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Abstract: In recent years, great interest has been focused on using natural antioxidants in food
products, due to studies indicating possible adverse effects that may be related to the consumption of
synthetic antioxidants. A variety of plant materials are known to be natural sources of antioxidants,
such as herbs, spices, seeds, fruits and vegetables. The interest in these natural components is
not only due to their biological value, but also to their economic impact, as most of them may be
extracted from food by-products and under-exploited plant species. This article provides an overview
of current knowledge on natural antioxidants: their sources, extraction methods and stabilization
processes. In addition, recent studies on their applications in the food industry are also addressed;
namely, as preservatives in different food products and in active films for packaging purposes and
edible coatings.
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1. Introduction

Oxygen is an essential chemical element in the metabolism of aerobic organisms. However, it may
trigger unfavorable reactions, and there has been a growing interest in studying the role of its reactive
species. Reactive oxygen species (ROS) include free radicals like the superoxide anion, singlet oxygen,
lipid peroxides and the hydroxyl radical. These reactive species are by-products of the normal cellular
energy production and functional activities, presenting an important role in cell signaling, apoptosis,
gene expression and ion transportation. Nevertheless, if ROS levels increase intensely, it can result in
damage of many molecules, including proteins, lipids, RNA and DNA, since they are highly reactive.
Furthermore, the production of free radicals is not only associated with the normal metabolic processes
in the human body (endogenous sources), but can also be due to environmental factors (exogenous
sources) such as stress, ozone radiation, pollution, pesticides and industrial chemicals [1–6]. When
higher production of ROS in relation to their removal by biological systems (antioxidant defenses)
occurs, it is called oxidative stress [7]. That has long been associated with increased risk for several
diseases, such as cancer [6,8], diabetes, arthrosclerosis [7], arthritis [9], neurodegenerative diseases [10]
and premature aging [11].

Antioxidants may protect cells by a variety of mechanisms, including the conversion of ROS to
non-radical species (which are dependent on the antioxidant involved), breaking the auto-oxidative
chain reaction initiated by ROS and decreasing localized oxygen concentrations [12,13]. The intake
of exogenous antioxidants, such as ascorbic acid (Vitamin C), α-tocopherol (Vitamin E), carotenoids
and polyphenols, that can be found in commonly consumed fruits, vegetables, beverages, cereals and
others food products, may support the antioxidative defense [8,14–16].
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Nevertheless, it is not only in the human body that oxidation damage may take place. Oxidation
reactions are also present in many food products when exposed to air (oxygen) and/or to heat or
light. In fact, food products’ deterioration processes are highly related to oxidation reactions and
the decompositions of oxidation products. As such, antioxidants also play an important role in the
maintenance of the products’ overall quality. One of the common deterioration processes is lipid
peroxidation (e.g., in margarine, mayonnaise and frying oils) [17,18]. It causes the production of
undesirable chemical compounds, such as aldehydes, ketones and organic acids, leading to the decrease
of shelf life and nutritional value of lipid-containing food products [19]. The sensory impact of lipid
oxidation is rancidity, responsible for changes in the flavor properties. In addition, the oxidative
deterioration of lipids can lead to bleaching in foods due to the reaction with pigments, particularly
carotenoids [20,21]. Enzymatic browning is another oxidative phenomenon during the maturation,
processing and storage of food products. It involves the enzymatic oxidation of phenolic compounds,
leading to the formation of dark pigments. Phenolic compounds act as substrates for oxidoreductases
activities in the presence of oxygen; namely, polyphenoloxidases [22,23] and peroxidases [12,24,25].
These enzymes are the major contributors to changes in color, and eventually, to the final quality of
many fruits and vegetables [26,27].

Since food products are not immediately consumed after their production, requiring storage and
transportation, the suppliers have to ensure that they are delivered to consumers with safety and
quality in mind, while possessing equal or higher nutritional value than when produced [28]. There is a
constant search for strategies to increase food products’ overall qualities and shelf lives, in many cases
by reducing or inhibiting oxidative damage; the incorporation of antioxidants is one of the strategies
to delay the oxidation of biomolecules. Natural antioxidants, easily obtained from natural sources,
possess great potential to be used as preservatives, replacing the synthetic ones [29].

Reviews on antioxidant sources have been published in the last decade. However, this paper is
specially focused on the use of plant-source antioxidants as preservatives and packaging systems for
food applications, including their sources, extractions and stabilization methods.

The research was performed using the databases PubMed, Google Scholar and ScienceDirect. The
index terms employed for the search were in English, and the most recent articles pertinent to the
theme were selected.

2. Replacing Synthetic Antioxidants with Natural Antioxidants

The choice of antioxidants for incorporation into food products is controlled by the regulatory
laws of specific countries or by international standards. In the European Union, the regulation of
antioxidants is established by the European Parliament and Council Directive No.1333/2008 of 16
December 2008 on food additives, which provides a list of approved additives and the conditions of
their use and labelling.

Synthetic antioxidants have been used in place of natural ones, mainly because they present higher
stability and performance, low costs and wide availability [19,30]. The most referenced synthetic
antioxidants in the food industry are butylated hydroxyanisole (BHA), butylated hydroxytoluene
(BHT), propyl gallate (PG) and tert-butyl hydroquinone (TBHQ). In addition, 2-naphthol (2NL),
4-phenylphenol (OPP) and 2,4-dichlorophenoxyacetic acid (2,4-DA) are the ones commonly used in
fruits and vegetables [30].

Although synthetic antioxidants have been widely used, safety issues have been raised over time.
There are several published studies indicating a relationship between the long-term intake of synthetic
antioxidants and some health issues, such as skin allergies, gastrointestinal tract problems and in some
cases increased the risk of cancer [31–35]. High doses of synthetic antioxidants may cause DNA damage
and induce premature senescence [36]. BHA and BHT have already been found to be responsible for
adverse effects on the liver and for carcinogenesis in animal studies [19,33]. Additionally, very little is
known about the environmental occurrence and fate of these compounds [37,38]. The tendency to
replace these antioxidants with natural ones has been increasing [39]. Studies related to the perception
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of consumers about the risks associated with using synthetic compounds for coloring and preserving
food products have been performed. The conclusions have shown that consumers are concerned
about being exposed in their daily diet to synthetic compounds, with a stronger preference for natural
ones [40–42]. In addition, the use of natural antioxidants enables producers to satisfy the demands
of consumers for cleaner-label products with exclusive natural ingredients. However, it should be
emphasized that the fact of being from natural origin does not make them safe by default. There is still
the need for toxicity studies for these compounds to define the conditions of their use in food products.

Natural antioxidants from plants may be classified into three main classes: phenolic compounds,
vitamins and carotenoids [13,16,17]. Some phenolic compounds, in addition to being the major
plant-compounds with antioxidant activity, also present antimicrobial and antifungal activities, and
have important effects on the flavors and textures of food products [27]. Phenolic compounds show a
large diversity of structures, from simple molecules (e.g., ferulic acid, vanillin, gallic acid and caffeic
acid) to polyphenols like tannins and flavonoids [43]. Regarding vitamins, the most important include
Vitamins E and C. The first is a lipid soluble vitamin consisting of a group of chemical compounds
comprised of four tocopherols and four tocotrienols, which includes four isomers (α, β, γ and δ), but
only α-tocopherol can be absorbed by the human body. It can be found mainly in legumes and cereal
grains [44,45]. Vitamin C is soluble in water and is naturally present in many fruits and vegetables.
Most carotenoids are also found in fruits and vegetables. β-carotene, α-carotene, lycopene and lutein
are the main carotenoids with antioxidant activity [46]. In addition to their antioxidant capacities, they
have the possibility to be used as food colorants [21].

There are many compounds able to inhibit oxidation, but only some of them are suitable for
human consumption due to safety issues. Food grade antioxidants must be approved by regulatory
bodies (generally recognized as safe (GRAS) level). They should not negatively affect color, odor or
flavor; should be effective at low concentrations (0.001%–0.01%), should be compatible with the foods
and have easy applications; should be stable during processing and storage; and should be economical.
In addition, among other properties, antioxidants should have their LD50 values lower than 1000 mg/kg
body weight, and should not have any significant effects on the growth of an experimental animal in
long-term studies at a level 100 times greater than that proposed for human consumption [47]. Studies
on their possible mutagenic, teratogenic and carcinogenic effects are also required [48]. Some natural
antioxidants have lower antioxidant activities than their synthetic counterparts, which implies their use
in larger amounts. This fact may lead to dosages that can be harmful [49]. Still, natural antioxidants are
a valuable alternative approach to synthetic ones, providing they are used under the regulatory limits.

Beyond safety issues, the selection of natural extracts from plants is carried out taking into account
the organoleptic characteristics of the food product, in order to avoid rejection by the consumers due to
their characteristic colors or flavors [50]. The effect of the natural antioxidants (chamomile and fennel
extracts) and synthetic ones (potassium sorbate) in the preservation of yogurt was carried out by Caleja
and Barros [51]. The nutritional value of this food product did not have significant changes when
adding either antioxidant. However, higher antioxidant activity was confirmed with the addition
of natural ones, especially with chamomile decoction. Furthermore, the incorporation of fennel and
chamomile extracts in biscuits showed that the antioxidant activity and the organoleptic and nutritional
values were similar to the synthetic ones [52]. Some plant extracts used as antioxidants, such as from
grape seeds, green tea, pine bark, rosemary, pomegranates and cinnamon, have also exhibited similar
or better properties compared to synthetic antioxidants [53]. Estévez and Ventanas [54], reported
that sage and rosemary essential oils exhibited similar antioxidant properties to BHT in refrigerated
porcine liver pâté. This trend has been increasing the interest of researchers for new raw materials
with antioxidant power (such as by-products from the agricultural-food industry), without affecting
the consumers’ perceptions and the quality of the final products, and at the same time, producing a
functional food with added value [29].
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3. The Safety and Toxicity of Natural Antioxidants

Food additives are subjected to the same strict safety standards regardless of whether they are
naturally or synthetically derived. The safety of food additives, in which natural antioxidants are
included, is determined by considering potential cumulative effects that are evaluated by the outcome
of toxicity studies and from knowledge about the chemical compounds [55]. There are several reports
in the literature regarding the importance of safety assessments and toxicological tests carried out
on specific natural extracts. As examples, acute and subchronic toxicological tests were performed
for bamboo leaf extracts, which were generally regarded as safe by the authors for use as food
additives [56]. In addition, the hydroethanolic extract of Dolichandra unguis-cati leaves did not present
relevant toxic effects when administered orally to male and female rats under acute and subacute
tests [57]. The subchronic toxicity and genotoxicity of the flavonoid-rich extract from Maydis stigma were
examined. The results exonerate its safe use as a functional food, food additive and natural remedy [58].
Toxicological studies of essential oils with the antioxidant activity of autochthonous-flavoring herbs
from Portugal revealed low toxicity in Swiss mice (DL50 > 1000 mg/kg) [59].

However, to use antioxidants in food products, they must undergo premarket approval by the
European Food Safety Authority (EFSA) or by the United States Food and Drug Administration, (FDA),
which have standard methodologies to assess their safety.

According EFSA, the scientific data required for the safety evaluation of a food additive follows
four main levels: the chemistry and specifications of the substance (in terms of chemical structures and
physicochemical properties); the existing authorizations and evaluations (an overview of previous
risk assessments on the additive); the proposed uses and exposure assessment; and toxicological
studies [60]. For the toxicological studies, there is a tiered approach consisting of three tiers (Table 1),
where a minimal number of tests to all compounds should be carried out under tier 1, while tier 2
tests will be required for compounds which demonstrate absorption, toxicity or genotoxicity in tier 1
tests. Tier 3 tests should be performed on a case-by-case basis, to elucidate specific endpoints needing
further investigation of the findings from tier 2 tests.

Table 1. Toxicity tests requested by the European Food Safety Authority for safety evaluations of
food additives.

Toxicity Tests Tier 1 Tier 2 Tier 3

Toxicokinetics Absorption x x x
ADME (single dose) x x

ADME (repeated dose, volunteer studies) x
Genotoxicity in vitro testing x x x

in vivo testing x x
Toxicity Extended 90-day toxicity study x x x

Chronic toxicity or Combined chronic x x
Carcinogenicity or Combined x x

Reproductive and
Developmental toxicity EOGRTS x x

Prenatal development toxicity x x
Specialized studies (e.g., immunotoxicity,

neurotoxicity, endocrine activity, mode of action) x

As an example, an extract of rosemary was authorized for use as a food additive in the European
Union in several food categories, with a maximum level that has been identified as E 392 [61].

Concerning the FDA, premarket approval is based in a similar methodology to that of EFSA
(Table 2). The additive concern level is estimated based on information on its toxicological potential
predicted from its chemical structure, being one of three broad categories (A, B or C) according to
an estimation of cumulative human exposure [55]. Category A structures with cumulative human
exposure from 0 to 50 parts per billion (ppb, equivalent to microgram per kg diet) fall into Concern
Level (CL) I; from 50 ppb to 1000 ppb lands in CL II; and above 1000 ppb fall into CL III.
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Table 2. Toxicity tests requested by the US Food and Drug Administration for safety evaluations of
food additives.

Toxicity Tests CL Low (I) CL Intermediate (II) CL High (III)

Genetic toxicity tests x x x
Short-term toxicity tests with rodents x x x

Subchronic toxicity studies with rodents x x
Subchronic toxicity studies with non-rodents x x
One-year toxicity studies with non-rodents x

Chronic toxicity or Combined chronic
toxicity/carcinogenicity studies with rodents x

Carcinogenicity studies with rodents x
Reproduction studies x x

Developmental toxicity studies x x
Metabolism and Pharmacokinetic studies x x

Human studies x

Category B structures with cumulative human exposure from 0 to 25 ppb fall into CL I; from
25 ppb to 500 ppb are in CL II; and above 500 ppb fall into CL III. Furthermore, Category C structures
with cumulative human exposure from 0 to 12 ppb fall into CL I; from 12 to 250 ppb lands in CL II; and
above 250 ppb fall into CL III. After that, there are recommendations for the minimum toxicity tests to
be performed for safety evaluations of food additives based on their levels of concern.

4. Natural Sources of Antioxidants

Most of the natural antioxidants are derived from plant materials, such as fruits, vegetables,
herbs and spices [62–64]. These are particularly rich in phenolic compounds, vitamins and
carotenoids [16,65,66]. Halvorsen and Holte [67], stated that Rosaceae, Empetraceae, Ericaceae,
Grossulariaceae, Juglandaceae, Asteraceae, Punicaceae and Zingiberaceae are families of plants that contain
compounds with high antioxidant activities, which include fruits, such as blackberries, strawberries,
blueberries, black currants, walnuts, pomegranates and others. Essential oils from spices and herbs,
such as oregano, thyme, dittany, marjoram, lavender and rosemary, have also been demonstrated to be
excellent sources of natural antioxidant molecules, but with more limited ranges of applications due
to their strong flavor characteristics [39,68]. Aqueous tea extracts have also been used as sources of
natural antioxidants because of their contents of several compounds, such as catechins, tannins and
other flavonoids, with the advantage of not presenting a strong flavor like essentials oils [69].

Concerning fruit and legumes, the processing industries are constantly struggling to reduce
by-products, not only because the environmental problems associated, but due to the socio-economic
losses [29]. For example, in fruit processing, as in the case of production of juices, pulps, canned
fruit and others, industries generate particular by-products in the form of peels, cores, seeds, leaves
and others that are discarded. More than half of the agricultural-food residues are derived from this
sector, so a change of behavior, including initiatives and projects aimed at reducing the byproducts of
processing, are highly attractive [65].

Along those lines, by-products of fruit and legume processing can be a source of functional
compounds, such as apple pomace that has shown to be a good source of polyphenols, especially the
peel [70]; grape pomace for its rich composition in anthocyanins, catechins, flavanols, phenolic acids
and stilbenes [71]; tomato pomace rich in lycopene and other carotenoids [72]; and olive pomace rich
in phenolic compounds [73]. Pomegranate is an example of a fruit extremely rich in antioxidants,
mainly polyphenols, present in its edible and non-edible parts. According to the literature for each ton
of pomegranate juice produced, nine tones of by-products are formed, which can be used as a natural
source of bioactive compounds [74].

The valorization of by-products with the recovery of antioxidant rich extracts is even more
interesting knowing the fact that the non-edible parts of fruits often contain a higher bioactive
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contents than the edible parts. Gorinstein and Martín-Belloso [75], found that the peels of some
citrus fruits, such as lemons, oranges and grapefruit, presented phenolic compound contents 15%
higher than the peeled fruits. Concerning pineapple by-products, their total phenolic content (13.79
mg of gallic acid equivalents 100 g−1) was higher when compared to that of fresh pulp (2.71 mg of
gallic acid equivalents 100 g−1) [76]. Freitas and Moldão-Martins [65], also reported high contents
of bioactive compounds—namely, carotenoids (β-carotene) and vitamin C, in pineapple rinds and
cores—which impart high antioxidant potentials. The same trend was presented by George and
Kaur [77], who evaluated the contents of different antioxidants, such as lycopene, ascorbic acid and
phenolic compounds in tomatoes, and also noticed that peels had significantly higher antioxidant
contents than the pulp.

It is important to emphasize that when dealing with plant sources it is essential to maintain as
constantly as possible, several factors, such as the cultivar, climatic and soil conditions, harvest season,
post-harvest conditions and extraction processes. These factors will have a strong impact on natural
extracts’ standardizations.

5. Extraction Processes of Natural Antioxidants

As mentioned, many natural antioxidants are contained within vegetal matrices and their
separation for further utilization is needed. Antioxidants can be extracted from different plant parts
such as leaves, roots, stems, fruits, seeds and peels [53]. The quality of natural extracts and their
antioxidant power depends not only on the quality of the original source (e.g., geographic origin,
nutritional aspects and storage) but also on the technologies applied for their extraction.

So far, extraction processes have been mainly performed at laboratory-scales. Scale-up is not direct
because it strongly depends, for example, on complex transport phenomena. However, some authors
have already reported applicability at higher scales. Périno and Pierson [78], optimized the extraction of
polyphenols from lettuce at a pilot scale by solvent-free microwave extraction. Saffarzadeh-Matin and
Khosrowshahi [79], used solvent extraction for phenolic compounds from pomegranate waste, which
was also successfully implemented at a pilot plant scale. In addition, Solana and Mirofci [80] studied
the scaling-up of the supercritical fluid extraction of phenolic and glucosinolate from rocket salad.

There is not one standard procedure for performing the extraction of all natural antioxidants, since
each compound has its own chemical and physical properties, and they are present in quite different
solid matrixes. Still, extraction using organic solvents is the most common process used [81,82]. Along
with conventional solvent extraction procedures, other strategies may be used, such as extraction
with supercritical fluids, high hydrostatic pressure, microwaves and ultrasound [12]. However, these
more recent technologies usually present higher investment costs, but often lower environmental
impact [78]. Table 3 summarizes some examples of methods used for the extractions of natural
antioxidant compounds from different sources.

Table 3. Methods for antioxidants’ extraction from natural sources.

Extraction Process Source Antioxidant Extracted References

Organic Solvents:

Ethanol, dichloromethane,
hexane Coffee leaves Chlorophylls and

carotenoids Marcheafave, Tormena [83]

Ethanol, acetone and water Baccharides specie Phenolic content Casagrande, Zanela [84]

Sweet potato Polyphenols and
anthocyanins Fu, Tu [85]
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Table 3. Cont.

Extraction Process Source Antioxidant Extracted References

Methanol, ethanol and
acetone Spent grain Phenolic content Socaci, Fărcaş [86]

Spice herb Phenolic content Do, Angkawijaya [87]

Peel of eggplant
Total phenolics,

flavonoids, tannins and
anthocyanins

Boulekbache-Makhlouf,
Medouni [88]

Methanol, ethanol, acetone
and water Peach fruit Flavonoids and phenolic

compounds Mokrani and Madani [89]

Ethanol Jussara fruit Phenolic compounds de O. Silva, N.
Castelo-Branco [90]

Acetone, acetic acid, water Basil leaves Phenolic compounds Złotek, Mikulska [91]

Water, acetone and ethanol Ginkgo biloba leaves Flavonols Kobus-Cisowska,
Flaczyk [42]

N-hexane and methanol Pineapple peel Polyphenols Li, Shen [92]

Hexane, ethyl acetate,
chloroform, butanol,
methanol and water

Ripe bananas Phenols and flavonoids Amri and Hossain [93]

Methanol, water and ethanol Chestnut byproducts Polyphenols Vella, Laratta [94]

Kumquat peel Phenolic and flavonoid
content Lou, Lai [95]

Water and ethanol Withnaia somnifera herb Phenolic compounds Dhanani, Shah [96]

Propolis Phenolic compounds Sun, Wu [97]

Supercritical fluid extraction
(SFE) Mango peel Carotenoids Sánchez-Camargo,

Gutiérrez [98]

Apple pomace Phenolic compounds Ferrentino, Morozova [99]

Myrtle leaves and berries
Phenolic acids,
flavonoids and
anthocyanins

Pereira, Cebola [100]

Green algae Carotenoids and
phenolic compounds Fabrowska, Ibañez [101]

Cape gooseberry Phenolic compounds
and β-carotene

Torres-Ossandón,
Vega-Gálvez [102]

High Hydrostatic Pressure
(HHP) Red macroalgae Proteins, polyphenols

and polysaccharides Suwal, Perreault [103]

Tomato pulp Flavonoids and lycopene Briones-Labarca,
Giovagnoli-Vicuña [104]

Watercress
Phenolic acids and

flavonoids from
watercress

Pinela, Prieto [105]

Papaya seeds Phenolic content Briones-Labarca,
Plaza-Morales [106]

Pressurized liquid extraction
(PLE) Peppermint Phenolic compounds

and essential oils Çam, Yüksel [107]

Carrot by-products Carotenoids Mustafa [108]

Goldenberry Polyphenols Corazza, Bilibio [109]

Goji berry Phenolic compounds Tripodo, Ibáñez [25]

Feijoa peel Phenolic compounds Abrahão, Rocha [110]

Grape marc Anthocyanins and
phenolic compounds Pereira, Tarone [111]
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Table 3. Cont.

Extraction Process Source Antioxidant Extracted References

Spent coffee ground Polyphenols Mariotti-Celis,
Martínez-Cifuentes [112]

Olive pomace Phenolic compounds Cea Pavez [113]

Ultrasound-assisted extraction Green propolis Phenolic compounds Cavalaro, da Cruz [114]

Strawberry trees Anthocyanins López, Caleja [115]

Carotenoids Pomegranate wastes Goula, Ververi [116]

Blueberry pomace Phenolic compounds Shi, Tranchant [117]

Mango peel Pectin and phenolic
compounds

Guandalini, Rodrigues
[118]

Microwave-assisted extraction
(MAE) Pomegranate peels Phenolic compounds Kaderides,

Papaoikonomou [119]

Phaleria macrocarpa fruit
peel Phenolic compounds Alara, Mudalip [120]

Gac peel Carotenoids Chuyen, Nguyen [121]

Olive tree leaves Phenolic compounds Şahin, Samli [122]

The extraction yield and antioxidant capacity are dependent on the solvent, on the conditions
under which the process is carried out and on the extraction method used. Those factors may
affect the amounts and qualities of antioxidants in the extracts; for example, due to breakdown and
polymerization reactions [123]. An efficient extraction is obtained when it is possible to extract the
maximum amounts of the bioactive compounds with the lowest degradation degree of the compounds,
and minimum amounts of non-antioxidant substances, such as sugars and organic acids [124].

5.1. Conventional Extraction Techniques

Solvent extraction (solid–liquid or liquid–liquid) involves the choice of solvents and the use of
heat and/or stirring [125]. A solid–liquid extraction process is normally executed in a Soxhlet apparatus,
where the plant material is placed together with a condensed solvent. The advantages of using Soxhlet
include, among others, the repetitiveness of placing fresh solvent in contact with the solid matrix, and
that no filtration is required at the end of the process. However, it has disadvantages, such as the need
for large quantities of solvents, and consequently, an evaporation/concentration process; not having
stirring during the process; and the possible thermal degradation of the compounds, as the process is
usually carried out at the boiling point of the solvents for a long period of time [63,82,126].

When dealing with plant materials rich in a wide range of phenolic compounds, the extraction
yield depends on various factors, such as the type of the solvent used (polarity), extraction temperature,
time and solvent-to-plant ratio. The choice of the solvent depends on the nature of the compounds
that are intended to be extracted, being that the extraction yield is influenced by their solubilities in
the solvent to be used. Solvent-to-plant ratio should be optimized in order to use a suitable solvent
concentration that prevents its saturation in molecules extracted during the extraction process [87,89].
Since they may be attached to insoluble components, such as waxes, terpenes or fats, a preliminary
solid-liquid extraction process may be required for the removal of the unwanted phenolics and
non-phenolic substances [81].

Different solvents have been used, separately or in mixtures, including ethanol [77], acetone [42],
methanol [88], hexane [70] and water [94]. In the study of Peschel and Sánchez-Rabaneda [29], fruit
and vegetable by-products (from red beet, apple, strawberry, pear, artichoke, asparagus, tomato,
broccoli, cucumber, endive, chicory, golden rod and woad herb) were extracted with five solvents:
water, methanol, ethanol, acetone and hexane. It was found that, in general, a higher yield resulted
from a one-step extraction using water and methanol compared to the other methods. In contrast,
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the extraction of anthocyanins and polyphenols from grapes and red and black currants was more
efficient using ethanol and methanol compared to water [127]. Additionally, Boulekbache-Makhlouf
and Medouni [88], studied different solvents to quantify the total phenolics, flavonoids, tannins and
anthocyanins in eggplant peel. They concluded that methanol was the best solvent for the extraction of
anthocyanins, mainly because they are polar molecules, and acetone was described as the best solvent
for quantifying the other compounds. Fu and Tu [85] studied phenolics and anthocyanin extraction
from sweet potato leaves with three solvents (water, ethanol and acetone). They reported that the
extraction with 70% ethanol resulted in extracts with the highest total flavonoid and total anthocyanin
contents. Though, 50% acetone was the solvent producing extracts with higher total phenolic content.

Although there are a large number of works in the literature focused on extraction yield, it is not
clear which solvent is more effective for a specific raw material. From the food industry point of view,
from all solvents mentioned, ethanol and water are the more adequate, as they have GRAS (generally
recognized as safe) status [12,124].

5.2. Non-Conventional Extraction Techniques

5.2.1. Supercritical Fluid Extraction (SFE)

SFE is an environmentally-friendly, alternative process to conventional organic solvent extraction,
as it uses as solvents fluids in their supercritical states, avoiding the use of large quantities of toxic
solvents that are undesirable in the food industry. In addition to this, it is carried out in the absence of
light and oxygen, which reduces the degradation of the compounds [35,128]. Carbon dioxide is the
most commonly-used solvent to obtain supercritical conditions, mainly due to its low toxicity, low
cost, easy separation from extracted solutes, compatibility with foodstuffs and possibility to be used
when low temperatures are required [129]. SFE with carbon dioxide is an efficient alternative process
to conventional solvent extraction methods, especially for extracting lipophilic plant materials, such
as lipids, essential oils and aroma compounds. The same does not happen with more hydrophilic
substances, such as phenolics, alkaloids and glycosidic compounds, which are poorly soluble in
supercritical carbon dioxide [126]. This process was applied, for example, in the extractions of
carotenoids from mango peel [98] and phenolic compounds from apple pomace [99].

5.2.2. High Hydrostatic Pressure (HHP) and Pressurized Liquid Extraction (PLE)

In both HPP and PLE processes, the pressure is applied in order to increase mass transfer rate
between solid matrices and extraction solvent, resulting in fast and effective alternative methods for
active compounds’ extractions. However, high pressure can enhance the extraction efficiency, but with
higher investment costs.

When applying HHP, a raw material/solvent mixture is hermetically sealed in a package and
introduced to a vessel containing a pressure-transmitting medium (e.g., water, hydrophilic and
lipophilic organic solvents at different concentrations) [86,104]. Pressure is applied, normally in the
range of 100–1000 MPa, at a controlled temperature, including ambient temperature, which is an
advantage when heat sensitive compounds are involved [106]. This method has been used successfully,
for example, in the extraction of flavonoids and lycopene from tomato pulp [104] and phenolic acids and
flavonoids from watercress [105]. In addition, Briones-Labarca and Plaza-Morales [106], demonstrated
that HHP enabled a higher yield and shorter extraction time, compared to other extraction methods
(ultrasounds and conventional extractions) when applied to recover phenolic compounds and oil from
papaya seeds.

In the case of the PLE process, the material/solvent mixture is directly introduced in a closed vessel,
after which high pressures (3.3−20.3 MPa) and temperatures (40−200 ◦C) are applied, enabling rapid
extraction periods (3−20 min). Pressurized solvents remain in liquid states above their boiling points,
allowing for high-temperature extraction. There is an improvement of compounds’ solubilities and the
desorption kinetics from the matrices [130]. This process has been used to extract several bioactive
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natural compounds, such as essential oil from peppermint [107], polyphenols from goldenberry [109],
carotenoids from carrot by-products [108] and phenolic compounds from a large variety of plant
materials (e.g., Goji berry, feijoa peel, grape marc, spent coffee grinds and olive pomace) [25,110–113].

5.2.3. Ultrasound-Assisted Extraction (UAE)

UAE is a method in which ultrasound is applied to a mixture of a solvents with the solids
containing the target molecules. It is a process whereby a combination of mixing effects with physical
impacts of ultrasound on raw material (e.g., fragmentation, erosion, sonocapillary effect, sonoporation,
local shear stress and disintegration of plant cell walls) increases the mass transfer rate, which may
explain its enhanced extraction performance. Eventually, it allows one to reduce the time of extraction,
the amount of solvent used and the energy consumption. In addition, ultrasound may also be applied
in combination with other methods, such as soxhlet extraction, microwave extraction, supercritical
fluid extraction and extrusion [131]. UAE has been used in the extraction of bioactive compounds,
such as carotenoids from pomegranate wastes [116], phenolics from blueberry pomace [117] and edible
oils from plant sources [126,132]. This technology has also been used as a supplementary technique
to conventional ones. Guandalini and Rodrigues [118] used ultrasound for pectin recovery, after the
extraction of phenolic compounds from mango peel with a conventional ethanol–water extraction,
with the purpose of generating value from the whole residue obtained.

5.2.4. Microwave-Assisted Extraction (MAE)

Using microwaves is another green extraction method, which is based on the direct impact on
polar compounds. MAE offers rapid delivery of energy to a total volume of solvent and solid matrix
with subsequent efficient and homogenous heating of both phases. It enables the reduction of the
extraction time and solvent volumes, and can be performed in open or closed systems. In the latter
case, the solvent and sample are contained in sealed vessels under a controlled temperature and
pressure. The closed vessels allow the temperature of the solvent to rise above its boiling point, which
decreases extraction time and subsequently increases extraction efficiency [133]. However, when
solvents are non-polar or volatile, the efficiency of this method can be very low. As such, polar solvents,
such as ethanol, methanol and water should be used [126]. This process has been applied to recover
antioxidants from a large number of plant materials, such as phenolics from pomegranate peels [119]
and carotenoids from Gac peel [121]. Even though MAE is commonly applied to solid/solvent mixtures,
works have been reported in which microwaves were applied only to the plant material; namely, in the
extraction of polyphenols from olive tree leaves [122].

6. Stabilization Processes

After extraction, natural antioxidants are susceptible to degradation during storage and when
incorporated in food products, since they present a high sensitivity to environmental conditions (e.g.,
temperature, pH, light, oxygen and moisture). In order to increase their stability and avoid nutritional
and functional losses, the degradation rate should be minimized. There is not one universal technique
for performing antioxidant stabilization, since each compound/natural extract has specific physical
and chemical characteristics. Ideally, the method should be simple, fast and easy to reproduce at an
industrial scale at low cost. The most common techniques can be divided into chemical process (e.g.,
coacervation or molecular inclusion in cyclodextrins), and mechanical processes (e.g., spray drying,
fluid bed coating, spray cooling/chilling, extrusion, emulsification and freeze drying) [134,135].

Stabilization is generally achieved with the production of capsule structures (from nano to
micrometer range), which are composed of a core and a wall material. The core of capsules consists
of the ingredients to be protected, and the wall material—also denominated as the coating, shell,
membrane, carrier or coat—is the external layer or layers that cover the core, made of food grade
materials (e.g., polysaccharides, proteins and lipids).
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Beyond the protection of the bioactives against degradation reactions promoted by external
factors, the encapsulation in the form of micro/nanoparticles for the food industry also enables easier
handling of bioactive compounds that may be in another physical state (e.g., converting a liquid
active compound into a powder); the prevention of evaporation and degradation of volatile active
compounds, such as essential oils, masking negative organoleptic properties such as color, flavor and
odor of the natural antioxidants; the controlled release of the encapsulated materials at a specific time
and place in the human body; and their immobilization in the food processing systems [135–137].

The most common process used is spray drying, due to its low cost, easy scale-up and applicability
with a wide range of core and wall materials, delivering the encapsulated materials as a powder with
particles generally a few micrometers in size. It has been used, for example, to encapsulate phenolic
compounds from spent espresso coffee [110]; olive leaf extracts [138]; citrus by-product extracts [139];
apple fruit peel [140]; pigments from wine by-products [141]; carotenoids from tomato pomace [72];
essential oils from herbs, such as oregano [142–144], and lavender [145]; and vitamins [146].

7. Applications in the Food Industry

Natural antioxidants have been studied in a wide range of applications, like as preservatives in
several food products [147], in edible coatings [148] and in films to be used in food packaging [149].

7.1. Plant Extracts and Essential Oils as Natural Antioxidants

Several works have been published with the purpose of studying the incorporation of natural
antioxidants into food matrices. Some of them are presented in Table 4.

Table 4. Applications of natural antioxidants in food products.

Natural Source Main Active Compound Food Matrix Reference

Fennel and chamomile
aqueous extracts Phenolic compounds Biscuits Caleja, Barros [52]

Cottage-cheese Caleja, Barros [147]
Caleja, Barros [28]

Yogurt Caleja, Barros [51]

Olive leaf and cakes
extracts by-products Phenolic compounds Antioxidant film Moudache, Colon [150]

Litchi fruit pericarp
extract Phenolic compounds Cooked nuggets Das, Rajkumar [151]

Green tea extract Polyphenols Sunflower oil Yin, Becker [69]

Cloves and cinnamon Phenolic compounds Meat samples Jayathilakan, Sharma
[152]

Tomato pomace extract Carotenoids Lamb steaks packaged Andres, Petron [153]

Ginkgo biloba leaves
extract Polyphenols Pork meat Kobus-Cisowska,

Flaczyk [42]

Cloudberry, beetroot and
willow herb Flavonoid Cooked pork patties Rey, Hopia [154]

Canola olive oils, rice
bran and walnut

Polyphenols, vitamins E
and B Pork frankfurters Álvarez, Xiong [155]

Rosemary extract Phenolic compounds chia oil oxidation Bodoira, Penci [156]

Olive mill wastewater Polyphenols Olive oils and refined
olive kernel oils Galanakis, Tsatalas [23]
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Table 4. Cont.

Natural Source Main Active Compound Food Matrix Reference

Potato peels, fenugreek
seed and ginger

rhizomes
Phenolic compounds Ground beef patties Mansour and Khalil [50]

Olive mill wastemater Polyphenols, ascorbic
acid and tocopherols Bread and rusks Galanakis, Tsatalas [22]

Fruits and plants Phenolic compounds Meat and poultry
products Karre, Lopez [157]

Apple peel Phenolic compounds Tomato juice Massini, Rico [158]

Chitosan and Mint
extract Phenolic compounds Pork cocktail Salami Kanatt, Chander [159]

Extracts from the hard
winter wheat Phenolic compounds Fish oils Yu, Haley [160]

Rosemary and hyssop
extracts Phenolic compounds Pork meat Fernández-López, Sevilla

[161]

Phenolic compounds are the main class of antioxidants used in food industry. Furthermore, many
of these natural ingredients also present the capacity to delay or inhibit the growth of pathogenic
microorganisms in food, such as Salmonella spp. and Escherichia Coli [162].

Among the studies carried out in recent years, much attention was paid to the use of natural
antioxidants in meat and meat products, including the regulatory aspects concerning the replacement
of synthetic antioxidants by natural ingredients [163].

Meat fat presents a high susceptibility to oxidation, especially the unsaturated fatty acid fractions,
which are generally higher in poultry meat compared to cattle and pig meats. Many of the oxidation
products are responsible for rancidity, decreased nutrient value and increased health risk, due to
accumulation of toxic compounds. The incorporation of natural antioxidants can reduce or minimize
the formation of chemical toxins, increasing the nutritional status and health benefits of these products,
as well as their shelf life. Balzan and Taticchi [164] used purified phenols from olive oil wastewater on
raw and cooked sausages, which induced a strong decrease of several oxidation markers, maintaining
the overall sensory acceptance. Das and Rajkumar [151], applied a litchi fruit pericarp extract in
cooked nuggets of sheep meat during 12 days of refrigerated storage, which revealed itself to be
effective at retarding oxidation by 1.5% without affecting the products’ acceptability. Jayathilakan
and Sharma [152], reported effective protection of cooked meat’s quality when applying extracts from
plants, such as cloves and cinnamon, to precooked mutton, beef and pork. These natural antioxidants
did not introduce undesirable flavor attributes and prevented oxidative rancidity. Carotenoids have
also been tested. The protective activity of tomato pomace extracts applied on the surface of lamb
steaks packaged under a modified atmosphere improved their shelf life [153]. Through combinations
with other compounds, natural antioxidants can provide advantages to the food product to which
they are added. Kanatt and Chander [159], developed a mixture of chitosan and mint extracts, which
together imparted antioxidant and antimicrobial properties, extending the shelf lives of meat and
meat products.

Besides meat products, natural antioxidants have also been applied to enhance the stability of
edible oils that do not contain natural antioxidants. The phenolic compounds from plant sources, such
as spices, herbs, teas, oils, seeds, cereals, cocoa shell, fruits and vegetables, as natural antioxidants, were
often used in a number of edible oils. Among the herbs, rosemary and oregano are the most studied
sources of antioxidants in lipid systems. In addition, Özcan and Arslan [165] studied the antioxidant
effects of essential oils from rosemary, clove and cinnamon on hazelnut and poppy oils. Among the
essential oils investigated, the cinnamon oil was the most effective antioxidant at preventing lipid
oxidation, which was followed by clove and rosemary essential oils. More recently, Bodoira and
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Penci [156] reported that commercial natural antioxidants (natural mixed tocopherols, rosemary extract,
ascorbyl palmitate and citric acid) could be effective to prevent chia oil oxidation, and Galanakis and
Tsatalas [23] have shown that polyphenols from olive mill wastewater are effective as preservatives in
olive oils and refined olive kernel oils.

Natural antioxidants were also studied in bakery products. For example, Caleja and Barros [52]
tested the incorporation of fennel and chamomile aqueous extracts in biscuits, showing strong
antioxidant activity. These extracts did not cause significant changes in the appearances or nutritional
profiles of the products; thus, implying that the use of such extracts could be important for the release
of new, healthier pastry products on the market.

Most of the published studies on the use of natural antioxidants have shown great results in the
inhibition of and control over the oxidative process. However, the amount of bioactive compounds
added is an important factor in their efficacy, which is restricted, not only by legislation, but also by
sensory acceptance. Rejection by consumers occurs mainly when natural antioxidants are in the form
of plant essential oils (e.g., from oregano, rosemary or lavender), which are volatile and impart a strong
flavor. Encapsulation processes (e.g., by spray drying) or their incorporation in coatings and films
have been proposed to mask the strong flavor.

Color is one of the most important properties for the acceptance of food products by consumers.
Natural antioxidants may be used in the prevention of color changes due to pigments’ oxidation in
food systems. In fresh fruit juices, natural antioxidants have been proposed for improving the stability
of carotenoid pigments, as well as for aroma protection and stabilization [166]. Caleja and Barros [28]
demonstrated that the incorporation of fennel and chamomile extracts into cottage cheese allows it
to avoid changing in color (yellowness) during storage, which was confirmed with a control sample.
Moreover, the stabilization by microencapsulation has been studied for improving the antioxidant
activity for longer storage times [167].

In the case of meat products, the color is also a strong indicator of quality, pertaining to things
such as meat oxidation. Myoglobin is a heme protein able to store oxygen in muscle tissues, which
is responsible for meat pigmentation, exhibiting different redox states depending on the state of the
chelated Fe ion. In contact with oxygen, it confers the oxidation of heme iron from the ferrous state in
oxymyoglobin (oxygenated myoglobin) to the ferric state in metmyoglobin, causing a brownish-red
color. This oxidation reaction can be delayed by the addition of antioxidants [168]. Vitamin E allows one
control the color deterioration by decreasing the rate of myoglobin oxidation in beef [169]. Moreover,
Fernández-López and Sevilla [161], investigated pigment degradation caused by the cooking and
storage of pork meat. These authors found that the addition of rosemary and hyssop extracts stabilized
the meat color and consequently increased the shelf life of the products. Mansour and Khalil [50], in
their study with freeze-dried extracts of ginger rhizomes and fenugreek seeds added to beef patties,
found them to be active in retarding rancid odor and color change. Furthermore, those extracts
exhibited higher antioxidant activities compared to commercial antioxidants during cold storage.
In another study by Karre and Lopez [157], it was reported that the antioxidant potentials of fruits,
such as plums, grape seeds, cranberries, pomegranates and bearberries; and plants, such as rosemary,
oregano and pine bark, for meat and poultry products, positively affected product qualities. However,
when using extracts rich in phenolic compounds, some potently active polyphenols may accelerate the
oxidation of oxymyoglobin due to the pro-oxidant nature of their quinone derivatives [168]. Lycopene
extract from a tomato source was added to minced meat, increasing its storage stability by reducing the
microbiological activity. In addition, it improved color and added a natural taste. This extract exerted
several functionalities at the same time (pigment, antioxidant and antimicrobial activity), presenting
great potential for use in meat products. However, studies regarding adverse effects, like pro-oxidant
reactions, are still necessary [170].
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7.2. Antioxidant Edible Coatings and Films

Alternatively to the incorporation of natural antioxidants into food formulations, they have been
used to produce protective active barriers to be applied directly in food products surface (edible
coatings) or in films for food packaging purposes. These barriers represent a new approach to solving
the detrimental impacts of oxygen on food [171]. Most of the natural antioxidants reported in the
literature also possess antimicrobial activity. As such, these active barriers may be designed to extend
food products’ shelf lives, as they are effective against not only oxidation reactions, such as enzymatic
browning or oxidative rancidity, but against microbial proliferation. Edible films and coatings present,
as main advantages over the antimicrobial or antioxidant agents, direct incorporation into bulk food,
the possibility of active compounds’ diffusion control at the surface of the food and the reduction of
the amount of preservatives added in the food. The production of these active barriers with natural
biopolymers (e.g., chitosan, starch, alginate, whey protein and gelatin) has received increasing attention
as an alternative to synthetic, non-biodegradable plastic packaging. A summary of recent works
regarding active edible films and their applications for food preservation is presented in Table 5.

Table 5. Application of antioxidant-enriched edible films and edible coatings for food preservation.

Source of
Antioxidants Main Active Compound Biopolymers

Matrix References

Edible
films

Propolis extract
Flavonoid aglycones, phenolic acids
and their esters, phenolic aldehydes,

alcohols, ketones
Chitosan Siripatrawan and

Vitchayakitti [172]

Olive pomace Phenolic compounds and
carotenoids Chitosan de Moraes Crizel, de

Oliveira Rios [173]

Papaya peel
microparticles Phenolics and carotenoids Gelatin de Moraes Crizel, de

Oliveira Rios [174]

Thyme extract

Caffeic acid, flavonoid glycosides,
hydroquinones derivates,
terpenoids and biphenyl

compounds

Chitosan and
starch Talón, Trifkovic [175]

Mango kernel extract
Gallic acid, ellagic acid, ferulic acid,

cinnamic acids, tannins, vanillin,
coumarin and mangiferin

Soy protein isolate
and fish gelatin

Maryam Adilah,
Jamilah [176]

Mango leaf extract Gallic acid, mangiferin, glucosides
and other phenolic compounds Chitosan Baranauskaite,

Kopustinskiene [143]

Blackberry powder Phenolic acids, tannins and
anthocyanins

Arrowroot starch
films Nogueira, Fakhouri [177]

Herba Lophatheri extract Flavonoids Chitosan Wang, Guo [178]

Edible
coatings

Oregano essential oil Thymol, ρ-cymene and carvacrol Pectin Rodriguez-Garcia,
Cruz-Valenzuela [179]

Ginger essential oil α-zingiberene and
β-sesquiphellandrene Sodium caseinate Noori, Zeynali [180]

Roselle calyces extract
and cinnamon

essential oil
Anthocyanins Chitosan Ventura-Aguilar,

Bautista-Baños [181]

Rosemary extract and
essential oil

Rosmarinic acid, caffeic acid,
flavonoids, 1,8-cineole, L-camphor,

a-pinene and 1-borneol

Carboxyl methyl
cellulose

Choulitoudi,
Ganiari [182]

Essential oil and
extract from Satureja

thymbra
Υ-Terpinene and carvacrol Carboxyl methyl

cellulose
Choulitoudi,
Bravou [183]

Tulsi extract Polyphenols and flavonoids Arabic gum Murmu and Mishra [184]

Ginseng extract

Ginsenosides, alkaloids,
polysaccharides, phytosterols,

polyacetylenes, phenolics
and limonene

Guar gum Dong and Wang [185]
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Extracts from agricultural by-products have shown great potential to be incorporated in packaging
materials, with promising results. Baranauskaite and Kopustinskiene [143], prepared chitosan films
with an ethanolic mango leaf extract (MLE) having antioxidant properties. When applied as packaging
materials for cashew nuts’ storage, fatty acid oxidation was reduced by 56% for the nuts stored with
5% MLE film compared to commercial, non-biodegradable polyamide/polyethylene (PA/PE) films.
In a similar way, de Moraes Crizel and de Oliveira Rios [173], developed biodegradable films with
antioxidant activities based on chitosan and olive pomace flour and microparticles, which showed
better protective effects than PA/PE films, against the oxidation of walnuts stored under accelerated
deterioration conditions for 31 days (T = 55 ◦C, with the incidence of UV fluorescence and 35% relative
humidity). The same authors also reported the production and characterization of gelatin films with
papaya peel microparticles [174]. The applications of these films as packaging materials of lard (used
as food simulant) have shown a higher decrease of fat oxidation compared to commercial polyethylene.
This effect was shown by the lower contents of primary and secondary products of oxidation quantified
in lard packaged with the antioxidant films.

Qin and Zhang [186] produced chitosan and montmorillonite (MMT) active films enriched with
pomegranate-rind ethanol extract presenting DPPH radical scavenging activity that was not affected
by the addition of MMT. Other recent works have reported the developments of films with antioxidant
activities, such as films made of arrowroot starch and blackberry particles [177]; fish gelatin or soy
protein isolate with mango kernel ethanolic extract [176]; chitosan and Herba Lophatheri extract [178];
and chitosan or starch, containing aqueous thyme extract [175].

The addition of extracts to the films affects not only their antioxidant activity, but their other films
properties. Martins and Arantes [187] developed gelatin films with commercial ginger gingko leaf and
green tea extracts. Beyond higher antioxidant activity, the incorporation of those extracts improved
their barrier properties against UV light and water vapor, respectively. In addition, a reduction of
stress and strain at break of films with extracts was also observed compared to control films. In a
similar way, carvacrol and pomegranate peel extracts also increased the barrier to water vapor transfer
of chitosan films [188].

Coating the vegetables and fruits with edible materials has been used to reduce water vapor and
gas exchanges, with the aim of increasing products’ shelf lives, and helping to maintain their firmness
levels, colors, sensorial proprieties and antioxidant activities. These coatings have been used as carriers
of bioactive compounds; namely, with antioxidant and antimicrobial properties. Recent works include
Arabic edible gum coatings with tulsi extract rich in polyphenols and flavonoids, which was effective
in the delay of guava fruits’ ripening rate. Furthermore, guava coated with the optimized formulation
registered no mold growth [184]. In addition, guar gum and ginseng extract coating applied on sweet
cherries controlled weight loss and reduced loss of ascorbic acid, polyphenols, titratable acidity and
firmness compared to the control fruits. Moreover, the addition of ginseng extract decreased the
polyphenol oxidase activity [179].

8. Conclusions

Antioxidants from natural sources are valuable bioactive compounds with well-demonstrated
potentials for use in the food industry. Beyond their application in functional food products, attention
has also been focused on their use as alternatives to their synthetic counterparts to increase product
stability and avoid deterioration by oxidation during processing and storage. In the context of a
circular economy, efforts are being dedicated to the use of natural antioxidants from food byproducts
generated by the agricultural industry and from underexploited plant materials.

Each step between the extraction and the application of natural antioxidants has already been
a focus of research. Regarding the extraction step, the selection of the most appropriate techniques
differs according to the type of compounds targeted for recovery. More environmentally friendly
techniques have been explored to avoid the large amounts of solvents used in conventional solvent
extraction processes. Although replacing conventional technologies by non-conventional ones has
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emerged, improvements are necessary in terms of scaling up. Concerning the stabilization processes
after extraction, spray drying has been the most-used process, mainly due to its simple operation and
scaling up, delivering encapsulated antioxidants in the form of powder microparticles, enabling easy
manipulation and dosages.

Although these compounds are derived from natural sources, their applications to food products
must take into account their dosages and possible toxicological effects. Moreover, negative effects
on sensory attributes, especially flavor and taste, imparted by some natural compounds, have to be
addressed. This will increase the consumer propensity to purchase food products containing natural
antioxidants, ultimately contributing to decreasing the prices of these products.
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4. Augustyniak, A.; Bartosz, G.; Čipak, A.; Duburs, G.; Horáková, L.; Łuczaj, W.; Majekova, M.; Odysseos, A.D.;
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