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Abstract

Recent psychophysical studies have shown that attention can alter contrast sensitivities for temporally broadband stimuli
such as flashed gratings. The present study examined the effect of attention on the contrast sensitivity for temporally
narrowband stimuli with various temporal frequencies. Observers were asked to detect a drifting grating of 0–40 Hz
presented gradually in the peripheral visual field with or without a concurrent letter identification task in the fovea. We
found that removal of attention by the concurrent task reduced the contrast sensitivity for gratings with low temporal
frequencies much more profoundly than for gratings with high temporal frequencies and for flashed gratings. The analysis
revealed that the temporal contrast sensitivity function had a more band-pass shape with poor attention. Additional
experiments showed that this was also true when the target was presented in various levels of luminance noise. These
results suggest that regardless of the presence of external noise, attention extensively modulates visual sensitivity for
sustained retinal inputs.
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Introduction

Attention plays a central role for selecting behaviorally relevant

information among enormous retinal inputs. The effect of

attention has typically been demonstrated as variations in the

reaction time for detecting and identifying a clearly visible pattern

[1–3]. Recently, an increasing number of studies have focused

more on the computational mechanisms underlying these

attentional facilitations, using simple measures such as detection

threshold [4–7], discrimination sensitivity [8,9], and suprathresh-

old appearance [10]. This approach enables us to analyze the

effect of attention more systematically in terms of the gain and

selectivity of visual channels and makes it easier to relate the

behavior to the attentional modulation of cortical responses [11].

Contrast sensitivity is considered a fundamental behavioral

measure of early visual channels [12]. As a primary application of

this new paradigm, previous studies have examined whether

attention can alter contrast sensitivity. They showed that the

contrast sensitivity for a peripheral grating is modulated by

bottom-up cueing [6] or by top-down engagement with a

concurrent task [4,5], by an amount of ,0.15 log unit [5,6] or

less [4]. It has also been shown that the effect is almost

independent of the spatial frequency; i. e., attention does not

alter the shape of the spatial contrast sensitivity function [6].

The present study investigated the effect of attention on the

‘temporal’ contrast sensitivity function. For decades, temporal

contrast sensitivity has also been used as a basic measure of the

temporal-frequency characteristics of early visual sensors [13,14],

but the influence of top-down factors has been largely ignored.

Here, we used a dual-task paradigm [4,5] to examine whether the

temporal contrast sensitivity for a peripheral drifting grating is

altered when observers are attentively engaged in the central letter

recognition task. Experiment 1 showed that removal of attention

by the concurrent task reduced the contrast sensitivity to a much

greater extent for low temporal frequencies than for high temporal

frequencies. Experiment 2 showed that this was true even when

the target was presented in noise. These results provide evidence

that behavioral temporal-contrast sensitivity can be largely altered

by top-down attention and support the notion that attention

substantially amplifies the gain for sustained image inputs.

Methods

Experiments were conducted with completed consent forms and

permission from the NTT CS Labs Ethical Committee.

Experiment 1
Observers. Seven paid volunteers and the author served as

observers. All had normal or corrected-to-normal vision. Paid

volunteers were neither researchers nor students and were naive to

the purpose of the study.

Apparatus. Visual stimuli were displayed on a CRT (SONY

GDMF500R) controlled by a graphics card (CRS ViSage). The

CRT had a spatial resolution of 1.7 min/pixel at the viewing

distance of 1 m we used, and had a refresh rate of 160 Hz. The

stimuli were drawn on VRAM as 8-bit gray scale images, and their

contrast was controlled by a 14-bit look-up table.

Stimuli. All stimuli were presented on a uniform gray

background of 68 cd/m2 (63 cd/m2 for two observers) subtending

23(W)617(H) deg. The stimulus sequence is illustrated in Fig. 1.

The target stimulus was a vertical sinusoidal grating with a spatial

frequency of 2.2 c/deg, windowed by a Gaussian with a standard
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deviation of 0.5 deg (i.e. Gabor patch). The grating was static (0 Hz)

or drifted at a particular temporal frequency ranging from 0.63 to

40 Hz. In each trial, the grating was gradually presented within a

Gaussian temporal window with a standard deviation of 250 ms, at

one of eight possible locations on a virtual circle of 4-deg radius with

equal spaces. During the target-presentation period (+20.75 s

around the peak of Gaussian temporal window), a rapid-serial visual

presentation (RSVP) display concurrently appeared in the center of

the background. We used the RSVP display in order to confine

observers’ attentional resources throughout the target presentation

of 1.5 s [15–18]. In our RSVP display, 15 capital alphabetical letters

(excluding I, O, Q, Y, Z) were serially presented every 50 ms,

separated by a blank of 50 ms (10 Hz). Each letter was drawn in

‘Arial font in black and subtended 0.260.2 deg. Two letters were

replaced by two numbers randomly chosen from 1 to 9. One of the

two numbers appeared at a frame within the 2nd–6th, and the other

at a frame within 10th–14th in the sequence, respectively. For five

observers who had a difficulty in identifying the numbers, 12 letters

were presented every 63 ms with a blank of 63 ms (8 Hz).

For a different set of six observers, the target was a static grating

with abrupt onset and offset, which was similar to the ‘flashed’

gratings used in previous studies [4–6]. This grating was presented

for 250 ms in the middle of the RSVP display.

Procedure. There were two separate measurement sessions.

In single-task sessions, observers viewed the display with a steady

fixation of the central RSVP letters and indicated the target location

by a button press (8-alternative forced choice). They were instructed

to concentrate on detecting the target while gazing at the central

letters. In dual-task sessions, the observers were first asked to identify

the two numbers in the central RSVP display. If they identified both

in the correct order, they next indicated the location of the

peripheral target grating. The observers were strongly encouraged

to maintain as high a performance as possible in the central RSVP

task. Auditory feedback was given when the observer failed to

identify the numbers in the RSVP display. No feedback was given

for the detection of the peripheral grating. Since the central RSVP

task was difficult, all observers performed several hundred practice

trials in the dual-task mode in advance. The data collected in the

practice trials were not used in the analysis.

Contrast threshold for the peripheral grating was estimated by

means of a staircase procedure. In both task modes, the luminance

contrast of the grating was decreased by 0.1 log unit after a correct

response and increased by the same amount after an incorrect

response. Each staircase corresponded a particular temporal

frequency and was randomly interleaved within a session. The

contrast thresholds, giving 56.3% correct response (d9, = 1.5),

were estimated by fitting logistic functions to the proportion

correct data using the maximum likelihood method. Each estimate

was based on at least 120 trials for single-task sessions and 140

trials for dual-task sessions. For dual-task sessions, only trials in

which the observers correctly identified the central numbers were

used in the threshold estimation.

Experiment 2
Previous studies using flashed stimuli have shown that attention

plays a major role in the detection of a target among noise [5,19].

However, the results of Experiment 1 suggested that even without

noise, attention has a large impact on detection of a target with

low, but not high, temporal frequencies. This makes us wonder

how these two factors, noise and temporal frequency, are related

in the attentional modulation of target detection. To address this

question, we also examined the contrast threshold for static and

fast drifting targets embedded in various levels of dynamic noise.

The whole display was filled with a dynamic Gaussian

luminance noise consisting of square dots of 767 min. The

standard deviation (SD) of the noise was varied from 0 to 0.08.

The mean luminance of the noise over space and time was

68 cd/m2. The images of the noise and target were alternatively

displayed at every frame of the CRT (6.25 ms). They appeared to

be temporally fused. This was needed in order to independently

control the luminance contrast of the target and the noise with the

14-bit look-up table of our graphics card. The noise image was

changed to a different one every four CRT frames (50 ms),

resulting in a broad spatiotemporal frequency. The central region

of the noise was circularly masked by a uniform gray with a

diameter of 0.9 deg so that the dynamic noise did not interfere

with the RSVP letters. The target grating was static (0 Hz) or

drifted at a temporal frequency of 20 Hz. The measurements were

separately done for each target temporal frequency (0 and 20 Hz)

and for each task mode. Seven observers participated in the

measurement for 0 Hz, and six observers for 20 Hz. In each trial,

the target grating was presented with the dynamic noise within the

same Gaussian temporal window (SD = 250 ms). The noise had a

particular SD corresponding to each staircase, which was

randomly interleaved. The other conditions were the same as in

Experiment 1.

Results

Experiment 1
The upper panel in Fig. 2 shows the contrast sensitivity as a

function of the temporal frequency of the peripheral grating. The

data represent the average for the eight observers. The open

circles show the results for the single task condition, and the red

circles the results for the dual task condition. The smooth curve is

the conventional temporal modulation-transfer function (MTF)

fitted to the data, which will be described later in more detail.

Figure 1. Stimulus sequence in Experiment 1. A vertical grating
pattern was presented within a Gaussian temporal window at one of
eight locations (denoted by dashed circles, which were not actually
shown in the experiment) while small letters were serially presented in
the center of the display. The grating was static or drifted at a particular
temporal frequency.
doi:10.1371/journal.pone.0019303.g001
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It is found that the contrast sensitivities in the dual-task mode

are lower than in the single-task mode over all temporal

frequencies (t-test in log scale; p,0.005 for TFs,5 Hz, and

p,0.04 for TFs.5 Hz) except for 20 Hz (p = 0.07). The sensitivity

is reduced in the dual-task condition more profoundly at low

temporal frequencies. The middle panel shows the ratio in the

contrast sensitivity between the two task modes; a lower value

indicates a larger sensitivity reduction in the dual-task mode. It is

clear that the sensitivity reduction is larger for lower temporal

frequencies (one-way ANOVA; F(8, 63) = 2.87, p = 0.009). The

sensitivity reduction is only ,0.1 log unit for high temporal

frequencies, while it is ,0.3 log unit for low temporal frequencies.

The contrast sensitivity for the flashed grating was also lower for

the dual task than for the single task (t-test in log scale, p = 0.007).

The ratio was 0.11 log unit, which is comparable to the data

obtained for flashed gratings in previous studies [5,6]. The bottom

panel shows the proportion correct for the central RSVP task,

which is within the range of 86.8 to 91.3% across all observers,

and shows no dependence upon the target temporal frequency

(F(8, 63) = 0.58, p = 0.79).

The relatively smaller effect of attention for high-temporal-

frequency stimuli may appear due to the fact that the observers

paid attention on the central letters that changed at a high

temporal frequency. In additional experiments, we sought to

examine this possibility using central displays with relatively low

temporal frequencies, such as a gradually presented single letter.

However, we found that these displays were not strong enough to

confine observers’ attentional resource throughout the target

presentation, and found no significant effect of the task mode. The

present study leaves this ‘‘temporal-frequency selective attention’’

hypothesis for future investigations.
System analysis. To analyze quantitatively the change in the

temporal contrast sensitivity function between task modes, we

fitted the data of each observer by a temporal MTF as follows:
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where t1 and t2 are the center frequencies, and n1 and n2 the filter

widths. The k is a parameter related to the negative phase in the

impulse response in the time domain, called the ‘transient factor’

[20]; k = 0 when the MTF is low pass, and k.0 when it’s band

pass. The A is a scaling factor denoting the overall sensitivity. We

fitted this function to the data for individual observers by means of

the least-square method on the log scale, assuming identical t1, t2,

n1, and n2 for both task modes and different A and k for each task

mode. The fitting was very good for all observers. On average, the

RMS error of the fitting was 0.25, and the correlation coefficient

between the fitted and observed data was 0.99.

The average estimates of t1, t2, n1, and n2 were 0.007, 0.02,

5.30, and 19.0, respectively. The overall amplitudes (A) were 116.1

for the single task and 89.5 for the dual task. They are shown in

Fig. 3a. When compared on the log scale, they were significantly

different (t-test, p = 0.01). The transient factors (k) were 0.47 for

the single task and 0.65 for the dual task (Fig. 3b), suggesting that

the contrast sensitivity function had a more band-passed shape in

the dual-task mode (t-test in log scale, p = 0.0008). By extrapolat-

ing the fitted curve, we also estimated the intercept of the function

with 1.0, which was regarded as the cut-off temporal frequency. As

shown in Fig. 3c, the estimates were 55.2 Hz for the single task

and 51.2 Hz for the dual task (t-test in log scale, p = 0.03),

indicating a slight decrease of the temporal resolution due to the

concurrent task.
Slope of psychometric functions. In addition to the

elevation of the threshold, we also found that the slope of the

psychometric function tends to be shallower in the dual-task mode.

Fig. 4a illustrates two typical psychometric functions for the static

gratings (0 Hz, upper panel) and drifting gratings of a high

temporal frequency (26.7 Hz, lower panel), both of which were

drawn using the averaged threshold and slope across observers.

The psychometric function for the static grating appears

considerably shallower in the dual task (red dashed curve) than

in the single task (black solid curve). Figure 4b plots the averaged

slope as a function of the temporal frequency of the grating.

Except for very high temporal frequencies (26.7 and 40 Hz,

p.0.13), the slope is shallower in the dual-task mode than in the

single-task mode (t-test, p,0.004 for TFs less than 1.25 Hz,

p,0.05 for TFs from 1.25 to 20 Hz). The decrease in the slope

appears a little more profound when the temporal frequency is

low, but this trend was not significant (one-way ANOVA, F(8,

63) = 1.74, p = 0.11). The partial-correlation analysis revealed that

the decrease in the slope was correlated with the decrease in the

sensitivity (r = 0.26, p = 0.03) but not with the temporal frequency

(r = 0.19, p = 0.11).

From these results, it is expected that the amount of sensitivity

reduction in the dual task would depend on the criteria of the

Figure 2. Contrast sensitivity for detecting the peripheral
grating at various temporal frequencies. The open circles show
the results for the single-task mode, and the red circles the results for
the dual-task mode. The middle panel shows the ratio of the sensitivity
between the two task modes. The bottom panel shows the proportion
correct for the central task. Error bars are +21 s.e.m. across observers.
doi:10.1371/journal.pone.0019303.g002
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correct detection that defines the threshold. Figure 4c shows the

contrast sensitivity function, and the ratio, as defined by the

threshold that gives proportion correct of 39% (d9 = 1; red

symbols), 71% (d9 = 2; purple symbols), and 92% (d9 = 3; blue

symbols). The plots show that the concurrent task little affects the

sensitivity defined at low proportion correct (d9 = 1; red symbols)

but greatly reduces that defined at high proportion correct (d9 = 3;

blue symbols). In the latter case, the sensitivity is reduced as much

as ,10 times (i.e., ,1.0 log unit) for low temporal frequencies.

This is far greater than for flashed gratings (,0.1 log unit) with the

similar criterion (90%) in a previous study [6].

We also analyzed the data assuming a psychometric (logistic)

function with a variable asymptote level as well as a variable center

and slope. The results showed that changes in the slope across task

modes were partially replaced by those in the asymptote level.

Although the parameter estimates in this analysis were a little

unstable, probably because our staircase procedure collected a

small number of data at high contrast, this implies the effect of

attention on the asymptote level as also reported in previous

studies [7]. Importantly, this analysis also resulted in criteria-

dependent sensitivity modulations similar to those found in the

original analysis. For 0 Hz target, for example, the sensitivity

reduction by the central task was 0.16 log unit at d9 of 1 (p = 0.001)

and 0.82 log unit at d9 of 2 (p = 0.016), and that for 20 Hz target

was 0.03 log unit at d9 of 1 (p = 0.5) and 0.34 log unit at d9 of 2

(p = 0.11), respectively.

Fixational eye movements. The sensitivity reduction in

dual tasks might be caused by suppression of fixational eye

movements, which can affect the contrast sensitivity for low

temporal frequencies [14]. To test this possibility, we measured the

observers’ fixational eye movement using an eye tracking device

(SR Research Ltd. EyeLink II, 500 Hz), although this was done in

a separate session because the device was installed at a different

place. Eight observers were asked to perform the single and dual

Figure 3. Estimated parameters of the MTF for single- and
dual-task conditions. (a) Overall amplitude. (b) Transient factors. (c)
Cut-off temporal frequency in hertz. Error bars are +21 s.e.m. across
observers.
doi:10.1371/journal.pone.0019303.g003

Figure 4. Effect on the slope of psychometric function. (a) Examples of psychometric functions for the peripheral grating detection. The upper
panel shows the results for the static grating (0 Hz) and the lower panel the results for the fast drifting grating (26.7 Hz). The solid curves are the
psychometric functions for the single-task mode, and the red dashed curves are those for the dual-task mode. (b) Slope of psychometric functions
plotted as a function of the grating temporal frequency. The open circles shows the results for the single-task mode, and the red circles the results for
the dual-task mode. Error bars are +21 s.e.m. across observers. (c) Contrast sensitivity defined with different performance criteria; the red symbols for
d9 = 1.0, purple symbols for d9 = 2.0, and blue symbols for d9 = 3.0. The lower panel shows the ratio in the sensitivity between the two task modes.
Error bars are +21 s.e.m. across observers.
doi:10.1371/journal.pone.0019303.g004
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tasks as they did in the main experiment. The power spectrum of

the horizontal eye position was calculated for trials without a large

and rapid eye movement (.200 deg/sec) due to blink or saccade.

The results showed that the average power spectrum across

observers did not significantly differ between task modes at any

temporal frequency from 1 to 100 Hz (t-test in log scale, p.0.13).

We also found that the average distance of the eye position from

the baseline (initial 200 ms of the trial) was 0.6 (+20.16, s.e.m.)

deg for single tasks and 0.4 (+20.06) deg for dual tasks (t-test,

p = 0.07). This difference (,0.2 deg) is very small with respect to

the target eccentricity of 4 deg. These results are not consistent

with the notion that fixational eye movement alone explains

variations in the contrast sensitivity between the two task modes.

Experiment 2
Figure 5 shows the contrast threshold for the target grating as a

function of the noise standard deviation. The average threshold

data across observers are shown. It is found that the threshold is

constant until a certain noise level and then it increases. The

threshold is higher for the dual-task mode (filled symbols) than for

the single-task mode (open symbols) when the target is static (t-test

in log scale, p,0.02 except for the noise level of 0.005 and 0.01),

but not significantly so when the target is drifting at 20-Hz (t-test in

log scale, p.0.05 for all noise levels). A three-way ANOVA

showed significant effects of temporal frequency, task mode, and

noise level (F(1,11) = 48.0, p,0.0001, F(1,11) = 32.2, p,0.0002,

F(5,55) = 274.4, p,0.0001), and an interaction between task mode

and temporal frequency (F(1, 11) = 4.85, p = 0.049). These results

suggest that the effect of task mode is larger for low temporal

frequencies than for high temporal frequency.

PTM analysis. Lu & Dosher [21,22] have introduced a

powerful paradigm called the perceptual template model (PTM) to

analyze the effect of attention on visual processing in terms of

signal detection. We employed the PTM to analyze our noise-

versus-threshold functions. The PTM assumes that the target

threshold is determined by three hypothetical noise components:

additive internal noise, multiplicative internal noise, and external

noise. A reduction in the additive internal noise is related (but not

equivalent) to the enhancement of the target signal; for more

details about the rationale , see Ref. [21]. To estimate how much

each noise is varied with attentional control, the threshold data of

individual observers were fitted by a formula taken from Dosher &

Lu [22] using the least-square method on the log scale:
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1

b

1zAmNm
2

� �
AextNext

2
� �2c

z AaNa
2

� �2

1=d 02{AmNm
2

" # 1
2c

, ð2Þ

where Ct is the threshold contrast, c the nonlinearity parameter,

and b the scaling factor. The d9 is the performance level that

defines the threshold. We considered d9 of 1.0 and 1.5 in the

present analysis. Na indicates the additive noise, and Nm the

multiplicative noise. Next is the external noise contained in the

stimuli. These were assumed to be constant across the task mode.

To allow the amount of noise to vary with the task mode, each N

was multiplied by Aa, Am, and Aext, which were assumed to be 1.0 in

the dual-task mode but a variable in the single-task mode.

For the data for the 0-Hz target, the average estimates across

observers were (b, c, Na, Nm) = (1.59, 2.03, 0.03, 0.18). The three

multiplicative factors were estimated as (Aa, Am, Aext ) = (0.77, 0.24,

0.83). All of them were significantly lower than 1.0 (t-test,

p,0.003), indicating a reduction in all classes of the noise in the

single-task mode. The reduction was more profound in the

multiplicative noise than in the other two (t-test, p,0.02). This is

interpreted as suggesting that for a static target, attention is

effective not only for excluding the external noise but also for

reducing the internal noise and amplifying the target signal. We

also applied the same analysis to the data for the 20-Hz target and

found the average estimates of (b, c, Na, Nm, Aa, Am, Aext) = (0.63,

2.17, 0.02, 0.01, 0.87, 0.93, 0.90). Only Aext was significantly lower

than 1.0 (t-test, p,0.005), indicating the exclusion of external

noise. But the effect was quite subtle (single : dual = 0.90 : 1.00).

To summarize, these results support the notion that regardless

of the amount of external noise, attention has a large impact on

the detection of sustained, or low-temporal-frequency, stimuli via

enhancement of the signal and suppression of the noise, whereas it

has little impact on the detection of transient, or high-temporal-

frequency, stimuli.

Discussion

The present results show that when the observers concentrate

on a different cognitive task, contrast sensitivity is reduced by a

large amount for peripheral gratings of low temporal frequencies

but little for those of high temporal frequencies. The results are

consistent with the previous findings that attention alters contrast

sensitivity [6,7], and further demonstrates that the effect is

particularly profound for low temporal frequencies.

The large decline of contrast sensitivity for low temporal

frequencies is also qualitatively consistent with recent psychophys-

ical findings that the lack of focal attention rather enhances

temporal discrimination of suprathreshold stimuli [23]. Although

our analysis showed that attention increases, rather than decreases,

the upper temporal frequency limit per se., the band-passed

temporal frequency characteristics obtained in the poorly-attended

condition is indeed more suitable for temporal discrimination of

dynamic stimuli. These findings may support the hypothesis that

attention amplifies the output of parvocellular channels, which are

sensitive to low temporal and high spatial frequencies [23] and to

stimuli at isoluminance [24]. However, it is not always clear that

attention largely modulates the contrast sensitivity for any stimuli

preferred by parvocellular channels. For example, it has been

shown that attentional effects on the detection of a flashed target

are weak across spatial frequencies, including high ones [6]. Our

pilot observations also indicated that the concurrent task affected

only little the detection (d9 = 2) of a drifting grating (10 Hz) even

when it had a high spatial frequency (,0.2 log unit, N = 9) or

Figure 5. Contrast thresholds for the target grating as a
function of the standard deviation of the noise. The open circles
show the results for the single-task mode, and the red circles the results
for the dual-task mode. Error bars are +21 s.e.m. across observers. The
left panel shows the results for the static grating (0 Hz); the right panel
the results for the drifting grating (20 Hz).
doi:10.1371/journal.pone.0019303.g005

Attention and Temporal Contrast Sensitivity

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e19303



when it was red-green isoluminant (,0.1 log unit, N = 6). The

parvo-modulation hypothesis may be further tested by considering

many differential aspects between two channels, including the gain

and saturation level.

From a functional viewpoint, it is nevertheless possible to

consider that attention enhances contrast detection by promoting

‘sustained’ signals, regardless of their physiological correlates. It is

well known that transient signals produce an extremely strong

saliency to capture one’s attention almost unconditionally [25]

unless they are interfered by other transients in neighbors [26].

Particularly for the contrast detection on a uniform visual field, it is

likely that such transient signals automatically prompt the

conscious awareness of the target itself. This might result in the

weak attentional modulation of the contrast sensitivity for the

high-temporal-frequency target in our data and for the flashed

target in previous data [4–6]. Attention may be effective for

enhancing ‘sustained’ information that was not detected by such

transient processes.

The contrast detection threshold is essentially based on the

conscious awareness of the target stimulus. Recent psychophysical

and imaging studies have demonstrated the unconscious process-

ing of invisible stimuli in situations of masking and adaptation [27–

30], indicating that the behavioral contrast threshold is determined

by multiple levels of neural processes [31]. Interestingly, these

invisibilities are frequent for static or sluggish stimuli and rare for

transient stimuli [27,28], supporting the notion that visual

awareness is gated by transients [29]. Attentional modulation of

the contrast sensitivity for sluggish stimuli may also originate in

such gate processes beyond early visual channels. This notion is

consistent with physiological findings that attentional modulations

are often observed in the later, feedback-related, phase of neural

responses [32].

It has been shown that endogenous attentional control has a

larger impact on the sensitivity for detecting a target presented

with noise or distracters than for detecting one presented alone

[5,22,33]. These findings are consistent with the idea that top-

down attention plays a major role in the suppression of irrelevant

inputs; c.f., external-noise exclusion [22] or the winner-take-all

network [5]. The present results may afford a different

interpretation in terms of the temporal characteristics of stimuli.

In previous studies, the target and the noise (or distracters) were

both briefly flashed in synchrony [5,33] or in temporal fusion [22].

In such stimuli, transient signals are ineffective for distinguishing

between a target and noise, and the visual system must specifically

make use of sustained (non-transient) information, which could be

enhanced by attention. In our Experiment 2, the 20-Hz drifting

grating is likely distinguished from the dynamic white noise by

differences in temporal information. Transient signals are

available there, and probably little attention was required to find

the target. It is therefore possible that the top-down attention plays

a role not only in suppressing noise regardless of the temporal

property of stimuli, but also in modulating sustained information

regardless of the presence of noise. It should be noted, however,

that exogenous attentional cues can have larger attentional effects

for targets without noise than for those with noise [21]. It is

unclear if the above hypothesis is relevant for the exogenous

attentional control, which may drive different attentional mech-

anisms [34,35] or directly facilitate the detection of stimuli in

spatiotemporal neighbors.

The present data also showed that attentional control alters the

slope (and/or asymptote level) of the psychometric function. In

accordance with the perceptual template model, the change in the

slope is a strong signature of the change in multiplicative internal-

noise [21]. The present results can be interpreted as indicating that

attention modulates the response gain, as well as the input gain, of

sustained visual channels. This appears consistent with the

response gain modulation found among cortical neurons [11].

However, it should be noted that the psychometric function is

determined by a stochastic process based on many binary

responses. For example, fluctuations in the input gain across trials

can also result in a shallow slope of the function. Recent studies

show that the attentional effect on the slope of the psychometric

function depends on many factors in stimuli and observers [36,37].

Also, the type of physiological gain control is also known to depend

on stimulus configurations such as size [38–40]. More detailed

analyses of the psychometric function may unveil new aspects of

attention, such as discrete sampling [41].

The present findings were obtained for threshold detection. It is

not very easy to tell what implications they have for the effect of

attention on the perception and discrimination of suprathreshold

stimuli. Discrimination is determined through more complex

processes, and is not a simple function of the activities of

underlying units [8,23]. Nevertheless, it would be interesting to

revisit the past suprathreshold data in terms of the temporal

characteristics.
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