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Abstract

Methods derived from ecological niche modeling allow to define species distribution based on presence-only data. This is
particularly useful to develop models from literature records such as available for the Anopheles dirus complex, a major
group of malaria mosquito vectors in Asia. This research defines an innovative modeling design based on presence-only
model and hierarchical framework to define the distribution of the complex and attempt to delineate sibling species
distribution and environmental preferences. At coarse resolution, the potential distribution was defined using slow
changing abiotic factors such as topography and climate representative for the timescale covered by literature records of
the species. The distribution area was then refined in a second step using a mask of current suitable land cover. Distribution
area and ecological niche were compared between species and environmental factors tested for relevance. Alternatively,
extreme values at occurrence points were used to delimit environmental envelopes. The spatial distribution for the complex
was broadly consistent with its known distribution and influencing factors included temperature and rainfall. If maps
developed from environmental envelopes gave similar results to modeling when the number of sites was high, the results
were less similar for species with low number of recorded presences. Using presence-only models and hierarchical
framework this study not only predicts the distribution of a major malaria vector, but also improved ecological modeling
analysis design and proposed final products better adapted to malaria control decision makers. The resulting maps can help
prioritizing areas which need further investigation and help simulate distribution under changing conditions such as climate
change or reforestation. The hierarchical framework results in two products one abiotic based model describes the potential
maximal distribution and remains valid for decades and the other including a biotic mask easy to update with frequently
available information gives current species distribution.
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Introduction

The Anopheles dirus complex (Peyton & Ramalingam, 1988) [1]

includes the most efficient malaria vectors of Asia and species

transmitting Artemisin-resistant malaria parasites which could

compromise control efforts globally [2]. If the complex is typically

associated with forests, specimens have been recorded in other

landscapes reshaped by human activities such as orchards [3–6].

In countries where vast areas have not yet been surveyed, overall

mapping is needed to allow targeting priority areas for additional

surveys and surveillance. A geographical review gathering current

ecological knowledge and environmental preferences for the seven

species of the complex, and 200 geo-referenced collection sites

including literature records proposes a general distribution map of

known occurrences [7]. Similar geo-referenced sites have been

used to predict the distribution of An. dirus sensu lato using presence-

absence model where artificial absences are based on expert

knowledge [8].

Various methods derived from the ecological niche concept [9]

offer successful techniques to map species literature records [10–

14]. Particularities of such datasets include low geographical

precision and presence-only records. Indeed, site location is often

not accurate and success in capture depends on sampling

technique, seasonality and short-term changing meteorological

conditions impeding the record of reliable absences. Additionally,

remote sensing and Geographical Information Systems (GIS)

technologies increase the availability of environmental digital

datasets and geo-referenced species occurrence data which can be

combined to estimate species distribution over a large region at

coarse scale [15]. Amongst those new modeling techniques, the

Maxent method selected for this study [13,16] performs particu-

larly well [10], does not require absence data and can be

transferred to large areas with sparse or no species sampling

records.
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Additionally, the above method is adapted to integrate the

hierarchical framework suggested by Soberon [17]. Indeed,

explanatory factors used in models should be relevant for the

timeframe and scale of the data. The distribution area is here

defined in two steps. First slow changing abiotic factors are

adapted for models based on historical records at coarse scale

identify distribution areas according to physiological limits of the

species (Grinnellian niche) [18] or what is considered here to be

the potential niche. These factors include for An. dirus s.l. rain

abundance and pattern, temperature, topography, soil type and

relative humidity [7]. The second step help evaluate the realized

niche (Eltonian niche) [19] defined by reducing the potential niche

according to relevant biotic factors available at finer scale. Biotic

factors, accounting for interactions with other organisms (includ-

ing vegetation), change fast and must be studied using recent data.

Current forest coverage is the most relevant biotic factor driving

An. dirus s.l. distribution.

This study further tried to delineate distribution per species

using the same methodology and to identify bionomics differences.

Indeed, if the low number of sibling species records challenges

potential analysis, clarifying bionomics differences and distribution

per species is seen as a prerequisite for efficient control because of

behaviour differences influencing efficiency of particular control

measures [8].

The objectives of this study are to (1) Delimit the potential range

of distribution for the Dirus complex (An. dirus sensu lato) and

siblings species in Asia, (2) Assess the influence of environmental

factors, (3) Identify potential differences between sibling species.

Materials and Methods

The analysis was carried out in four steps illustrated in Figure

S1. The two first steps mapped the ‘‘potential’’ and ‘‘current

distribution’’ areas while step 3 compared distribution areas

between the sibling species and step 4 analyzed the possible

influence of abiotic environmental factors.

Entomological Data
The An. dirus complex belongs to the Leucosphyrus group (Reid,

1949) and occurs from India to Taiwan. An. dirus Peyton &

Harrison, 1979 or An. dirus sensu stricto, Anopheles crascens Sallum &

Peyton, 2005, Anopheles scanloni Sallum & Peyton, 2005 and

Anopheles baimaii baimaii Sallum & Peyton, 2005, are recognized

vectors of human malaria, while Anopheles elegans (James, 1903),

Anopheles nemophilous Peyton & Ramalingam, 1988 and Anopheles

takasagoensis Morishita, 1946 probably only transmit simian malaria

[20]. The mosquito records were located in 370 sites including 199

positive sites for An. dirus s.l. Sites were prospected from 1974 to

2005. In some cases the species could be presumed from the

location of the site. Available information included per species: An.

takasagoensis (1 recorded), An. dirus s.s. (54 recorded +32 presumed),

An. crascens (10 recorded), An. scaloni (8 recorded), An. baimaii (31

recorded +39 presumed), An. elegans (1 recorded +2 presumed), An.

nemophilous (17 recorded). Two records were assigned to An. dirus s.l.

because of unexpected identification of An. dirus s.s. and An. scaloni

in Myanmar [21,22]. Twenty three sympatric sites were recorded.

Only presence records were used to develop the models. Presumed

presences were just added for discussion to the results. An. elegans

and An. takasagoensis were not studied due to low number of

records. The complete dataset has previously been published [7].

Abiotic Environmental Data
Long term climatic datasets of monthly temperature and rainfall

came from Worldclim [23] which provided also bioclimatic

variables at 1 km, and CRU CL2.0 [24] which provided also

number of monthly rainy days, rainfall monthly variation and

relative humidity at 15 km resolution. The datasets are based on

meteorological stations data from 1950 to 2000. The mean,

median, maximum, minimum and standard deviation of the

monthly values were calculated, as well as the number of months

with mean temperature under 20 degrees and with less than 5

rainy days.

Soil types came from the Food and Agriculture Organization

(FAO) soils maps (http://www.fao.org/ag/AGL/agll/dsmw.htm)

including drainage, texture and salinity at 15 km resolution and

updated version by the United State Department of Agriculture

(USDA) at 4 km (http://soils.usda.gov/use/worldsoils/

mapindex/order.html). Elevation, slope, flow direction, flow

accumulation and compound topographic index came from the

United State Geological Survey Gtopo30 (USGS) (http://edc.

usgs.gov/products/elevation/gtopo30/hydro/index.html) at

1 km. All prepared sets were kept in their original resolution but

cut to a same spatial extent corresponding to the Asia-pacific

biomes [25] and known distribution range of An.dirus s.l. [7]. Data

processing and calculation were performed using ArcGIS 9.3 [26]

and ENVI 4.4 [27].

Biotic Data
Two forest masks were built to answer the needs of the current

research.

The first mask provided the highest resolution available to build

the most detailed distribution map. Forest habitat and land cover

were provided for the world by the European Spatial Agency

(ESA) Globcover product at a resolution of 300 m [28]. The

classification was based on Meris satellite time series for year 2005

(http://ionia1.esrin.esa.int/) further processed in seasonal and

annual composites. The land cover was reclassified into a binary

forest/non forest cover to create a forest mask at 300 m resolution

including classes: broadleaved and needle-leaved, evergreen or

deciduous forest and woodlands a well as mosaic of forest with

croplands and grasslands.

Calculation of niche similarity metric required masking the

model with a 1 km resolution mask. To build this mask, the

Greenness of vegetation index (NDVI) and wetness index (NDWI)

were derived from spot VEGETATION satellite yearly composite

images for 2005. NDVI and NDWI layers were calculated using

ENVI software [27] and are based on annual composites of daily

SPOT VEGETATION images prepared using the mean com-

positing method [29]. Grid cells with NDVI value below 0.5 and

NDWI under 0.3 were classified as non forest.

Step 1: The Fundamental Niche
Data reduction and groups of variables. To choose

between the hundred abiotic variables at 1 km and 15 km, the

variables were classified according to their possible contribution to

very basic ecological questions: is there enough or too much rain?

Is the rain and temperature pattern adequate? Is the temperature

too high or too low? Are soils and topography adapted to breeding

sites? Following Buermann [30], the covariance between pairs of

variables was estimated. Single variable Maxent models [13]

assessed importance of each variable to the distribution of An. dirus

s.l. and trends of observed frequency and predicted suitability

curves were compared and check for coherence [30] in order to

select which layers from correlated pairs (with Pearson’ correla-

tions coefficient equal or higher than 0.8) to retain for further

analysis. While Maxent deals elegantly with highly correlated

variables without influence on the output, the selection of non

correlated variables make biological interpretation easier. Based
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on those preliminary results, one or two variables were selected per

ecological questions for the 15 km and the 1 km dataset.

Three groups of abiotic variables were evaluated (See Table S1):

(1) the most important climate datasets regarding species biology

(CLIM) (2) datasets corresponding to ecological questions (ECO)

and (3) the 10 variables performing the best (ECOOPT). The

models were built for the An. dirus complex, then for the sibling

species An. dirus s.s., An. baimaii, An. scanloni, An. nemophilous and An.

crascens. This led to a total of 36 models with 6 ‘‘species’’ modeled

at 2 resolutions (1 and 15 km) with 3 groups of variables.

Modeling techniques. Following the ecological niche mod-

eling concept, the model was determined from a set of gridded

variables with information available for all grid cells in a study

area. The methods first defined the suitable niche for a species

from the environmental values in the cells of occurrence and then,

identified other cells in the study area corresponding to similar

environmental conditions. The selected method in this study is

Maxent (version 2.1.28; http://www.cs.princeton.edu/

,schapire/maxent/) which assessed the probability distribution

of a species by estimating the probability distribution of the

maximum entropy [13]. The algorithm performed iterations in

which the weights associated with the environmental variables,

were adjusted to maximize the average probability of the sampled

point locations (or average sample likelihood), expressed as the

training gain [13]. For all models run in this study, we used the

Maxent default settings. The default output map interpreted as a

relative suitability or probability for species occurrence is further

transformed in percent of suitability. Transformation to a binary

presence/absence map required selection of a threshold value.

Four potential threshold were calculated to maximize different

criterion: (1) equal test sensitivity and specificity, (2) maximum test

sensitivity plus specificity, (3) balance training omission, predicted

area and threshold value, (4) equate entropy of threshold and non-

threshold distribution. The best performing threshold was selected

as explained below [13].

Models evaluation. To challenge the models, the recom-

mended 50% of the samples [31] were set aside for validation. The

models were run 100 times with test samples chosen randomly at

each repetition. As the choice of the threshold value between

presence and absence could influence the quality of the result, we

used threshold-dependent and threshold-independent evaluation

methods.

Threshold-dependent evaluation based on presence/absence

map relies on test statistics to evaluate if the model performs better

than random [13]. In particular, the extrinsic omission rate,

defined as the fraction of test localities that fall into pixels outside

Figure 1. Probability of species occurrence. A) Anopheles dirus sensu lato, B) Anopheles dirus sensu stricto and C) Anopheles baimaii. Probability
maps built using the mean of 100 replicates of the ECOOPT 1 km model based on 75% available samples. Inset maps present for each species
presence/absence derived from the probability of species occurrence map based on 75% sample using as suitability threshold the value which
maximizes sensitivity and specificity.
doi:10.1371/journal.pone.0050475.g001

Figure 2. Predicted potential and current distribution area for Anopheles dirus sensu lato. The produced maps show in grey forested areas
not suitable according to abiotic factor, in yellow the potential distribution based on abiotic factor but where forest is not present (potential niche)
and the distribution as defined by favorable abiotic and biotic factors (‘‘realized niche’’). Performance tests for the model include test Gain (1.38), test
AUC (0.90) and test extrinsic omission rate based on maximum test sensitivity plus specificity (6%).
doi:10.1371/journal.pone.0050475.g002
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the predicted area, was assessed and a one-tailed binomial test

determine whether the model predicts better than random. The

lowest extrinsic omission rate also characterized the best model.

Threshold independent evaluation was performed using value of

the Area Under the ROC (Receiver Operating Characteristic)

Curve (AUC) frequently used in species distribution modeling

literature [32]. In this case, the AUC was typically used as a

measure of model performance between models of the same

species, which avoid the drawback recently highlighted in the use

of this index [33]. The likelihood of the test point localities, or test

gain, was also monitored.

Map building. The final model with the highest number of

best performance indicators was run again with the same method

but 25% of samples set aside in order to maximize information

extracted from samples while still allowing testing of the model and

definition of a threshold between presence and absence. The

average of the 100 models was then mapped. To improve model

accuracy for species with low number of samples the target-group

background method was used [34].

Step 2: Biotic Factors and ‘‘Pseudo Realized Niche’’
The potential distribution maps derived from the models were

based only on abiotic factors. In a second step (Dataset S1), the

area defined as the potential niche by the best abiotic model was

further refined using the forest/non forest mask at 300 m based on

current vegetation status in the region. This will allow to evaluate a

‘‘pseudo realized niche’’ as many others factors are probably

interacting to define the true realized niche.

Step 3: Species Niche Similarities
To determine if species niches were significantly different,

Warren et al. [34] recently proposed a new similarity metric which

carries no biological assumption and is thus better adapted to

ecological niche modeling than more conventional measures of

niche overlap [35–36]. The metric is based on Hellinger distance

[37] previously used to compare community composition across

sites [38] and developed for comparing probability distributions.

In our case, the metric was based on the difference between

probability of occurrence for two species in a given grid cell

integrated over the whole study area and transformed to get values

ranging from 0 (no overlap) to 1 (identical niche). The metrics

were calculated using ArcGIS over the ‘‘realized niche’’ derived

from the best performing abiotic model and the forest/non forest

mask. A similarity dendrogram was then built using the Ward’s

minimum variance criterion.

Step 4: Influence of Abiotic Environmental Factors and
Related Envelopes

If causality cannot be derived from correlative analysis, the

apparent correlation between species and environmental factors,

including specific ecological limits which define environmental

envelopes, can however be highlighted. In step 4 (Figure S1), the

relative importance of each contributing factors to the model was

first assessed by running a model using only one variable to predict

the presence of each species and estimating the gain (model

predictive power) associated to that variable. From each of the

univariate suitability model with good performance (gain .0.75), a

Figure 3. Predicted potential and current distribution area for Anopheles dirus sensu strico. The produced maps show in grey forested
areas not suitable according to abiotic factor, in yellow the potential distribution based on abiotic factor but where forest is not present (potential
niche) and the distribution as defined by favorable abiotic and biotic factors (‘‘realized niche’’). Performance tests for the model include test Gain
(2.091), test AUC (0.9554) and test extrinsic omission rate based on maximum test sensitivity plus specificity (2.5%).
doi:10.1371/journal.pone.0050475.g003
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binary presence/absence map for the species considered was

developed based on a threshold value which maximize sensitivity

and specificity. The response curve from each univariate model

was plotted with the concordant species sample frequency to infer

ecological conditions relevant for the species (Figure S2) [30].

Threshold values were then derived if relevant for any species.

Figure 4. Predicted potential and current distribution area for Anopheles baimaii. The produced maps show in grey forested areas not
suitable according to abiotic factor, in yellow the potential distribution based on abiotic factor but where forest is not present (potential niche) and
the distribution as defined by favorable abiotic and biotic factors (‘‘realized’’ niche). Performance tests for the model include test Gain (1.7), test AUC
(0.93) and test extrinsic omission rate based on maximum test sensitivity plus specificity (5.7%).
doi:10.1371/journal.pone.0050475.g004

Figure 5. Similarity dendrogram. Similarity dendrogram based on Ward clustering method and modified Hellinger distance.
doi:10.1371/journal.pone.0050475.g005
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Results

According to threshold dependent and independent evaluation

methods (see Table S2), ECOOPT at a resolution of 1 km

(ECOOPT1) was the best performing abiotic model. Performances

were generally stable with highly performance for AUC values test

(90%) and highly significant extrinsic omission rates of 50% test

samples regardless of the criteria used to cut off suitability value

between absence and presence. According to the threshold criteria

(See Table S3), the suitability value selected as cut off between

presence and absence varied according to the species. For all

species, the threshold values selected following the criteria of

maximizing the specificity and sensitivity offered the best

discrimination with the highest cut off value for a low omission

rate (1% or less) and was used for delineating subsequent potential

distribution maps. The models developed for species with a low

number of samples, An. crascens, An. scanloni and An. nemophilous, are

less reliable due to the low number of samples compared to the

number of variables.

Step 1: Potential Distribution Area: the ‘‘Potential Niche’’
The suitability maps based on the mean of the 100 replicates of

model ECOOPT1 depict the potential distribution areas for the

complex and the species with reasonable sample size (Figure 1). In

each map a subset map represents presence/absence binary maps.

The model based only on abiotic factors depicted properly the

northern limit of the distribution of An. dirus s.l., absence in most

parts of India, presence in the island of Hainan and absence in the

north of Vietnam as observed in the field. The binary map of

presence/absence was also consistent with known distribution.

The potential distribution in Sri Lanka and Indonesia fitted with

the occurrence of species belonging to other species of the

Leucospyrus group. For species such as An. dirus s.s and An. baimaii

with reasonable number of samples, distribution area was

restricted compared to An. dirus complex and might be smaller

than its actual distribution. This is particularly the case when

looking at the binary presence/absence maps in the case of An.

baimaii and there might be an artifact link to the choice of the

threshold. When looking at the suitability maps instead of binary

Table 1. Performance from univariate models.

Variable description Label An.dirus.s.l. An.dirus s.s. An. crascens An. scanloni An. baimaii An. nemophilous

A Mean monthly
precipitation

ANNRAIN .1500 mm* - .2000 mm* – .1200 mm* –

D Rain Season (coeff.
Variation)

ANNCVRAIN – 65–95* ,65* – – –

C Lowest nber rainy day
month

MINDAYRAIN – 2–5 days* – – 1–4 days * –

B Highest nber rainy day
month

MAXDAYRAIN .20 days* .20 days* – .20 days* .21 days*** .20 days*

G Nber month less
5 rainy days

M5DAYRAIN 2–6 months* 1–5 months* – – – –

F Nber months mean
temp,20uc

M20MEANT 0 month* 0 month*** 0 month*** 0 month*** ,3 months* 0 month**

H Minimum temp
warmest month

MMAXMINT 19–25uC* 22–25uC* – – 22–25uC* –

E Maximum temp
coldest month

MMINMAXT .24uC* .26uC** .28uC*** .28uC*** .28uC*** .26uC***

Minimum temp
coldest month

MMINMINT 11–22.5uC* 12.5–21uC*** .20uC*** .15uC** .12.5uC** .14uC***

J Mean of mean
monthly temp

MMEMEANT 23–27.5uC* 24–27.5uC* .25uC** .26uC** 24–27.5uC* .20uC*

I Std dev mean
monthly temp

MSTDMEANT 1–5uC*** 0.5–2.5uC*** ,1uC*** ,2uC*** 0.5–2.5uC*** ,2.25uC***

L Mean temp wettest
quarter

WQMEANT 24–28uC* 25–27.5uC* – – – –

K Mean temp driest
quarter

DQMEANT 18–27uC* 22–26uC** .25uC*** .24uC** .22uC** .22uC*

Minimum relative
humidity

MMINREH – 57–%* .72%** – – .67%*

Minimum monthly
wind speed

MMINWIND – – – – 1.25 m/s* –

Main soil groups SOILS – acrisol** fluvisol* – – acrisol,fluvisol*

Soil moisture storage
capacity

STORMAX * * – * * –

Elevation above
sea level

DEM – – ,200 m* – – –

Gain or performance from univariate models: – (,0.25),–(0.25–0.5), *(above 0.5), **(above 0.75) and ***(above 1). Variables with training gain under 0.5 for all species are
not presented and include: MMAXRAIN, QMAXRAIN, NMINRAIN, QMINRAIN, MMINCVRAIN, MMENSUN, SLOPE, FLOW. For each relevant variable, the suitability value for
presence is defined. The letters refers to the text and to Figure 4.
doi:10.1371/journal.pone.0050475.t001
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maps (Inset map Fig. 1), An. baimaii was predicted more

southwards than its known distribution but was absent from the

coast of Vietnam.

Step 2: Current Distribution: ‘‘Realized Niche’’ Visual
Interpretation

The potential species distribution was refined with the Glob-

cover forest mask. An. dirus s.l. distribution was concordant with the

known distribution, except from over prediction in Sri Lanka, The

Philippines and Indonesia (Figure 2). If An. dirus s.l. had not been

recorded there, other members of the Leucosphyrus group, which

include the Dirus complex, are vectors in the area. This is the case

at least for An. mirans in Sri Lanka, An. baisasi in the Philippines and

An. latens in Indonesia [1,39]. The forest mask eliminated central

Thailand, parts of Cambodia and some areas of India. An. dirus s.s.

distribution (Figure 3) fitted with known distribution apart from

one site in central Myanmar. The species status for that site was

however not confirmed [21]. The possible presence sites were few

in Hainan Island. For An. baimaii (Figure 4), the area partly

corresponded to known distribution for the species and the

complex but the species was predicted to occur in south of India,

although never reported there, in Cambodia although only An.

dirus s.s. had been reported there, and under predicted in

Myanmar.

Step3: Niche Similarity
The ecological niche of An. dirus complex, An. dirus s.s. and An.

baimaii were more similar (.0.75). An. dirus s.s. was closer to An.

baimaii. An. crascens presented the ecological niche most at the

margin of the complex and was very close to An. scanloni and close

to An. nemophilous. (Figure 5).

Step 4: Influence of Environmental Factors
The relative importance of each separated environmental

variable as predictor of the distributions was estimated through

the gain or prediction performance achieved creating univariate

model based on this factor. The environmental variables which

show good performance for at least one species are presented in

Table 1 with their limit values. Temperature related factors had

the highest influence on the distribution of the species. The

uppercase letters in the following paragraphs refer to the Table 1

and Figure S4.

The annual rainfall (A: .1500 mm) and the rainfall distribution

pattern with frequent rains in the rainy season (B: .20 days/

month) and sporadic rains in the dry season (C) characterized the

occurrence area for the complex, but the influence of rainfall was

not very strong (gain ,0.5) compared to temperature. An. baimaii

occurred in areas presenting a lower amount of rainfall (A) but

more frequent rain (B) while the distribution area of An. crascens

Figure 6. Environmental envelopes. A) The maps depict the maximum distribution range based on extreme limit values. A graded shade of grey
depicts areas with unfavorable value for one or more variables, white being favorable areas for A) Dirus complex, B) An. dirus s.s. and C) An. baimaii.
Some sites represented by a star symbol were selected in unfavorable areas. D) A small table analyze if the value is higher (+) or lower (2) to the
actual range of value for each variables.
doi:10.1371/journal.pone.0050475.g006
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was correlated with higher amount of rainfall (A). Regarding

rainfall patterns, An. dirus s.s. distribution area was characterized

by a shorter dry season (C) and a less regular annual pattern (D)

than observed for An. crascens.

A mean temperature (F) of at least 20uC throughout the year

seemed to characterize the distribution area of the complex with a

mean annual temperature (J) ranging from 23–27.5uC and a

variation of 1–5uC(I). Low temperatures seemed to limit the

distribution to the north and high temperatures in west India,

central Vietnam and central Thailand. Daily extreme temperature

showed similar trends with maximum temperature never being too

high and above 24uC during the coldest month (E). Minimum

temperature was between 11–22.5uC during the coldest month

and between 19–25uC during the warmest month (H). If studying

interaction between rainfall and temperature, distribution areas

presented a mean temperature of 24–28uC during the rainy season

(L) and 18–27uC during the dry season (K). Species specific

thresholds were overall similar with lower tolerance for temper-

ature variation in general. An. crascens was found in areas with the

smallest mean temperature variation (I ,1uC) and the highest

minimum (Figure S4) and maximum temperature (E).

The other variables were more difficult to interpret. The

complex occurred mostly in area of low soil water storage capacity

in Southeast Asia but also in high water storage capacity in India

thus no clear trend could be derived from this variable. Associated

soils included mainly ultisols which cover most of Southeast Asia.

The minimum relative humidity ranged from 57–72% for An. dirus

s.s. distribution area, above 67% for An. nemophilous and above 72%

for An. crascens.

The Environmental Envelope Approach
While limit values can characterize the behavior of outliers and

thus not be representative of the general species distribution, the

environmental envelope approach predicts the extremes in the

distribution of species, which is useful to explain the incapability of

species to colonize some areas (e.g. An. dirus in northern Vietnam).

The map in Figure 6 showed in white the areas of suitable abiotic

environment. Fourteen sites were selected on the map in regions

predicted as unfavorable to the vector in order to investigate which

variables presented values above or below the limit for those areas.

For example when searching for a limit to the west (star 12) the

annual rainfall as well as rainfall during the wettest quarter was

low with a number of rainy day always low and too many months

with less than 5 days rain. Temperature was high during the

wettest quarter and minimum temperature was also high with high

temperature variations. In eastern India (star 8), the situation was

similar to the red river delta on the coast of Vietnam (star 1) with

high mean temperature during the wettest quarter.

Discussion

Using presence-only models and hierarchical framework this

study managed not only to predict the distribution of a major

malaria vector, but also improve ecological modeling analysis

design and proposed final products better adapted to malaria

control decision makers.

Lack of information on vectors distribution and environmental

preferences are major drawbacks in malaria elimination effort

[41]. With the paper Obsomer et al 2007, the current article

collect most known location for the dirus complex, gather most of

the knowledge on species ecology, produce maps per sibling

species and propose potential and current distribution map for the

complex. In addition to maps plotting occurrences, distribution

models predict areas where the presence or absence is unknown

such as South Nepal where few investigations have been carried

out. In countries where vast areas have not yet been surveyed, it

helps prioritize highest occurrence risk areas. Predictions based on

environmental variables help simulate distribution under changing

conditions such as climate change or reforestation. But moreover,

the hierarchical framework improved the potential use of the

results in several ways by (1) providing a potential distribution map

Figure 7. Comparison between Anopheles dirus sensu lato predicted distribution maps. Illustration of differences between the A) predicted
distribution developed using Boosted Regression Tree presented by the Malaria Atlas Project [8] and B) the current distribution map developed in this
paper.
doi:10.1371/journal.pone.0050475.g007
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based on abiotic factors and valid for several decades (2) providing

a current distribution map based on vegetation coverage whose

validity date can be identified, here the acquisition time of satellite

images used to derive the biotic factors (year 2005) (3) providing

easy update by non specialist. Indeed, regular update of mask of

the fast changing biotic factors does not require rerunning the

abiotic model and take advantages of increasingly available update

of these products (4) avoiding the use of expert knowledge which

make modeling a lengthy and costly process (5) providing GIS

maps at 1 km for zooming in areas of interest and overlaying other

layers (See Zip File Archive SGISFILE01) (6) providing suitability

map ranging from 0–100% giving an estimated risk when decision

makers decided to carry or not surveillance in a given area (7)

providing two products for decision tool. Indeed, the potential

distribution map of areas with favourable abiotic factors represents

the maximal extent of the complex in case of reforestation. Thus

favourable areas with forest delineate the current distribution area

while favourable areas without forest are potential extension zones

in case of reforestation. Such large scale reforestation is current in

China and other countries of Asia [42] but newly available habitat

might not be as suitable as natural forest. There the species might

adapt to new biotic factors such as orchards [43]. Outside of this

area, the abiotic factors are not favorable.

The method deals with two recurrent problems in ecology:

unreliable absences and mapping old species data with fast

changing biotic variables. Accurate distribution model were

processed without requiring expert knowledge to correct or train

the model. Expert knowledge can create bias in the analysis and

quality of the information is difficult to assess or may vary

regionally. The hierarchical framework improved the analysis

design by modelling literature records based on variables relevant

from the same time frame, while still integrating relevant biotic

data. The separation of abiotic and biotic factors is not new [44–

46]. If biotic factors such as forest cover are dependent of abiotic

factors [47], current forest distribution is also the reflection of land

use and thus a fast changing biotic factor. The use of biotic factor

in a mask and not in the model avoided correlation issues [48].

An. dirus s.l. predicted distribution is consistent with its known

distribution [7]. The models predict however presence of the

complex in region where it has never been recorded such as in the

Andaman Islands, the Philippines and Indonesia which are

inhabited by related species of the Leucosphyrus group [49].

Those islands might not be accessible to the specie or alternatively,

the genetic variation between the members of the Leucosphyrus

group might not be linked to environmental preference but

depends on evolution history [50]. The distribution maps for the

sibling species reflect only partly the known distribution. Our study

managed to highlight differences between species. It is however

unknown if those are environmental preferences or species are

developing at the margin of the complex distribution range in a

less favorable environment. An. crascens and An. takasagoensis which

live in the wettest areas are also the less efficient vectors. One

could suggest that a given species is a vector in a source population

and non vector if in a sink population. This is anyway not the case

for An. dirus s.s. which transmits systematically the disease when

present even if in areas favorable only in the rainy season.

Rascalou (2012) also indicates that sink vector populations can

represent serious threats to human health [51].

The distribution of An. dirus s.l. has been previously predicted by

[8] using Boosted Regression Tree [10]. While this method

produced valuable map for An. dirus s.l., it relies on absence data

artificially created based on expert knowledge thus adding a bias

unnecessary in our modeling technique. In this context we used a

method proposed by Phillips [34] for selection of background data

by including in pseudo absences a spatial bias similar to the

potential bias of presence data. Species with few sampling sites

were mostly discovered while searching for other more widely

distributed species and probably present stronger sampling bias.

Additional improvements are illustrated with Figure 7. (1) The use

of higher resolution dataset allowed better delineation of

favourable areas and reduced the superficies of the region

requiring surveillance. While the resolution of the abiotic dataset

used for modeling the potential distribution cannot be easily

improved because of necessary adequacy with the precision of the

site sampling location, the fact that the biotic factors are added as a

mask allow to keep this dataset in full resolution and thus provide a

more detailed resulting map (2) Strong deforestation occurs in

Cambodia and a model integrating biotic factors averaged on 20

year period lose the pertinence of up-to-date information. The use

of up to date biotic information for our model managed to capture

this fast changes in the forest cover leading to a far more accurate

map (3) The use of averaged biotic data in the model do not allow

to give a precise date at which the model could predict valid

distribution. Such model is thus difficult to use in the field. Our

model is valid for year 2005. (4) Additionally, the output format in

pdf does not allow zooming in area of interest and do not allow

overlaying other layers. A GIS format allows better interaction

with potential user and will lead to improved quality.

The models result is limited by the quality of the variables which

present two main drawbacks. Ecological model should be based on

source populations. Those are sustainable populations living in

suitable habitat while sink populations are surviving in habitat not

suitable for population persistence thanks to immigration from

nearby source population. Typical museum records include both

sink and source populations [17]. Entomological data are also

mostly available from the nineties with the development of sibling

species identification methods [1] while the climatic variables

range from 1950 to 2000. Predictive mapping of species with low

number of recorded occurrence could be improved by selection of

a fixed threshold which was shown to improve model performance

[52].

This study is a first step in delineating potential and current

distribution of the An. dirus complex. It shows that using wide scale

abiotic variables based mostly on climate, it is already possible to

refine the potential distribution area. Fine scale mapping of other

biotic factors relevant for the mosquito survival such as presence of

host, breeding sites, state of the forest cover is needed to further

reduce the predicted area. Those maps could thus be integrated

into more functional models such as agent-based models [53].

Such models can be very useful for decision makers by providing a

risk assessment to their mosquito control surveillance program and

strategy. More detailed analysis using concomitant entomological

data and biotic information could help to refine the distribution

and favorable vegetation types. An. dirus s.l. is believed to recede

during the dry season in forest areas where the moisture remains

high [7]. Studies at highest resolution could localize the restricted

area of distribution in the dry season to help in focus vector control

activities.

In the context of climate changes, the land cover has been

identified as one of the key variables influencing the climate

(Essential Climate Variables) and will thus probably soon

beneficiate of regular, standardized and faster updating of detailed

information. Recently, major mapping effort for malaria vectors

led to the gathering of large databases of record sites [8] which will

offer more opportunity to test the methodology and refine the

distribution.
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Supporting Information

Dataset S1 Zip File Archive GIS files of the resulting
map for An. dirus sensu lato. GIS TIF image for visualization

in ARCGIS software including the abiotic model result (dirus01.-

tif, 0: not favourable, 1: favourable), the forest mask (gcoforest01,

not favourable, 1: favourable) and combined information (final-

dirus, 0: not favourable, 1: abiotic favourable but no forest, 10:

forested area but abiotic factors not favourable, 11: current

distribution 2005.

(ZIP)

Figure S1 General analysis scheme. (1) Prediction of the

fundamental niche based on abiotic factors, (2) Refining

distribution to the ‘‘realized niche’’ based on biotic factors, (3)

analysis of niche similarities (4) Correlation with the environment

parameters and environmental limits.

(TIF)

Figure S2 Example predicting the distribution of spe-
cies using one of the abiotic environmental variables:
minimal minimum monthly temperature – MINMINT.
A) The main map presents the environmental variable overlaid

with presence absence information for An. dirus s.l. The small maps

present the distribution area by species such as defined by

univariate models developed using only that environmental

variable with B) An. dirus s.l. E) An. crascens, C) An. baimaii, D) An.

dirus s.s., F) An. scanloni, G) An. nemophilous. H) A graph represents

the MaxEnt response curves (lines) and sample density histogram

(diamond) for An. dirus s.l. The response curve illustrates the

predicted suitability for the species using that single environmental

variable.

(TIF)

Figure S3 Distribution maps for species with low
number of samples. A) An. crascens, B) An. scanloni, C) An.

nemophilous. 1)Probability of species occurrence build using the

ECOOPT 1 km model based on 75% available samples and

accounting for sampling bias, 2)Presence/absence maps derived

from the probability of species occurrence map based on 50%

sample using as suitability threshold the value which maximize

sensitivity and specificity, 3)Predicted potential and current

distribution area. (grey: forested areas not suitable according to

abiotic factor; yellow: potential distribution based on abiotic factor

but where forest is not present (potential niche); green: the

distribution as defined by favorable abiotic and biotic factors

(‘‘realized’’ niche). Performance tests for the model have similar

values for the three species model include test Gain (1.42 to 2.04),

test AUC (0.91–0.95) and test extrinsic omission rate based on

maximum test sensitivity plus specificity (0% for the three species).

(TIF)

Figure S4 Environmental influences. Environmental fac-

tors correlated to the distribution area of the Dirus complex

according to the results available in table 1. A) ANNRAIN: Mean

monthly precipitation, B) MAXDAYRAIN: Highest number rainy

day month, C) MINDAYRAIN: Lowest nber rainy day month, D)

ANNCVRAIN: Rain Season (coefficient of Variation), E)

MMINMAXT: Maximum temp coldest month F) M20MEANT:

Number months mean temp,20uc, G) M5DAYRAIN: Number

month less 5 rainy days, H) MMAXMINT: Minimum temp

warmest month, I) MSTDMEANT: Std dev mean monthly temp,

J) MMEMEANT: Mean of mean monthly temp, K) DQMEANT:

Mean temp driest quarter, L)WQMEANT: Mean temp wettest

quarter.

(TIF)

Table S1 Abiotic environmental variables. Selected vari-

able for the 15 km and 1 km resolution niche models: Variable

description, Ecological question (biological justification for selec-

tion of variables based on expert knowledge) Label (variable short

name), presence in analysis at 1 km (1CLIM - climatic, 1ECO –

all, 1ECOOPT – best) and 15 km resolution (15CLIM, 15ECO,

15ECOOPT).

(XLS)

Table S2 Measure of model performances. Threshold

independent and dependent measures of model performance for

three groups of variables (CLIM, ECO and ECOOPT), two

resolutions (1 km, 15 km) using 50% of samples for testing. The

best performance per test is in bold.

(XLS)

Table S3 Cut off values to transform probability maps
into binary maps for various threshold indices. Cut off

values used to transform probability maps into presence/absence

maps according to various threshold indices: V = Cut off

probability value, T = Test extrinsic omission rate, Equal spe&-

se = Equal test sensitivity and specificity, Max spe&se = Maximum

test specificity plus sensitivity, Balance TPT = Balance Training

omission, predicted area and threshold value, Equate entropy = e-

quate entropy of thresholded and non thresholded distribution.

Test extrinsic omission rates calculated on the binary map

measure model performance according to threshold indices for

best performing group of variables 1ECOOPT developed using

50% of samples for testing.

(XLS)
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