 433 750 0.6 o

172 83392 147672 0.6 oK

319* | 4 0.3

390 2258 2518 0.9 o

393 93 184 0.5 o

394 232 313 0.7 o

395 150 56 27 oK

396 155 191 0.8 o

397 137 42 33 o

398 7 I 7.0

399 1222 202 6.0 o

403 13 21 0.6 o

408 16 31 0.5 o

472 | 2 0.5

473* 10 4 25

477* 0 I 0.0

479* 9 0 X ok

482 3 6 0.5

530* 17 36 0.5 o

535% 634 115 0.6 o

827 65 47 1.4

829 0 I 0.0

858* 13 10 1.3

894* 607 785 0.8 ok

*Newly identified miRNAs from Gossypium hirsutum. **p < 0.01.

explained by the fact that cotton fibers (seed trichomes)
and epidermal hairs (leaf trichomes) are phenotypically
similar; both types of trichomes use a common mecha-
nism, e.g. that closely associated with the transcription
factors for regulating trichome initiation and develop-
ment [9,16]. Notably, some highly conserved miRNA
families such as miR156/157, miR167 and miR172 were
sequenced more than ten thousands or even one hundred
thousands times in a single library. These highly con-
served miRNAs may represent a relationship between evo-
lutionary conservation and expression abundance [24].
On the opposite, some miRNA families that are less con-
served or even species-specific have very low abundance.
From an evolutionary view, these miRNAs play a role in
establishing and maintaining phenotypic diversity
between different groups of organisms and are involved in
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regulation of the lineage-specific pathways and functions
[24,33]. In addition to the conserved miRNAs, two puta-
tive miRNAs identified in this study do not have orthologs
in Arabidopsis and other species (Table 2). Since the non-
conserved miRNAs usually express at a low level and in
specific cell types (ovules), it is suggested that these cot-
ton-specific miRNAs may have expanded after the diver-
gence of the monocot and dicot plant lineages, supporting
the presumption that a diverse set of miRNAs are evolving
rapidly and independently with each species [34].

Our comparative analysis of small RNA abundance
between the wild-type and fI mutant indicated that the
mutant contains an altered small RNA population, with a
smaller proportion of total RNA reads. However, in fl
mutants many small RNA families with 21-22 nt were
enriched (Figure 2). Differential miRNA abundance was
also found between the wild-type and mutant. A surpris-
ing observation was that the majority of miRNA families
in fl mutant had significantly higher abundance than in
wild-type (Figure 3B). This result suggests that the mutant
has a changed regulation of MIRNA expression during the
fiber development. Further identification of the regulatory
process and metabolic pathway in mutants will provide
insights into the impaired miRNA biogenesis and abnor-
mal trichome cell differentiation.

It is of interest that a large number of miRNAs from ovules
potentially target transcription factors, which was consist-
ent with our previous predictions [17]. In Arabidopsis,
miR159 mediates cleavage of MYB101 and MYB33 tran-
scripts, the two transcription factors that function as posi-
tive regulators of abscisic acid (ABA) response [35].
Similarly, miR319 is complementary to a highly con-
served motif in the coding region of the GAMYB-related
clade of MYB [36,37]. In this study, several members of
putative MYB families were predicted to have binding
sites for miR169, miR396, miR399 and miR858, suggest-
ing the potential regulation of fiber development. MiR858
is of particular interest because it targets the GhMYB10
mRNA. Ectopic expression of GEMYBI10 in transgenic
tobacco plants causes abnormal cell shapes of leaf tri-
chomes [38].

Amongst the predicted targets of miR167 was Auxin
Response Factors (ARF). These proteins are bound to the
auxin response elements and regulate auxin-mediated
transcriptional activation/repression. In vitro-cultured cot-
ton ovules, exogenous auxin is required to promote fiber
cell development [26]. Our data have demonstrated that
in the mutant, miR167 was expressed more highly. In rice
culture cells, miR167 was shown to cleave ARF8 mRNA.
The abundance of miR167 was controlled by the level of
auxin in growth medium. When cells were grown in
auxin-free medium, miR167 level decreased [12]. Simi-
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Figure 3

The relative abundance and differential expression levels of identified candidate miRNA families. A: The number
of sequence counts reflects the relative abundance of a miRNA family. B: miRNA differential expression levels represented as a
percentage of the total family sequence count (WT+M). miRNA families have been sorted on abundance to facilitate overview.
The differential expression of highly abundant families are more likely to resemble actuality.

larly, a putative ARF8 transcript was predicted to be tar-
geted by miR167 in cotton ovules. This suggests that auxin
levels are possibly higher in the mutant ovules. We pre-
dicted miR160 to target an ARF10-like mRNA transcript,
which expressed at higher levels in the mutant library, just
like miR167. MiR393 targets putative Transport Inhibitor
Response 1 (TIR1) transcripts in cotton. TIR1 is an auxin
receptor involved in a mechanism leading to the Aux/IAA
degradation [39]. Inhibition of TIR1 by miR393 would
down-regulate auxin signaling. MiR393 showed an
expression level nearly 2 fold higher in mutants than in
wild-type. Interestingly, most of the miRNAs involved in
the auxin pathway were found to be up-regulated in the
mutant.

In Arabidopsis, several miRNAs like miR399 and miR395
are induced by the nutrient deficiency [40,41]. Under nor-
mal growth conditions, these miRNAs do not express.

However, both miR399 and miR395 were moderately
sequenced in this study, particularly in the wild-type
ovules (Table 1). This can be attributed to the advantage
that deep sequencing can detect miRNAs at a very low
level. Under phosphorus starvation, miR399 targets a
ubiquitin-conjugating E2 enzyme, which in turn regulates
Pi acquisition [41,42]. In this study, deep sequencing
identified 8 miR399 members and 7 unique genes were
predicted as potential targets of miR399. More interest-
ingly, all of these predicted targets appear not to be corre-
lated with phosphate metabolism. This result provides a
new clue to the multiple roles of miR399 that may play in
diverse cell types or species. MiR399f/g were predicted to
have complementarity to a putative MYB family transcrip-
tion factor. Besides, miR399g targets four cotton vacuolar
ATP synthase subunit B transcripts. In cotton fiber, elon-
gation is driven by turgor pressure generated by vacuolar
H+-ATPase activity on tonoplasts [43]. The process occurs
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Number of detected family members per miRNA family. Candidate miRNA families were taken together and grouped
by their miRBase http://microrna.sanger.ac.uk/ numerical identifiers.

synchronously with the increase in the rate of cell elonga-
tion, indicating that vacuolar H+-ATPase may play a cru-
cial role in cotton fiber development [44].

Expression of miR398 was much lower in mutant than in
wild-type. Previously, miR398 in Arabidopsis was identi-
fied to target gene coding Cu/Zn superoxide dismutase
[45]. Similar target was predicted for the miR398 from
cotton ovules. Interestingly, specific cotton Cu/Zn super-
oxide dismutase have been recently detected in the sec-
ondary cell walls of developing cotton fibers and are
suggested to be involved in cell wall growth [46]. Whether
miR398 regulates superoxide dismutase and cell wall
growth would be an interesting topic to be investigated.

Conclusion

Using deep sequencing method many of conserved miR-
NAs from cotton ovules were identified. Our results indi-
cated that there are differential expression profiles of
miRNAs from the wild-type and mutant ovules, which can
be expected to regulate transcripts distinctly involved in
cotton fiber development. Further identification of these
differentially expressed miRNAs from ovules would allow
better understanding of the regulatory mechanisms for
fiber cell development.

Methods

Plant materials

Upland cotton plants (Gossypium hirsutum L.) cv. Xuzhou
142 (wild type; WT) and fuzzless-lintless mutant (M) in

Xuzhou 142 background were field grown at the Jiangsu
Agricultural Academy of Sciences under regular field con-
ditions during spring/summer 2008. Flowers were tagged
and developing ovules were harvested and directly dis-
sected from 0 to 10 DPA ovaries in early mornings. The
excised ovules were frozen in liquid nitrogen and stored at
-80°C for analysis. Wild type and mutant ovules of 1, 2, 3,
4,5, 6, 8, 10 DPA were selected for total RNA isolation.

Total RNA isolation

Ovular total RNA was extracted using the pBiozol Total
RNA Extraction Reagent (BioFlux) according to the manu-
facturer's instructions, supplemented with two extra chlo-
roform washes before nucleic acid precipitation. A 1%
agarose gel, stained by ethidium bromide, was run to pre-
liminarily indicate the integrity of the RNA. All RNA sam-
ples were quantified and examined for protein
contamination (A260 nm/A280 nm ratios) and reagent
contamination (A260 nm/A230 nm ratios) by a Nano-
drop ND 1000 spectrophotometer. In addition, the RIN
(RNA integrity number) determined by the Agilent Tech-
nologies 2100 Bioanalyzer was greater than 8 for all sam-
ples.

Small RNA library construction and sequencing

Total RNA from wild type and mutant was prepared for
small RNA Sequencing-by-Synthesis according to the pre-
scribed procedure and standards of the Illumina Sample
Preparation Protocol. The samples were quantified and
equalized so that equivalent amounts of RNA from
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Figure 5

Mature and precursor sequences and the predicted stem-loop structures of newly cloned miRNAs from G. hir-
sutum. The mature miRNAs are in red and underlined. The actual size of the precursors may be slightly shorter or longer than

represented.

mutant and wild-type were analyzed. In brief, total RNA
was purified by electrophoretic separation on a 15% TBE-
urea denaturing PAGE gel and small RNA regions corre-
sponding to the 18-30 nucleotide bands in the marker
lane were excised and recovered. The 18-30 nt small RNAs

were 5' and 3' RNA adapter-ligated by T4 RNA ligase and
at each step length validated and purified by urea PAGE
gel electrophoretic separation. The adapter-ligated small
RNA was subsequently transcribed into cDNA by Super-
Script 11 Reverse Transcriptase (Invitrogen) and PCR
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Table 2: Read frequency and mature sequences of Gossypium hirsutum novel miRNA candidates.

ID Precursor Library 5p Reads 3p Reads 5p Sequence (5' -- 3")
3p Sequence (5' -- 3')
miRNVLI Al054573 WT 324 5 ACTTTTGAACTGGATTTGCCGA(22)
M 750 4 TGCAAATCCAGTCAAAAGTTA(21)
miRNVL2 DW497660 WT 79 3 TGAACTGGGTTTGTTGGCTGC(21)
M 234 0 AGCCAACAACATCAGTTCTAA(2I)

The 5p and 3p sequences originate from the 5' and 3' arm of the folded precursors, respectively. WT: Xuzhou 142 (wild-type); M: fuzzless-lintless

mutant in Xuzhou 142 background.

amplified, using primers that anneal to the ends of the
adapters. The amplified cDNA constructs, too, were puri-
fied and recovered. The final quality of the library was
ensured by validation of the size, purity and concentra-
tion of the cDNA library on an Agilent Technologies 2100
Bioanalyzer. The two constructed cDNA libraries subse-
quently underwent Solexa/Illumina's proprietary flow-
cell cluster generation and bridge amplification. After
which the 1G sequencer, during automated cycles of
extension, recorded fluorophore excitation and deter-
mined the sequence of bases for each cluster.

Analysis of sequencing data

Raw sequence reads were produced by the Illumina 1G
Genome Analyzer at BGI-Shenzhen, China and processed
into clean full length reads by the BGI small RNA pipeline.
During this procedure all low quality reads, including 3'
adapter reads and 5' adapter contaminants were removed.
The remaining high quality sequences were trimmed of
their adapter sequences and sequences larger than 30 nt
and smaller than 18 nt were discarded. All high quality
sequences, even those with only a single unique read,
were considered as significant and further analyzed.

Table 3: Predicted target functions for the identified cotton
conserved candidate miRNAs.

Gene function Number of targets

Regulation of transcription 54
Oxidation reduction 13
Transporter Il
Metabolism
Transcription
Proteolysis

Signal transduction
Lipid metabolism
Stress response
Other

Total

A DN OUTOTONO

119

Targets were predicted for the identified conserved miRNA (see
Additional file 4) and grouped by the biological function of the
proteins they encode for, as described by UniProt http:/
www.uniprot.org/. Transcripts coding for proteins involved in the
regulation of transcription were prevalent.

Unique small RNA sequences were mapped to cotton
TIGR reference sequences by SOAP [31]. Small RNAs
derived from rRNAs, tRNAs, snRNAs and snoRNAs depos-
ited at the Rfam and NCBI GenBank databases http://
ftp.ncbi.nlm.nih.gov were identified by NCBI blast. In
order to determine conserved miRNAs, unique sequences
were aligned with known miRNAs from miRBase http://
microrna.sanger.ac.uk/seguence/index.html(Release

12.0, Sept, 2008)[3] with a maximum of two mismatches,
where gaps count as mismatches. Potentially novel miR-
NAs were identified by folding the flanking genome
sequence of unique small RNAs using MIREAP https://
sourceforge.net/projects/mireap/, followed by the predic-
tion of the secondary structure by mFold 3.1 [47]. The
essential criteria [25] were used for selecting the miRNA
candidates, e.g. sequences of miRNA precursors can fold
into a hairpin secondary structure that contains the ~21 nt
mature miRNA sequence from one arm and miRNA*
derived from the opposite arm, both of which form a
duplex with two nucleotide, 3' overhangs. For prediction
of miRNA targets, the procedure and criteria were fol-
lowed as described previously [17,48]. More strictly, at
most three mismatches between miRNA sequences and
potential mRNA targets were allowed in this study. The
biological function of the predicted targets was retrieved
from the Universal Protein Resource http://www.uni

prot.org.

Statistical analysis

We used the chi-squared test to determine the statistical
significance of the differences between the two libraries
and applied the Yates correction for one degree of free-
dom. Our null hypothesis is based on that between the
wild-type (expected frequency) and the mutant (observed
frequency) there is no significant difference. In order to do
so we normalized the total mutant sequence reads to the
total high quality reads of the wild-type library. This
approach allowed us to determine whether the deviations
(the difference between observed and expected) were the
result of chance, or whether they were due to other factors.
In the case of a calculated probability p < 0.01 we reject
our null hypothesis and conclude that a factor other than
chance is operating for the deviation to be so great.
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