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Abstract. Relation reversals in ontological systems refer to such patterns as a path from concept A to concept B

in one version becoming a path with the position of A and B switched in another version. We present a scalable

approach, using cloud computing, to systematically extract all hierarchical relation reversals among 8 SNOMED CT

versions from 2009 to 2014. Taking advantage of our MapReduce algorithms for computing transitive closure and

large-scale set operations, 48 reversals were found through 28 pairwise comparison of the 8 versions in 18 minutes

using a 30-node local cloud, to completely cover all possible scenarios. Except for one, all such reversals occurred in

three sub-hierarchies: Body Structure, Clinical Finding, and Procedure. Two (2) reversal pairs involved an uncoupling

of the pair before the is-a coupling is reversed. Twelve (12) reversal pairs involved paths of length-two, and none (0)

involved paths beyond length-two. Such reversals not only represent areas of potential need for additional modeling

work, but also are important for identifying and handling cycles for comparative visualization of ontological evolution.

Introduction

The focus of this paper is on ontology evolution [1, 2], most specifically on hierarchical relation reversals in SNOMED

CT. A simple example of such a reversal consists of two concepts: “Joint structure of shoulder girdle” and “Joint

structure of shoulder region.” The 07/2013 version states that “Joint structure of shoulder girdle” is-a “Joint structure

of shoulder region,” although the (more recent) 03/2014 version asserts the opposite (first two components in Fig. 1):

“Joint structure of shoulder region” is-a “Joint structure of shoulder girdle.”
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Figure 1: First two arrows: reversal of is-a relation between two versions of SNOMED CT. Right most: a cycle induced by the

reversal pair when it appears in a merged graph. The numbers below concept labels are the corresponding SNOMED CT identifiers.

This is an example of a direct (hierarchical relation) reversal: “A is-a B” in one version has been changed to “B is-a

A” in another version. An indirect (hierarchical relation) reversal, considered in this paper, may involve an arbitrary

number of steps in an entire path: A →∗ B in one version is changed to B →∗ A in another version, where →∗

represents several is-a steps in the same direction. We call the concepts A and B involved in either a direct or an

indirect relation reversal a reversal pair.

The purpose of this study is twofold: (1) Relation reversals represent an important and rather dramatic structural

change, because all the parents and children of the reversed concepts are also affected. There may be good reasons for

the occurrence of such reversals that could provide us insight for improving concept labels that better reflect the in-

tended meaning. (2) Relation reversals are important for identifying and handling cycles for comparative visualization

of ontological evolution. A common, perhaps most effective, tool for rendering directed acyclic graphs in general, and

hierarchical relations in ontological structures in particular, is topological sort (a.k.a. Coffman-Graham algorithm).

Topological sort enables each concept assigned a unique level, followed by edge rendering. We are interested in visu-

alizing ontological changes in such a way that two related fragments from different versions of the same ontology are

merged into a single graph for visual inspection of the changes (Fig. 2). However, if a reversal pair is involved (Fig. 1,

right most), it causes the merged graph cyclic, making topological sort not directly applicable. By identifying and

handling reversals (the only source for introducing cycles) ahead of rendering, topological sort can still be utilized.
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Figure 2: Semi-automatically rendered graphs from two SNOMED CT versions. Left: a non-lattice fragment of 7/2013 version

of SNOMED CT. Right: a non-lattice fragment of 03/2014 version of SNOMED CT. Middle: merged graph showing the changes.

The loop inside dotted red rectangle is caused by the reversal given in Fig. 1.

Mining all reversals (not just the direct ones) and between all SNOMED CT versions (not just the consecutive ver-

sions), is a computationally intensive task. We present a “Big Data” approach using MapReduce to systematically

extract all such reversals among 8 SNOMED CT versions from 2009 to 2014. Taking advantage of transitive clo-

sure and a MapReduce algorithm to perform large-scale set operations, a total of 48 reversals were found among 8

SNOMED CT versions in 28 pairwise comparisons, using a total of 18 minutes with a 30-node local cloud. The sys-

tematic pairwise comparison is necessary to account for all possible situations such as “A is-a B” in a 2009 version has

been changed to “B is-a A” in a 2012 version, but A and B are not related by is-a for all versions in 2010 and 2011.

Except for one, all direct and indirect reversals occurred in three sub-hierarchies: Body Structure, Clinical Finding

and Procedure.

1 Background

SNOMED CT. Developed by the International Health Terminology Standard Development Organization (IHTSDO),

SNOMED CT is the world’s largest clinical terminology and provides broad coverage of clinical medicine, including

findings, diseases, and procedures for use in electronic medical records [3]. The international release of SNOMED CT

is produced twice a year, reflecting both changes to medical knowledge (e.g., new drugs) and changes to the editorial

process (e.g., changes to the representation of anatomical entities). The member countries of the IHTSDO also create

extensions of SNOMED CT, with additional concepts specific to the needs of a particular country.

Ontology Evolution. Most ontologies in life science evolve continuously to account for new discoveries, to improve

quality, and to align and enrich with related ontologies [4, 5, 6]. Typical ontological changes include the insertion

and deletion of concepts as well as the insertion and deletion of relations between concepts. One of the values of

evolutionary analysis of ontological structures is to identify regions of more intensive change activities, for targeted

ontology quality assurance work [7]. Non-lattice fragments (see Fig. 2) are often indicative of structural anomalies

in ontological systems. Such fragments represent possible areas of focus for subsequent quality assurance work [8]

because of two reasons: (1) such structures are somewhat incompatible with the generally applicable ontology design

principle that the subsumption relationship (is-a hierarchy) should form a lattice [9]; and (2) these fragments have been

experimentally validated to represent change rates up to about 38 times higher than those of the overall change [10].

“Big Data” Approach for Ontology Evolution Analysis and Quality Assurance. In our work [10], we introduced

MaPLE, an approach using cloud computing to systematically extract non-lattice fragments in 8 SNOMED CT ver-

sions from 2009 to 2014, with an average total compute time of less than 3 hours per version. This work used the

MapReduce [11] distributed programming environment to process large amounts of data in a scalable way. A MapRe-

duce job consists of a mapper and a reducer function, specified by the user to process data in the form of key-value

pairs. Such a job is automatically broken into tasks executed in parallel across a cluster of machines called compute

nodes. The results are then aggregated and grouped by the keys by reducer tasks, also executed in parallel. In this
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paper we use MapReduce to systematically extract all reversals among 8 SNOMED CT versions from 2009 to 2014,

taking advantage of transitive closure and a MapReduce algorithm to perform large-scale set-operations.

2 Methods

Our data source consists of 8 versions of SNOMED CT, dated 07/2009, 01/2010, 01/2011, 01/2012, 07/2012, 01/2013,

07/2013, and 03/2014. To detect direct and indirect hierarchical reversals among these versions of SNOMED CT, we

first compute the transitive closure for each version based on the direct “is-a” relationship. Hierarchical relation

reversals are then detected by set operations of the respective transitive closures using MapReduce. If all reversal pairs

are direct reversal for these 8 versions, we would like to confirm so; but it does not rule out possible indirect reversals

occurring between future versions. This is the rationale for using (indirect) transitive closure, to exhaustively detect

all direct and indirect reversals, including pairs that are separated by several steps in a path.

Computing Transitive Closure Using MapReduce. On average, each SNOMED CT version contains about 300k

concepts and 450k “is-a” relations. Sequential algorithms for computing transitive closure, such as the Floyd-Warshall

algorithm, are time-consuming. MapReduce enables a parallel, distributed way to compute transitive closure in a more

efficient manner. Fig. 3 (left) is our MapReduce algorithm for computing transitive closure. First, a hash map is setup

to load concepts and their direct parents in each computing node using DistributedCache. Then, in the map phase

(lines 3-16), each mapper reads in a concept, and recursively collects its ancestors level by level, and emits the concept

and the set of its ancestors. In the reduce phase (lines 17-21), each reducer emits all concept-ancestor pairs.

MapReduce for Transitive Closure MapReduce Set Operations for Reversal

1: Input: Concept nodes and “is-a” relation pairs

2: Output: Transitive closure concept pairs

3: class MAPPER

4: Setup a HashMap CP and load it with concepts and their direct parents using DistributedCache.

5: method MAP(concept c)
6: P = CP .get(c) � Get direct parents of c

7: A = ∅ � Initialize a set for ancestors of c

8: while P �= ∅ do

9: A.add(P )
10: temp = ∅
11: for each concept p in P do

12: temp.add(CP .get(p))

13: end for

14: P = temp

15: end while

16: EMIT(c, A)

17: class REDUCER

18: method REDUCE(concept c, concept ancestors A)
19: for each concept a in A do

20: EMIT(c, a ) � Output transitive closure pairs

21: end for

1: Input: Transitive closure concept pairs for two ver-

sions O and N

2: Output: Direct and indirect reversals between O and

N

3: class MAPPER

4: method MAP(concept c1, concept c2)
5: if the concept pair (c1, c2) is in O then

6: EMIT((c1, c2), O)

7: else if the concept pair (c1, c2) is in N then

8: EMIT((c2, c1), N ) � Reverse the concept pair in

N

9: end if

10: class REDUCER

11: method REDUCE((c1, c2), versions V )
12: if |V | = 2 then � The concept pair is in both O

and reversed N

13: EMIT(c1, c2)

14: end if

Figure 3: Left - MapReduce steps to compute transitive closure. Right - MapReduce steps to compute reversals.

Performing Big-Set-Operations Using MapReduce. Using the computed transitive closures for each SNOMED CT

version, reaching over 5 million edges each, we detect reversals between any two versions by intersecting concept

pairs in one version and reversed concept pairs in the other version. Formally, given O and N , transitive closures for

two SNOMED CT versions, the set of reversals between them is {(c1, c2) | (c1, c2) ∈ O} ∩ {(c2, c1) | (c1, c2) ∈ N}.

This involves big-set-intersection, since transitive closure for each version contains a large number of concept pairs

and traditional way of performing set operations does not always fit into memory. Therefore, we perform big-set-

intersections in a more feasible and efficient way using MapReduce. Fig. 3 (right) shows the MapReduce algorithm

to perform big-set-intersections and detect reversals between any two SNOMED CT versions. In the map stage (lines

3-9), each mapper reads in a set of concept pairs, and emits key-value pairs ((c1, c2), O) if the concept pair (c1, c2) is

in O, and ((c2, c1), N) if the concept pair (c1, c2) is in N . In the reduce stage (lines 10-14), each reducer aggregates

versions involved for a concept pair, and emits the concept pair if it belongs to both versions.

3 Results

Relation reversals. We performed 28 pairwise comparisons among the 8 SNOMED CT versions and found 48 rever-

sals (Table 1). Among the 48 reversals, 33 were from the sub-hierarchy Clinical Finding, 8 from Body Structure, 6

from Procedure, and 1 from Event. Two of the reversals (rows 07/2009 → 03/2014 and 01/2010 → 07/2013 in Table

1) had intermediate stages in which the pair is not coupled by an is-a relation, confirming our strategy to perform all
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1. Premature or threatened labor (287979001), Premature labor (6383007);
2. Anesthesia for procedure on head and neck (82973008), Anesthesia for procedure on head (120212000);
3. Primary dilated cardiomyopathy (195021004), Primary idiopathic dilated cardiomyopathy (53043001);
4. Computed tomography of shoulder (241564007), Computed tomography arthrogram of shoulder (241583000);
5. Musculoskeletal structure of sacral spine (297169002), Sacral spine (303950008);
6. Rupture of tendon of biceps, long head (86128003), Rupture of tendon of biceps (428883008);
7. Joint structure of shoulder girdle (281415003), Joint structure of shoulder region (31398001);
8. Calcium deposits in tendon (404224009), Osteodesmosis (404225005);
9. Sciatic neuropathy (52585001), Sciatic nerve lesion (367137004);

10. Fly bite (283345006), Mosquito bite (283344005).

Figure 4: 10 sample reversal pairs among the result of 48.

28 pairwise comparisons rather than performing comparison only for 7 consecutive versions.

Version Pair C B P E

07/2009 → 01/2010 7 0 2 0

01/2010 → 01/2011 7 0 3 0

01/2011 → 01/2012 7 0 0 0

01/2012 → 07/2012 0 0 0 0

07/2012 → 01/2013 1 0 0 0

01/2013 → 07/2013 1 0 0 0

07/2013 → 03/2014 9 7 1 1

07/2009 → 03/2014 0 1 0 0

01/2010 → 07/2013 1 0 0 0

Total (48) 33 8 6 1

Table 1: Distribution of relation reversals

in SNOMED CT sub-hierarchies and the ver-

sions in which they occurred. C: Clinical

Finding. B: Body Structure. P: Procedure. E:

Event.

Ten sample reversal pairs are displayed in Fig. 4. On average, computing

the transitive closure of an entire SNOMED CT version and computing

big-set-intersection between transitive closures each took less than 40 sec-

onds, amounting to a total computing time of 18 minutes.

Indirect Reversals. We found 12 indirect reversals. All such pairs in-

volved one direct is-a relation in one version and a length-two path in the

other version. Fig. 5 shows 2 such indirect reversals. This confirms the

validity of our strategy to compute transitive closures of SNOMED CT

versions, because using the direct relations alone would have missed such

reversals. Our exhaustive analysis using transitive closure also assured

that no reversals involving a path-length of more than 2 existed for the

versions we analyzed. However, this does not rule out the existence of

indirect reversals involving longer paths between future versions.

Enabling Visualization of Merged Fragments from Distinct SNOMED

CT Versions. Our work on detecting direct and indirect reversals is also

motivated by removing a technical barrier in visualizing merged ontolog-

ical fragments from distinct versions of SNOMED CT. Ontological fragments in SNOMED CT can be visualized

using SVG (scalable vector graphics - see Fig. 2), supported by common web browsers using the D3 drawing library

(http://www.d3js.org). By convention, nodes represent concepts and edges represent “is-a” relation between concepts,

with edge direction going from child (lower) to parent (higher). A well-known rendering algorithm for directed acyclic

graphs is based on topological sort. We use this algorithm to render merged non-lattice fragments from different ver-

sions of SNOMED CT. However, relation reversals introduce cycles, making topological sort non-terminating. Thus

detecting reversals before applying topological sort is required.

Figure 5: Two pairs of indirect reversals.

One pair consists of Tendinitis AND/OR

tenosynovitis (240034000) and Inflammatory

disorder of tendon (34840004); the other pair

consists of Tendinitis AND/OR tenosynovitis

(240034000) and Tenosynovitis (67801009).

Fig. 2 illustrates an example of a semi-automatically generated merged

graph of two non-lattice fragments from [10] in distinct SNOMED CT

versions. The fragments are generated from Body Structure concepts “Arm

(53120007)” and “Structure of ligament of trunk (77638007)” in 01/2013

and 03/2014 versions of SNOMED CT. The loop (inside the red dotted

rectangle) in the graph involves the reversal pair (item 7 in Fig. 4) of “Joint

structure of shoulder girdle” (281415003) and “Joint structure of shoulder

region” (31398001).

For Fig. 2, the source concept pair is colored in green. Nodes representing

the greatest common descendants of the source pair are painted in yel-

low. All nodes lying in-between a green node and a yellow node appear

in light gray. Additional graphical elements are used for visualizing graph

changes (for both Fig. 2 and Fig. 5): red represents deletion and blue in-

sertion. Nodes and edges are also marked with distinct styles to represent

additional information: (a) nodes with solid red borders and solid red edges represent deletion: they appear in old

fragment but not new; (b) nodes with solid blue borders and solid blue edges represent addition: they appear in new

fragment but not old; (c) nodes with dashed borders, and edges drawn in dashed style, represent insertion and deletion

in the SNOMED CT versions (such changes must appear in the respective fragments).
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Discussion. Clinically, hierarchical relation reversals may involve concepts whose positions in the hierarchical struc-

ture are not immediately obvious. Concepts that are the object of relation reversals during ontological evolution may

be worth further analysis (such as items 7 to 10 in Table 4). A majority of the reversals are consistent with two prior

studies on the use of “and” and “or” [12] as well as “lexically assign, logically refine” [13].

And/Or. We found 18 reversal pairs involved the connectives “and” and “or” (or implicit logical conjunction, e.g.,

anorectal). For example (see items 1 and 2 in Table 4), “Premature or threatened labor, Premature labor” and “Anes-

thesia for procedure on head and neck, Anesthesia for procedure on head” are reversal pairs that represent a common

possible misinterpretation of “and,” which uses intersection in form to represent union in meaning. To make the in-

tended meaning clearer, it is perhaps helpful to normalize the connective to “AND/OR” when the intended meaning

is union, especially with respect to Body Structure and Procedure. With this convention, a concept in the form of

A should always be a subclass of a concept of the form A AND/OR B. Further, all concepts “A and B” should be

normalized to “A AND/OR B,” so “Anesthesia for procedure on head and neck” should be normalized to “Anesthesia

for procedure on head AND/OR neck” to avoid potential confusion. This is consistent with the analysis given in [12].

Lexically assign, logically refine. Examples due to this type of phenomenon include the pairs in items 3, 4, 5 and 6

in Table 4. The lexicographical difference between the pairs involves the insertion of words, such as “idiopathic” in

item 3, “arthrogram” in item 4, “Musculoskeletal structure of” in item 5, and “long head” in item 6. It is arguable

that any such insertion of words results in a more specialized concept, and hence should be a subclass of the parent

concept. However, in the latest version we analyzed (3/2014), the opposite seems to be the case sometimes. Further

consideration is needed to come up with a guiding principle (rule) that can be systematically applied.

Big Data approach for ontology quality assurance work. In this paper we refer to “Big Data” as a frame of mind, or

a “bigger vision,” in perceiving the scientific landscape from a grander data scale, emboldened by the scalability of

cloud computing, such as MapReduce for massive parallel processing. Such an approach can dramatically accelerate

the speed of analysis in cases of complex tasks that are less computationally feasible [10, 14]. We believe that such

a scalable approach is beneficial for ontology quality assurance work in general, even for computationally feasible

problems (such as the work presented here), because it allows us to ask bigger questions and to answer them faster,

putting computational barrier on the back of our minds so we can focus more on the scientific content.

Conclusion. We presented a scalable and generalizable method using MapReduce to mine reversals during ontological

evolution. 48 hierarchical reversals have been found in 8 SNOMED CT versions from 2009. Identification of such

reversals allowed avoidance of cycles in applying topological sort for rendering merged ontological graphs for visual

comparison and change illustration. The reversals confirmed prior findings in the literature about concept labeling

convention recommendations, but also revealed new cases for further consideration. In general, our closure-based

technique has shown to be powerful and efficient for analyzing large ontological structures as well as their evolution.

Although this investigation focused on hierarchical reversals, our approach suggests the exploration of reversals of

other kinds of relations, which we plan to address in future work.
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